学校编码:10384	分类号 <u></u>	_密级
学号:21720091152169		UDC

のたる

硕士学位论文

乙肝病毒 X 蛋白提高 AIB1 蛋白的稳定性并 与其协同促进人类肝细胞癌的侵袭 Hepatitis B virus X protein stabilizes AIB1 protein and cooperates with it to promote human hepatocellular carcinoma cell invasiveness

刘永宏

指导教师姓名:俞春东教授 专业名称:细胞生物学 论文提交日期:2012年4月 论文答辩时间:2012年6月 学位授予日期:2012年月

答辩委员会主席:______

评 阅 人:_____

2012年5月

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组)

 资助,在(
)实验室完成。(请在以上括号内填写课

 题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特

 别声明。)

声明人(签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

()2.不保密,适用上述授权。

(请在以上相应括号内打""或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人 (签名):

年 月 日

目 录

摘要
ABSTRACT ······II
第一章 前 言
1.1 SRC/P160 家族概述
1.1.1 SRC/p160 家族成员的发现·······
1.1.2 SRC/p160 家族成员的结构特征
1.1.3 SRC/p160 家族成员的功能机制
1.1.4 AIB1 的基因定位和表达
1.1.5.1 AIB1 的磷酸化
1.1.5.2 AIB1 的泛素化····································
1.1.6 AIB1 转基因和基因敲除小鼠模型
1.1.7 AIB1 与癌症 ···································
1.1.7.1 AIB1 与乳腺癌····································
1.1.7.2 AIB1 与前列腺癌
1.1.7.3 AIB1 与其他癌症
1.2 HBx 概述
1.2.1 HBV 的结构特征
1.2.2 HBx 的胞内定位 ····································
1.2.3 HBx 的功能机制 ····································
1.2.3.1 HBx 的反式激活功能
1.2.3.2 HBx 与细胞凋亡······10
1.2.4 HBx 转基因小鼠模型 ·······11
1.3 肝癌概述
1.3.1 原发性肝癌
1.3.2 转移性肝癌
1.3.3 其它类型肝癌

1.4 立题背景
第二章 材料与方法 ······14
2.1 实验材料
2.1.1 菌株
2.1.2 细胞株
2.1.3 组织样品
2.1.4 质粒
2.1.5 试剂15
2.1.6 仪器设备
2.2 实验方法18
2.2.1 DNA 相关实验方法 ······18
2.2.1.1 大肠杆菌感受态制备18
2.2.1.2 DNA 转化19
2.2.1.3 质粒小提(碱裂解法)
2.2.1.4 质粒中提 (Qiagen-tip 100)
2.2.2 RNA 相关实验方法 ······20
2.2.2.1 总 RNA 提取(以 6 孔板为例)20
2.2.2.2 RNA 反转录成 cDNA20
2.2.2.3 实时荧光定量 PCR (Real-time PCR)
2.2.2.4 所用引物22
2.2.3 蛋白质相关实验方法
2.2.3.1 总蛋白提取22
2.2.3.2 总蛋白浓度测定 (BCA 法,参照试剂盒说明书)22
2.2.3.3 蛋白质 SDS-PAGE 凝胶电泳以及 Western boltting 分析23
2.2.4 细胞相关实验方法
2.2.4.1 细胞培养及传代(以 100 mm 板为例)23
2.2.4.2 细胞瞬时转染 (Lipotamine 2000)
2.2.4.3 细胞瞬时转染(PEI)
2.2.4.4 细胞稳定转染

2.2.5 其他实验方法 ····································
2.2.5.1 蛋白质半衰期检测(以6孔板为例)
2.2.5.2 蛋白质免疫共沉淀(Co-IP)(以100 mm 板为例) ············24
2.2.5.3 泛素化实验(以 100 mm 板为例)25
2.2.5.4 染色质免疫共沉淀(ChIP,以 10 mm 板为例)
2.2.5.5 细胞荧光素酶报告基因检测 ····································
2.2.5.6 明胶酶谱分析(Zymography)26
2.2.5.7 细胞侵袭实验(Transwell invision assay)
2.2.3.7 细胞侵裂实验(Transwert invision assay) 2.2.6 溶液配方·······27
第三章 结果与分析30
3.1 实验结果
3.1.1 AIB1 蛋白和 HBx 蛋白在人类肝癌组织中共同过表达
3.1.2 HBx 通过延长 AIB1 蛋白的半衰期上调 AIB1 的蛋白水平31
3.1.3 HBx 抑制 AIB1 蛋白的泛素化
3.1.4 HBx 抑制 Fbw7a 介导的 AIB1 蛋白的泛素化降解33
3.1.5 HBx 抑制 Fbw7α 和 AIB1 的 S/T 结构域之间的相互作用35
3.1.6 HBx 抑制 Fbw7a 介导的 AIB1 的泛素化降解不依赖于 Akt/GSK3β 信
号通路
3.1.7 HBx 与 AIB1 协同提升 MMP-9 的启动子活性
3.1.8 HBx 与 AIB1 通过协同提高 MMP-9 的表达促进肝癌细胞的侵袭…39
3.1.9 结论41
3.2 讨论43
[参考文献]
致谢57

CONTENTS

Abstract (In Chinese)I
Abstract (In English) II
Chapter 1 Introduction1
1.1 SRC/p160 family1
1.1.1 Discover of SRC/p160 family1
1.1 SKC/p160 family 1 1.1.1 Discover of SRC/p160 family 1 1.1.2 Structure of SRC/p160 family 1
1.1.3 Functional mechanism of SRC/p160 family2
1.1.4 Location and expression of AIB14
1.1.5 Posttranslational modification of AIB14
1.1.5.1 Phosphorylation of AIB14
1.1.5.2 Ubiquitination of AIB15
1.1.6 AIB1 transgenic and knock-out mice5
1.1.7 AIB1 and cancers6
1.1.7.1 AIB1 and breast cancer6
1.1.7.2 AIB1 and prostate cancer6
1.1.7.3 AIB1 and other cancers6
1.2 HBx7
1.2.1 Structure of HBV8
1.2.2 Location of HBx9
1.2.3 Functional mechanism of HBx9
1.2.3.1 Transactivities of HBx9
1.2.3.2 HBx and apoptosis10
1.2.4 HBx transgenic mice11
1.3 Hepatocellular carcinoma11
1.3.1 Primary hepatic carcinoma11

1.3.2 Metastatic hepatic carcinoma12
1.3.3 other hepatic carcinomas12
1.4 Background and significance of this thesis12
Chapter 2 Materials and methods14
2.1 Materials14
2.1.1 Strains14
2.1.2 Cell lines14
2.1.3 Human tissues14
2.1.5 Human tissues 14 2.1.4 Plasmids 14 2.1.5 Reagents 15 2.1.6 Equipments 17 2.2 Methods 18
2.1.5 Reagents15
2.1.6 Equipments17
2.2 Methods
2.2.1 DNA experiments
2.2.1.1 Preparation of competent cell18
2.2.1.2 Transformation17
2.2.1.3 DNA isolation (small amount)19
2.2.1.4 DNA isolation (middle amount)19
2.2.2 RNA experiments20
2.2.2.1 RNA isolation20
2.2.2.2 Reverse transcription20
2.2.2.3 Real-time PCR21
2.2.2.4 Primers22
2.2.3 Protein experiments22
2.2.3.1 Protein extraction22
2.2.3.2 Measurement of protein concentration22
2.2.3.3 SDS-PAGE Western boltting23
2.2.4 Cell experiments23
2.2.4.1 Cell culture and generation23
2.2.4.2 Cell transient transfection (Lipotamine 2000)23
2.2.4.3 Cell transient transfection (PEI)24

2.2.4.4 Cell stable transfection24
2.2.5 Other experiments24
2.2.5.1 Protein stability experiments24
2.2.5.2 Co-IP assay24
2.2.5.3 Ubiquitination assay25
2.2.5.4 ChIP assay25
2.2.5.5 Luciferase reporter assay26
2.2.5.6 Zymography assay26
2.2.5.7 Transwell invision assay27
2.2.6 Solutions27
Chapter 3 Results and discussion
3.1 Results
3.1.1 AIB1 protein and HBx protein are frequently co-overexpression in
human HCC tissues30
3.1.2 HBx increases AIB1 protein level through extending the half-life of
AIB1 protein31
3.1.3 HBx inhibits the ubiquitination of AIB1 protein
3.1.4 HBx inhibits Fbw7α-mediated ubiquitination and degradation of AIB1
3.1.5 HBx inhibits the interaction between Fbw7a and the S/T domain of
AIB135
3.1.6 HBx inhibits Fbw7a-mediated ubiquitination and degradation of AIB1
independent of Akt/GSK3β signaling pathway36
3.1.7 HBx cooperates with AIB1 to enhance the promoter activity of MMP-9
3.1.8 HBx cooperates with AIB1 to promote HCC cell invasiveness through
enhancing MMP-9 expression
3.1.9 Conclusion41
3.2 Discussion43

References ·····	······ 46
Acknowledgement	

摘要

乙肝病毒(hepatitis B virus, HBV)的持续感染与人类肝细胞癌(hepatocellular carcinoma, HCC)的发展密切相关。乙肝病毒X蛋白(Hepatitis B virus X protein, HBx)在肝癌的发展过程中发挥着重要作用。我们最近研究发现乳腺癌扩增性抗 原1 (amplified in breast cancer 1, AIB1) 在68%的人类肝癌组织中过表达,并且 通过提高肝癌细胞的增殖和侵袭能力来促进肝癌的发展。因为HBx和AIB1都在 肝癌的发展过程中起重要作用,我们的研究目标是确定HBx和AIB1是否能够协 同促进肝癌的发展。在此,我们发现与HBx阴性肝癌组织相比,HBx阳性肝癌组 织中AIB1的蛋白水平较高。在肝癌组织中,HBx的相对蛋白水平和AIB1的相对 蛋白水平呈现正相关。在不影响AIB1的mRNA水平的情况下,HBx可通过延长 AIB1蛋白的半衰期来提高AIB1的蛋白水平。在机理方面,HBx通过与AIB1的结 合来阻止E3泛素连接酶Fbw7α (F-box and WD repeat domain containing 7α, $Fbw7\alpha$)和AIB1的结合,进而抑制Fbw7a对AIB1的泛素化降解。此外,HBx和 AIB1能够被募集到MMP-9基因的启动子上协同促进MMP-9的启动子活性,进而 增强MMP-9在HepG2细胞中的表达,最终促进肝癌细胞的侵袭能力。我们的研究 表明HBx能够提高AIB1蛋白的稳定性并与AIB1协同促进肝癌细胞的侵袭,说明 HBx和AIB1之间的联系在乙肝病毒相关的肝癌的发展过程中起着重要作用。

关键词:HBx; AIB1/SRC-3; 肝细胞癌

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.