
学校编码: 10384 学号: 21720090153535

n * }

博士学位论文

苯并(a)芘、芘、菲三种多环芳烃对褐菖 鲉胚胎发育影响的研究

Effects of three polycyclic aromatic hydrocarbons:

benzo(a)pyrene, pyrene and phenanthrene on embryo

development of Sebastiscus marmoratus

何承勇

指导教师姓名: 王 重 刚 教授 专 业 名 称: 动 物 学 论文提交日期: 2012 年 10 月 论文答辩时间: 2012 年 10 月 学位授予日期:

> 答辩委员会主席:______ 评 阅 人:______

2012年10月

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组)

 资助,在(
)实验室完成。(请在以上括号内填写课

 题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特

 别声明。)

声明人 (签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

()2.不保密,适用上述授权。

(请在以上相应括号内打""或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

目 录

目 录
CONTENTS
摘要 ····································
ABSTRACTIX
第一章 前言1
1.1 多环芳烃污染及研究现状1
1.1.1 多环芳烃的理化特性
1.1.2 多环芳烃的污染现状
1.1.3 多环芳烃在海洋中的污染现状 2
1.2 多环芳烃的毒性效应 ······3
1.2.1 急性毒性3
1.2.2 致癌性、致畸性和致突变性
1.2.3 免疫毒性
1.2.4 发育毒性4
1.2.5 光毒性
1.3 多环芳烃的发育毒性的研究进展5
1.3.1 多环芳烃的骨骼发育毒性
1.3.2 多环芳烃的神经发育毒性6
1.3.3 多环芳烃对器官形成的毒性
1.4 鱼类胚胎发育的过程和调控机制
1.4.1 鱼类骨骼发育的过程及调控
1.4.2 鱼类神经发育的调控
1.4.3 甲状腺发育的调控······15
1.5 污染物对胚胎发育的影响及其机制

1.5.1 污染物对骨骼发育影响的研究····································
1.5.2 污染物对神经发育影响的研究····································
1.5.3 污染物对鱼类甲状腺发育的影响
1.6 研究的对象、目的和意义18
第二章 材料与方法 ······19
2.1 主要仪器19
2.2 主要试剂20
2.3 主要试剂配制
2.4 实验动物及其暴露实验21
2.5 生理生化与分子生物学分析22
2.5.1 死亡率和畸形率统计
2.5.2 Alcian-blue 软骨染色
2.5.3 样品匀浆提蛋白及蛋白浓度测定22
2.5.4 基因克隆
2.5.5 原位杂交
2.5.6 实时荧光定量 PCR (Realtime-PCR , RT-PCR) 分析 ··············28
2.5.7 碱性磷酸酶的测定31
2.5.8 总 NOS、iNOS 和 NO 的测定 ······31
2.5.9 AChE、ChAT 和 ACh 的测定31
2.5.10 EROD 和 GST 的测定 ······31
2.5.11 Caspase-3 活性测定
2.5.12 甲状腺激素测定方法
2.6 数据处理
第三章 结果分析33
3.1 苯并芘暴露对褐菖鮋胚胎发育影响
3.1.1 BaP 对各生理生化指标的影响
3.1.2 BaP 对胚胎骨骼发育的影响及机制
3.1.3 BaP 对神经发育的影响43
3.2 芘暴露对褐菖鮋胚胎发育影响 ·······49

3.2.1 Pyr 暴露对各生理生化指标的影响…	
3.2.2 Pyr 对骨骼发育的影响及机制	
3.2.3 Pyr 对神经发育的影响	
3.2.4 Pyr 对甲状腺发育的影响	
3.3 菲暴露对褐菖鮋胚胎发育影响	
3.3.1 Phe 对各生理生化指标的影响	65
3.3.2 Phe 对骨骼发育的影响	
第四章 讨论	74
4.1 三种 PAHs 暴露褐菖鲉胚胎对各生理生	七指标的影响74
4.2 三种 PAHs 对褐菖鮋胚胎的骨骼发育毒	生
4.2.1 三种 PAHs 都会导致骨骼发育畸形及	及其差异
4.2.2 BaP 影响骨骼发育的信号途径	
4.3 PAHs 对褐菖鮋胚胎的神经发育毒性	
4.3.1 BaP 对神经发育的影响	
4.3.2 Pyr 对神经发育的影响	
4.3.3 Pyr 与 BaP 神经毒性及其机制的比较	ξ81
4.4 花对褐菖鮋胚胎的甲状腺发育毒性	
第五章 结论与展望	
5.1 结论	
5.2 本研究的创新点和贡献	
5.3 展望	
参考文献	
缩略词对照表	
攻读博士阶段发表的论文和参加的课题·	
致 谢······	

CONTENTS

Abstract (In Chinese)
Abstract (In English) IX
Chapter 1 Introduction1
1.1 The study of PAHs polltion1
1.1.1 The characters of PAHs ······
1.1.2 The pollution study of PAHs
1.1.3 The marine pollution of PAHs
1.2 The toxicities of PAHs
1.2.1 Actue toxicity
1.2.2 Carcinogenicity
1.2.3 Immunity toxicity
1.2.4 Development toxicity ······
1.2.5 Photo toxicity
1.3 The review on PAHs development toxicity
1.3.1 The bone development toxicity of PAHs
1.3.2 The nerve development toxicity of PAHs
1.3.3 The organogenesis toxicity of PAHs
1.4 The process of embyro development in fish and its mechanism
1.4.1 The process of bone development in fish
1.4.2 The process of nerve system development in fish
1.4.3 The process of thyroid development in fish
1.5 The effects of pollutants on embyro development16
1.5.1 The effects of pollutants on bone development
1.5.2 The effects of pollutants on nerve system development
1.5.3 The effects of pollutants on thyroid development

1.6 Research objectives and significance	·18
Chapter 2 Materials and methods	19
2.1 Apparatus·····	·19
2.2 Materials	·20
2.3 Solutions	·20
2.4 Animals and toxicological experiments	·21
2.5 Physiological, biochemical and molecular analysis	•22
2.5.1 The rate of mortality and malformation	·22
2.5.2 Alcian-blue staining	·22
2.5.3 Protein obtained and examination of concentration	·22
2.5.4 Gene cloning	·22
2.5.5 In situ hybridization2.5.6 Real time quantitive PCR	·25
2.5.6 Real time quantitive PCR ······	·28
2.5.7 Alkaline phosphatase activity assay	
2.5.8 Analysis of the activity of NOS and content of NO	·31
2.5.9 Analysis ACh, AChE, and ChAT	·31
2.5.10 Analysis of the activity of EROD and GST	·31
2.5.11 Analysis of the activity of Caspase-3	·32
2.5.12 Analysis of the contents of thyroid hormones	·32
2.6 Data analysis	·32
Chapter 3 Results	33
3.1 Effects of BaP on development of S. marmoratus embryos	•33
3.1.1 Effects on the physiological and biochemical indexes	·33
3.1.2 Effects on the embryo bone development	·38
3.1.3 Effects on the embryo nerve system development	·43
3.2 Effects of Pyr on development of S. marmoratus embryos	•49
3.2.1 Effects on the physiological and biochemical indexes	·49
3.2.2 Effects on the embryo bone development	·54
3.2.3 Effects on the embryo nerve system development	·57

3.2.4 Effects on the thyroid development
3.3 Effects of Phe on development of S. marmoratus embryos65
3.3.1 Effects on the physiological and biochemical indexes
3.3.2 Effects on the embryo bone development70
Chapter 4 Discussion74
4.1 Effects of PAHs on the rate of mortality, hatching and malformation74
4.2 Effects of PAHs on the craniofacial cartilge development76
4.2.1 The difference of bone toxicities among the three PAHs76
4.2.2 The signaling pathway affected by BaP78
4.3 Effects of PAHs on the nerve system development 79
4.3.1 Effects of BaP on the nerve system development
4.3.2 Effects of Pyr on the nerve system development80
4.3.3 The difference of nervous system toxicities between Pyr and BaP81
4.4 Effects of Pyr on the thyroid development82
Chapter 5 Conclusions and Prospective84
References 86
Abbreviation101
Pulications and Projects103
Acknowledgement ····· 104

摘要

多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)是海洋中常见的污染物,极 易在环境中累积并可通过食物链传递,对人类健康和生态环境具有很大危害。已 有研究表明PAHs具有致畸、致癌、致突变、免疫抑制等作用。本研究利用环境 水平(0.5、5、50 nmol/L)三环的菲(phenanthrene, Phe)和四环的芘(pyrene, Pyr) 以及(0.5、5、25 nmol/L)五环的苯并(a)芘[benzo(a)pyrene, BaP]分别暴露褐菖鮋 胚胎,研究PAHs对鱼类胚胎发育的毒性。

PAHs 暴露囊胚期胚胎 7 天,其中 0.5 和 25 nmol/L BaP 组死亡率显著高于对 照组; Pyr 死亡率呈现浓度依赖性上升,50 nmol/L 组显著高于对照组; Pyr 和 BaP 暴露使胚胎脊柱弯曲率呈浓度依赖性上升; Pyr 和 BaP 组孵化率降低,Phe 对以上三者都无显著变化。25 nmol/L BaP 暴露胚胎心率显著低于对照组,Pyr 暴露后心率无显著变化。Phe 暴露胚胎 18 小时后,50 nmol/L Phe 胚胎心率显著 高于对照组,其它组与对照无显著变化。而芳烃受体 2 (aryl hydrocarbon receptor 2,AHR2)和芳香化酶 P4501A1(cytochrome P450 1A1, CYP1A1)的 mRNA 表达量 及 EROD 活性都被 BaP 浓度依赖性增高,Pyr 组和 Phe 组无显著变化。

BaP、Pyr和Phe暴露后的褐菖鮋胚胎颅面骨发育受到明显的抑制,胚胎下颌 骨和舌弓软骨都出现弯曲变短现象,并呈现浓度依赖性变化。三种PAHs暴露后 胚胎碱性磷酸酶活性都上升,这表明PAHs可能对成骨细胞的早期发育产生干扰。 三种PAHs暴露后Sox9a在麦克氏软骨(下颌骨)和胸鳍基芽表达量下降,干扰软 骨正常的分化、膨大和成熟。Pyr和BaP暴露后,角鳃软骨和麦克氏软骨等区域 PCNA表达量下降,而Phe对其没有影响。另一方面,Caspase-3活性在Phe和Pyr 暴露后都被抑制,而BaP暴露没有变化。

在本实验中,我们着重研究了BaP对骨骼发育的毒性机制,BaP暴露降低Shh 在神经管、下颌软骨和角鳃软骨的表达量。BaP还使Ptch1和Gli2表达量浓度依赖 性降低。这些结果表明BaP通过降低褐菖鮋胚胎Shh信号通路基因的表达而影响 软骨细胞的增殖和软骨形成,最终导致颅面骨骼结构发生异常。

在本研究中,BaP和Pyr暴露都会改变颅面神经分布,神经分布遭到破坏,神

经轴突伸向异常的区域,并且发现前端和后端神经节缩小。神经分支明显变细变 短。高浓度BaP暴露导致仔鱼侧线神经丘数目减少。BaP和Pyr都能够降低一氧化 氮(nitric oxide, NO)的水平,却不影响一氧化氮合酶(NOS)的活性。但是对于乙酰 胆碱系统,Pyr是增高乙酰胆碱(acetylcholine, ACh)水平从而抑制神经生长和突触 的发育,而BaP正好相反,它通过降低ACh水平和乙酰胆碱转移酶(Choline acetyltransferase, ChAT)活性,增高乙酰胆碱酯酶(AChE)活性影响神经系统的发 育。在对钙调蛋白信号通路影响方面,Pyr激活下游的CaMKII和CREB,而BaP 暴露使CaM和CaMKII 的表达量降低从而干扰突触的可塑性和神经元存活。

Pyr减少褐菖鮋胚胎三碘甲状腺原氨酸(T₃)的含量和甲状腺激素受体(thyroid receptors, TRs)基因的表达量,降低了甲状腺发育相关基因Nk2.1a、Pax2.1、Fgfr2 和Hoxa3a表达量,同时改变了甲状腺功能相关基因Deio1、Ttr和Tg表达量。这些结果证明Pyr暴露能够抑制海洋鱼类甲状腺的发育和破坏甲状腺系统的功能。

综上所述,本研究的结果表明,环境污染水平的三种PAHs暴露褐菖鲉胚胎, 其发育毒性有较大差异:BaP对死亡率、脊柱弯曲率和出膜成功率影响最大,Pyr 次之,Phe对以上无显著影响,这现象与它们结合AHR能力,激活CYP1A1系统 正相关。这些结果为探讨PAHs对鱼类的毒性效应和机制,评估不同PAHs对海洋 鱼类资源的影响,为海洋环境政策的制定提供了重要的科学资料。

关键词: 多环芳烃 胚胎发育 骨骼 神经 甲状腺 鱼类 机制

VIII

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.