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Abstract

Abstract

The motion of compressible, viscous self-gravitating fluids can be expressed by
Navier-Stokes-Poisson equations, while this motion without viscosity can be described
by Euler-Poisson equations. In the 19th century, this two equations, especially the lat-
ter, have catched lots of mathematician’s research, and they have gotten various results,
including existence, uniqueness, stability, the existence for stationary solutions, and the
existence of the symmetric solutions with solid core and without solid core. In this thesis,
our work is focused on the mathematical theoretical investigation of the Navier-Stokes
system of compressible, viscous, isentropic self-gravitating fluids, which is called N. S. P.
equations for short, furthermore we extend the topic to other related models for fluids,
for example, liquid crystal model and so on. We organize the paper as follows. These

results of this thesis can be brought under four headings.

1. We apply the energy method and standard compactness method, which Feireisl
ever used to deal with the Navier-Stokes equations, to study the global behavior of weak
solutions of the N. S. P. equations in time in a bounded three-dimension domain-arbitrary
forces. Firstly, because the gravitation potential energy may make the total energy neg-
ative, we should make use of the fine estimations of gravitation potential energy to prove
the lower bound of the total energy. Moreover, in improving the estimate of the density, we
use the Hardy-Littlewood-Sobolev inequality to obtain that the product of gravitation and
density can be controlled by the pressure, thus we get the bound of energy and prove the
existence of bounded absorbing set. Secondly, by the standard compactness method, we
obtain asymptotic compactness on closed trajectory. Lastly, we use o € C([0, T], L?(2)),
where 1 < p < 7, to infer that the gravitation potential energy is continuous on time,

thus we can prove the existence of global attractor.

2. We prove the global existence of finite energy (or bounded) weak solutions to
the Cauchy problem for the N. S. P. equations in R? when the Cauchy initial data are
radially symmetric. It extends Feireisl’s existence theorem to the case 4/3 < v < 3/2 for
radially symmetric weak solution. In particular, this conclusion also holds for v = 4/3, if
the total mass is less than certain critical mass. The main idea of proof is that we firstly

construct a family of function sequences of approximate strong solutions on bounded
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annulus, then refer to the methods in S. Jiang’s paper!!l and take limit, finally by a
series of fine compactness analysis, we prove the limit function is the weak solution of the
problem . The main difficulty is to prove that the energy inequality holds. To prove this,
we use the properties of renormalized continuity equations to prove that the density in
approximate strong solutions is strong convergence in C([0, 7], L(R?)), where 1 < p < v,
thus we can get the energy inequality. In addition, to construct the approximate strong
solutions, we use technical methods to deal with the initial density to make sure that
we can deduce the uniformly estimations on the approximate strong solutions from the
energy inequality.

3. We also study a simplified system for the flow of nematic liquid crystals in a
bounded domain in the three dimensional space by above compactness method. We
firstly construct the approximate solutions of the liquid erystals models with dissipation
by Galerkin method, then by careful estimations, we obtain the new estimations with
respect to the orientation of the liquid crystal molecules, which is independent of lower
bound of the density. This key estimation makes sure that we can prove the global
existence of the weak solutions under the condition of the initial density belong to L7(2)
for any 3/2 < 7. This result is very different from the C. Liu’s results!?, where they
need the condition of the positive lower bound of the initial density. The main difficulty
is to prove the compactness when we take limit in Galerkin approximate solutions and
let dissipation tend to zero. To overcome the difficulty, we use the P. L. Lions, C. Liu
and A. Novotny’s methods to deal with the compactness problems in order to obtain the
strong compactness of velocity and density. It deserves to point out that compared to
the X. G. Liu and Z. Y. Zhang’s results, we don’t need the Lipschitz condition in our
condition of theorem, and the weak solutions also satisfy the energy inequality in integral

or differential form.

4. Lastly, we point out that for the case of the Navier-Stokes equations of compress-
ible, barotropic flow in two dimensions space, with pressure satisfying p(o) = aolog®(o)
for large o, here d > 1 and a > 0, under the frame of Orlicz spaces, we can get a
compactness result for the solution set of the equations with respect to the variation of
the underlying bounded spatial domain. In particular, we conclude a general existence
theorem for the system in question with no restrictions on smoothness of the bounded
spatial domain. In addition, we remark the conclusions on the blow up and the existence

of weak solutions for other two related models on fluids in the last chapter.
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