学校编码: 10384 学号: B200326002 分类号_____密级____ UDC

博 士 学 位 论 文

中国近海海域微型硅藻的生态学特征 和分类学研究

Ecological characteristics and Taxonomic Studies on Nano-diatoms in Coastal Waters of China

李 扬

指导教师姓名: 高亚辉 教授

林 鹏 教授

专业 名称: 植物学

论文提交日期: 2006年6月28日

论文答辩时间: 2006年7月29日

学位授予日期:

答辩委员会主席: 齐雨藻 教授

评 阅 人:

2006年7月

厦门大学学位论文原创性声明

兹呈交的学位论文,是本人在导师指导下独立完成的研究成果。本人在论文写作中参考的其他个人或集体的研究成果,均在文中以明确方式标明。本人依法享有和承担由此论文而产生的权利和责任。

声明人(签名):

年 月 日

厦门大学学位论文著作权使用声明

本人完全了解厦门大学有关保留、使用学位论文的规定。厦门大学有权保留并向国家主管部门或其指定机构送交论文的纸质版和电子版,有权将学位论文用于非赢利目的的少量复制并允许论文进入学校图书馆被查阅,有权将学位论文的内容编入有关数据库进行检索,有权将学位论文的标题和摘要汇编出版。保密的学位论文在解密后适用本规定。

本学位论文属于

- 1、保密(),在年解密后适用本授权书。
- 2、不保密()

(请在以上相应括号内打"√")

作者签名: 日期: 年 月 日

导师签名: 日期: 年 月 日

目 录

中文摘要	··1
英文摘要	5
第一章 前言	11
1.1 微型浮游生物的研究进展	11
1.2 微型硅藻的研究意义及我国的研究现状	14
1.3 硅藻模糊种类的研究进展	15
1.3.1 骨条藻的分类学研究历史与现状	17
1.3.2 拟菱形藻的分类学研究历史与现状	20
1.4 本论文的主要内容和研究意义	23
第二章 材料与方法	25
2.1 研究海域的选择	25
2.2 采样时间和站位分布	26
2.3 自然样品的采集与藻株的分离、纯化	-29
2.4 样品基本信息	30
2.5 调查研究方法	33
第三章 我国近海海域微型硅藻的生态学特征	36
3.1 我国近海海域微型硅藻的种类名录	36
3.2 胶州湾海域微型浮游硅藻群集的季节动态	44
3.2.1 微型浮游硅藻的种类组成和细胞数量	44
3.2.2 优势种类的组成	44
3.2.3 种类数和细胞数量的季节变化	51
3.2.4 微型浮游硅藻对硅藻类群的贡献	52
3.2.5 微型浮游硅藻群集的结构分析	53
3.3 长江口海域微型浮游硅藻群集的季节动态	54
3.3.1 微型浮游硅藻的种类组成和细胞数量	54
3.3.2 优势种类的组成	54
3.3.3 种类数和细胞数量的季节动态	65

3.3.4 垂直分布	67
3.3.5 水平分布	69
3.3.6 微型浮游硅藻对硅藻群集的贡献	72
3.3.7 微型浮游硅藻群集的结构分析	72
3.4 厦门港微型硅藻群集的季节动态	74
3.4.1 厦门西港微型浮游硅藻群集的季节动态	74
3.4.1.1 微型浮游硅藻的种类组成和细胞数量	74
3.4.1.2 优势种类的组成	74
3.4.1.3 种类数和细胞数量的季节动态	
3.4.1.4垂直分布	84
3.4.1.5 水平分布	86
3.4.1.6 微型浮游硅藻对硅藻群集的贡献	86
3.4.1.7 微型浮游硅藻群集的结构分析	87
34.2 厦门筼筜湖微型浮游硅藻群集的季节动态	88
3.4.2.1 微型浮游硅藻的种类组成和细胞数量	
3.4.2.2 优势种类的组成	88
3.4.2.3 种类数和细胞数量的季节动态	94
3.4.2.4 微型浮游硅藻对硅藻群集的贡献	96
3.4.2.5 微型浮游硅藻群集的结构分析	97
3.4.3 厦门港附着微型硅藻群集的分析	98
3.4.3.1 附着微型硅藻的种类组成	98
3.4.3.2 附着微型硅藻的生物学重要值分析	98
3.5 广东大亚湾海域微型浮游硅藻群集的季节动态	103
3.5.1 微型浮游硅藻的种类组成和细胞数量	103
3.5.2 优势种类的组成	103
3.5.3 种类数和细胞数量的季节动态	109
3.5.4 垂直分布	111
3.5.5 微型浮游硅藻对硅藻群集的贡献	112
3.5.6 微型浮游硅藻群集的结构分析	112

3.6 香港海域微型浮游硅藻群集的季节动态	··116
3.6.1 微型浮游硅藻的种类组成和细胞数量	··116
3.6.2 优势种类的组成	··116
3.6.3 种类数和细胞数量的季节变化	··126
3.6.4 垂直分布	127
3.6.5 微型浮游硅藻对硅藻群集的贡献	.128
3.6.6 微型浮游硅藻群集的结构分析	·129
3.7 五个海域微型浮游硅藻的对比研究及与以往研究的比较	130
3.7.1 五个海域微型浮游硅藻的对比研究	130
3.7.1.1 五个海域的微型浮游硅藻共有种	130
3.7.1.2 五个海域微型浮游硅藻群集的比较	131
3.7.2 与以往相关研究的比较	134
3.7.2.1 胶州湾海域的历史比较	134
3.7.2.2 长江口海域的历史比较	
3.7.2.3 厦门西港海域的历史比较	138
3.7.2.4 厦门筼筜湖的历史比较	140
3.7.2.5 厦门港附着微型硅藻的历史比较	141
3.7.2.6 大亚湾海域的历史比较	141
3.7.2.7 香港海域的历史比较	142
第四章 我国近海海域微型硅藻的分类学研究	·144
中心纲	144
直链藻科	144
直链藻属	145
圆筛藻科	··146
小环藻属	147
星盘藻属	151
环盖藻属	153
海网藻属	155
波形藻属	156

波盘藻属157
辐环藻属158
罗氏藻属159
小筒藻属160
小盘藻属160
辐裥藻属163
星脐藻属164
海链藻科165
海链藻属165
海环藻属189
旭氏藻属189
劳德藻属······190
骨条藻科191
骨条藻属191
细柱藻科193
细柱藻属193
辐杆藻科194
辐杆藻属194
角毛藻科195
角毛藻属196
盒形藻科201
角管藻属202
舟辐硅藻科203
井字藻属203
背沟藻科205
背沟藻属205
羽纹纲207
舟形藻科207
茧形藻属·······208

双壁藻属208
舟形藻属210
伯克力藻属220
等半藻属·······221
短纹藻属224
对纹藻属224
曲解藻属226
泥生藻属230
鞍眉藻属·······231
半舟藻属235
普氏藻属236
海氏藻属238
桥弯藻科242
双眉藻属242
异极藻科246
异极藻属247
等片藻科249
星杆藻属249
新具槽藻属250
缝舟藻属·······251
针杆藻属252
棒槌藻属253
脆杆藻属·······254
短缝藻科
短缝藻属254
波纹藻科255
波纹藻属255
弧眼藻属256
微眼藻属257

蝶眼藻属	258
无管眼藻属	260
斜柄纹藻属	261
微壳藻属	262
卵形藻科	264
卵形藻属	264
曲壳藻科	266
曲壳藻属	267
长曲壳藻属	270
褐指藻科	272
微舟藻属	272
窗纹藻科	274
细齿藻属	274
棒杆藻属	275
原龙骨藻属	277
菱形藻科	278
筒柱藻属	278
菱形藻属	279
拟脆杆藻属	289
双菱藻科	292
双菱藻属	292
褶盘藻属	292
未鉴定种	293
第五章 代表性硅藻模糊种类的分类学研究	297
5.1 骨条藻种类的分类学研究	297
5.2 拟菱形藻种类的分类学研究	
参考文献	
种名索引	353

致谢	389
图版说明	393
图版	

Content

Abstract in Chinese	1
Abstract in English	5
1. Introduction	11
1.1 Research progress in nanoplankton	11
1.2 Importance of nano-diatoms and its research status in China	14
1.3 Research progress in cryptical diatom species	15
1.3.1 Taxonomy of <i>Skeletonema</i> ······	
1.3.2 Taxonomy of <i>Pseudo-nitzschia</i> ·····	20
1.4 Purpose and main content of present study	
2. Material and Methods	
2.1 Sampling locations	25
2.2 Sampling time and sites	26
2.3 Sampling methods and microalgal isolation	29
2.4 Information about samples	30
2.5 Investigation and study methods·····	33
3. Ecological characteristics of nano-diatoms in coastal w	aters of
China	36
3.1 List of nano-diatom species in China coast·····	36
3.2 Seasonal changes of nano-diatoms in Jiaozhou Bay	44
3.2.1 Species composition and cell abundance	44
3.2.2 Dominant species composition	44
3.2.3 Seasonal changes of species number and cell abundance	51
3.2.4 The contribution of nano-diatoms to diatom assemblage	52
3.2.5 Nano-diatom assemblages structure	53

	3.3 Seasonal changes of nano-diatoms in Changjiang River Estuary	54
	3.3.1 Species composition and cell abundance	54
	3.3.2 Dominant species composition	54
	3.3.3 Seasonal changes of species number and cell abundance	65
	3.3.4 Vertical distribution	67
	3.3.5 Horizontal distribution	69
	3.3.6 The contribution of nano-diatoms to diatom assemblage	72
	3.3.7 Nano-diatom assemblages structure·····	72
	3.4 Seasonal changes of nano-diatoms in Xiamen Harbour and Yun	
I	.ake·····	74
	3.4.1 Seasonal changes of nano-diatoms in Xiamen Harbour	74
	3.4.1.1 Species composition and cell abundance	74
	3.4.1.2 Dominant species composition	
	3.4.1.3 Seasonal changes of species number and cell abundance	81
	3.4.1.4 Vertical distribution	84
	3.4.1.5 Horizontal distribution	86
	3.4.1.6 The contribution of nano-diatoms to diatom assemblage	86
	3.4.1.7 Nano-diatom assemblages structure·····	87
	3.4.2 Seasonal changes of nano-diatoms in Yundang Lake	88
	3.4.2.1 Species composition and cell abundance·····	88
	3.4.2.2 Dominant species composition	88
	3.4.2.3 Seasonal changes of species number and cell abundance	94
	3.4.2.4 The contribution of nano-diatoms to diatom assemblage	96
	3.4.2.5 Nano-diatom assemblages structure·····	97
	3.4.3 Seasonal changes of epiphytic nano-diatoms in Xiamen Harbour	98
	3.4.3.1 Speceis composition	98
	3.4.3.2 Biological value index of epiphytic nano-diatoms	98
	3.5 Seasonal changes of nano-diatoms in Daya Bay	103
	3.5.1 Species composition and cell abundance	103
	3.5.2 Dominant species composition	103

3.5.3 Seasonal changes of species number and cell abundance······109
3.5.4 Vertical distribution
3.5.5 The contribution of nano-diatoms to diatom assemblage112
3.5.6 Nano-diatom assemblages structure······112
3.6 Seasonal changes of nano-diatoms in Hong Kong waters11
3.6.1 Species composition and cell abundance 116
3.6.2 Dominant species composition
3.6.3 Seasonal changes of species number and cell abundance126
3.6.4 Vertical distribution
3.6.5 The contribution of nano-diatoms to diatom assemblage
3.6.6 Nano-diatom assemblages structure 129
3.7 Comparison studies about nano-diatoms130
3.7.1 Comparison studies of nano-diatoms among five locations130
3.7.1.1 The common species
3.7.1.2 Differences of nano-diatom assemblages among five locations131
3.7.2 Comparison with former studies
3.7.2.1 Comparison in Jiaozhou Bay13-
3.7.2.2 Comparison in Changjiang River Estuary
3.7.2.3 Comparison in Xiamen Harbour138
3.7.2.4 Comparison in Yundang Lake140
3.7.2.5 Comparison of epiphytic nano-diatoms in Xiamenn Harbour141
3.7.2.6 Comparison in Daya Bay141
3.7.2.7 Comparison in Hong Kong waters142
4. Taxonomic studies about nano-diatoms in China coasta
waters14-
Centricae 144
Melosiraceae ——————————————————————————————————
<i>Melosira</i> 14:
Coscinodiscaceae14

Cyclotella·····147
Discostella·····151
Cyclostephanos153
Pelagodictyon155
Cymatotheca156
Cymatodiscus157
Actinocyclus158
<i>Roperia</i> 159
Microsolenia······160
Minidiscus······160
Actinoptychus163
Asteromphalus······164
Thalassiosiraceae 165
Thalassiosira·····165
Thalassiocyclus······189
Schroderella189
Lauderia·····190
Skeletonemaceae 191
Skeletonema·····191
Leptocylindraceae 193
Leptocylindrus·····193
Bacteriastraceae 194
Bacteriastrum194
Chaetoceroceae 195
Chaetoceros196
Biddulphiaceae ——————————————————————————————————
Cerataulina202
Rutilariaceae — 203
Eunotogramma·····203
Anaulaceae205

Anaulus·····	205
Pennatae	207
Naviculaceae	207
Amphiprora	208
Diploneis	208
Navicula·····	210
Berkeleya····	220
Diadesmis·····	221
Brachysira	224
Biremis	224
Fallacia·····	226
Luticola·····	230
Sellaphora	231
Seminavis	235
Proschkinia	236
Haslea·····	238
Cymbellaceae	242
Amphora	242
Gomphonemaceae····	246
Gomphonema	247
Diatomaceae	249
Asterionella	249
Neodelphineis	250
Rhaphoneis·····	251
Synedra	252
Opephora	253
Fragilaria·····	254
Eunotiaceae	254
Eunotia	254
Cymatosiraceae	255

Cymatosira·····	255
Arcocellulus·····	256
Minutocellus	257
Papiliocellulus·····	258
Extubocellulus·····	260
Plagiogrammopsis	261
Nanofrustulum·····	262
Cocconeiaceae····	264
Cocconeis·····	264
Achnanthaceae····	266
Achnanthes	267
Achnanthidium	270
Phaeodactylaceae	272
Nanoneis	
Epithemiaceae	274
Denticula	274
Rhopalodia·····	275
Protokeelia	277
Nitzschiaceae	278
Cylindrotheca·····	278
Nitzschia····	279
Fragilariopsis	289
Surirellaceae····	292
Surirella	292
Tryblioptychus·····	292
Unidentified	293
5. Taxonomic studies on cryptical diatom taxon	297
5.1 Taxonomic study on Skeletonema	
5.7 Taxonomic study on Psaudo-nitzschia	

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

- 1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.
- 2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.

