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Abstract

Abstract

Fractional kinetic equations have been of great interest recently. It is caused both
by the intensive development of the theory of fractional calculus itself and by the appli-
cations of such constructions in various sciences such as physics, chemistry, biology,
environmental sciences, engineering and finance. Fractional kinetic equations provide
a powerful instrument for the description of memory and hereditary properties of dif-

ferent substances.

However, many analytical solutions for the fractional kinetic equations are com-
plicated, which include the complicated series or especial function. Moreover, analytic
solutions of most fractional kinetic equations cannot be obtained explicitly. At present
numerical methods and analysis of stability and convergence for fractional partial dif-
ferential equations are quite limited and difficult to derive. This motivates us to develop
effective numerical methods for the fractional differential equations. In this thesis, we
consider two kind of fractional kinetic equations. The first kind of the fractional ki-
netic equations is the fractional kinetic equations of the diffusion, diffusion-advection,
and Fokker-Planck type. Numerical methods and theoretical analysis for the fractional
kinetic equations are discussed in Chapters 2, 3 and 4, respectively. The second kind
of the fractional kinetic equations is the fractional kinetic equations of anomalous sub-
diffusion type, such as the anomalous subdiffusion equation, a nonlinear fractional
reaction-subdiffusion process and the fractional cable equation. Numerical methods
and theoretical analysis for the fractional kinetic equations are discussed in Chapters
5, 6 and 7, respectively. These fractional kinetic equations above-mentioned have been
presented as a useful approach for the description of transport dynamics in complex
systems which are governed by anomalous diffusion and non-exponential relaxation
patterns. These fractional equations can be derived asymptotically from basic random

walk models, and from a generalised master equation.

In the first chapter, we summarize the history of the theory of fractional calculus,
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Abstract

the background and significance of this dissertation, and the previous works about the
fractional kinetic equations. Our research group and the framework of this thesis are

given.

In Chapter 2, we consider a space-time fractional diffusion equation on a finite
domain. The equation is obtained from the standard diffusion equation by replacing
the second-order space derivative by a Riemann-Liouville fractional derivative of or-
der B € (1,2], and the first-order time derivative by a Caputo fractional derivative of
order o € (0,1]. An implicit and an explicit difference approximations for the space-
time fractional diffusion equation with initial and boundary values are investigated.
Stability and convergency results for the methods are discussed. Using mathematical
induction, we prove that the implicit difference method is unconditionally stable and
convergent, but the explicit difference method is conditionally stable and convergent.
Some numerical results show the system exhibits anomalous diffusive behaviour. In
this chapter, we also consider a two-dimensional fractional diffusion equation on a fi-
nite domain. We examine an implicit difference approximation to solve the space-time
fractional diffusion equation. Stability and convergency of the method are discussed.
Some numerical examples are presented to show the application of the present tech-

nique.

In Chapter 3, we consider a space-time fractional advection dispersion equation
on a finite domain. This equation is obtained from the standard advection-dispersion
equation by replacing the first-order time derivative by the Caputo fractional deriva-
tive of order o € (0,1], and the first-order and second-order space derivatives by the
Riemman-Liouville fractional derivatives of order 8 € (0, 1] and of order vy € (1,2],
respectively. n implicit and an explicit difference approximations is proposed. Using
mathematical induction, we prove that the implicit difference method is uncondition-
ally stable and convergent, but the explicit difference method is conditionally stable

and convergent. Numerical results are in good agreement with theoretical analysis.

In Chapter 4, we consider a space-time fractional Fokker-Planck equation on a
finite domain. This equation is obtained from the standard Fokker-Planck equation by

replacing the first-order time derivative by the Caputo fractional derivative, the second-
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Abstract

order space derivative by the left and right Riemann-Liouville fractional derivatives.
We propose a computationally effective implicit numerical method to solve this equa-
tion. Stability and convergence of the methods are discussed. Numerical example is
given, which is in good agreement with the exact solution.

In Chapter 5, we consider anomalous subdiffusion equation. A new implicit nu-
merical method and two solution techniques for improving the order of convergence
of the implicit numerical method for solving the anomalous subdiffusion equation are
proposed. The stability and convergence of the new implicit numerical method are
investigated by the energy method. Some numerical examples are given. The numer-
ical results demonstrate the effectiveness of theoretical analysis. These methods and
supporting theoretical results can also be applied to other fractional integro-differential
equations and higher-dimensional problems.

In Chapter 6, a nonlinear fractional reaction-subdiffusion process is considered.
We propose a new computationally efficient numerical method to simulate the process.
Firstly, the nonlinear fractional reaction-subdiffusion equation is decoupled, which is
equivalent to solving a nonlinear fractional reaction-subdiffusion equation. Secondly,
we propose an implicit numerical method to approximate this equation. Thirdly, the
stability and convergence of the method are discussed using a new energy method. Fi-
nally, some numerical examples are presented to show the application of the present
technique. This method and supporting theoretical results can also be applied to frac-
tional integro-differential equations.

In Chapter 7, a fractional cable equation is discussed. An implicit difference
method is proposed. The stability and convergence of the method are discussed using
an energy method. Moreover, we also propose the finite element approximation of
the fractional cable equation. The stability and error estimates are established. We
derive the convergent order of the method. Numerical examples are presented which
demonstrate the effectiveness of the methods and confirm the theoretical analysis.

Key words: fractional kinetic equation; anomalous subdiffusion equation; finite

difference method; stability; convergency; the energy method; finite element method
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