provided by Xiamen University Institutional Repositor

学校编码: 10384

学号: 20520060153260

分类号_____密级 ____

UDC _____

博士学位论文

基于钯膜的电化学 pH 调控新方法及其在 DNA 酸/碱变性中的应用

A Novel Palladium-Based Electrochemical pH Control Method and Its Application In Acid/Base-Driven DNA Denaturation

王永春

指导教师姓名: 毛 秉 伟 教授

田 昭 武 教授

专业名称:物理化学

论文提交日期: 2010 年 8 月

论文答辩日期: 2010 年 9 月

学位授予日期: 2010 年 月

答辩委员会主席:

评 阅 人:_____

2010年8月

A Novel Palladium-Based Electrochemical pH Control Method and Its Application In Acid/Base-Driven DNA Denaturation

A Dissertation Submitted for the Degree of Doctor of Philosophy

By

Yong-Chun Wang

Supervised by

Prof. Bing-Wei Mao

Prof. Zhao-Wu Tian

Department of Chemistry

Xiamen University

August, 2010

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学术活动规范(试行)》。

另外,该学位论文为()课题(组) 的研究成果,获得()课题(组)经费或实验室的 资助,在()实验室完成。(请在以上括号内填写课 题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特 别声明。)

声明人(签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

- ()1. 经厦门大学保密委员会审查核定的保密学位论文,
- 于 年 月 日解密,解密后适用上述授权。
 - () 2. 不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文 应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密 委员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认 为公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

目 录

摘要	I
Abstract	III
第一章 绪论	1
§ 1.1 pH 概念及检测方法	/, 1
§ 1.1.1 pH的定义	
§ 1.1.2 pH值的重要性 ^[4]	
§ 1.1.3 溶液pH值的测量方法 ^[3]	
§ 1.2 pH指示电极概述与检测方法比较	
§ 1.2.1 传统pH指示电极	
§ 1.2.2 新型pH指示检测方法	
§ 1.2.3 pH检测方法的比较	
§ 1.3 现有pH值控制方法及优缺点概述	17
8131 缓冲溶液控制nH方法	18
§ 1.3.2 酸碱滴加控制pH方法	19
§ 1.3.3 通过两性电解质的空间pH调变	22
§ 1.3.4 电极反应改变溶液pH值	25
§ 1.3.5 各种pH值调控方法比较	28
§ 1.4 pH调控在生命科学研究中的应用和意义	
§ 1.4.1 酶活性的测定与检测	
§ 1.4.2 蛋白质的分离与检测	
§ 1.4.3 细胞培养及发酵	
§ 1.4.4 pH成像	
§ 1.4.5 pH驱动药物等的释放	
§ 1.4.6 pH驱动分子开关	
§ 1.5 本论文的研究目的及设想	
参考文献:	39
第二章 实验仪器与方法	57
§ 2.1 试剂原料与电解池	57
§ 2.1.1 试剂与耗材	57
§ 2.1.2 制备材料	
§ 2.1.3 电解池	58
§ 2.2 仪器使用介绍及实验方法	60
§ 2.2.1 电化学仪器	
§ 2.2.2 荷兰avsta光纤光谱仪	63
§ 2.2.3 其它仪器	
§ 2.2.4 电化学实验方法 ^[1,4]	
参考文献:	69

			70
	831 钯体	电极及钯膜电极吸放氢的性质	70
	~	钯的吸氢行为	
		氢在钯金属表面的吸脱附机理	
	•	钯的吸氢效率及含量	
		氢在钯膜中的扩散行为一扩散系数	
		透氢导电Pd膜的串联电解池pH调控方法	
		基于串联电解池的pH调制原理	
	§ 3.2.2	与其它pH控制方法的比较	82
		学pH调控平台的建立	
		串联两室电解池的形成	
	§ 3.3.2	pH控制仪的设计和制作	85
	§ 3.4 电化	, 学pH控制平台可行性研究	93
		利用酸碱指示剂的pH控制平台可行性研究	
	-	利用pH指示电极的pH控制平台可行性研究	
	参考文献:		98
第	四章 电化	化学pH调控平台的性能与pH实时调控	105
		1	
		平台所用辅助电极和pH测试电极性能 Ag/AgCl电极制备	
		Pd-H pH指示电极的制备与性能测试	
		盐桥制备	
		氢)膜的电化学性能研究	
		钯膜表面氢吸附和体相氢吸收	
	-	钯黑钯电极的电化学性能	
	~	钯膜预充氢方法与电化学充放氢特性	
	~	不同酸度下钯膜-氢电极的极化曲线与交换电流密度测量	
	· ·	钯膜扩散系数的测定	
		电解池中的pH调控	
		钯膜电极在氯化钠溶液中的电化学行为	
		理论控氢电流的选择	
		对称两室串联电解池中pH实时调控	
V	§ 4.3.4	不对称两室串联电解池中的pH实时调控	142
	§ 4.3.5	pH 调控过程中溶液氢离子的扩散问题	148
	本章小结	-	149
	参考文献:		150
第.	五章 DN	A的制备、表征与提纯	154
	§ 5.1 核酸	的结构与性质	154
	V	核酸的基本组成	
		DNA的双螺旋结构	
	v	DNA分子的性质	
	~		

	§ 5.2 DNA电泳表征	159
	§ 5.2.1 电泳技术	160
	§ 5.2.2 电泳基本装置	162
	§ 5.3 PCR (Polymerase Chain Reaction)技术	163
	§ 5.3.1 PCR技术简介	
	§ 5.3.2 PCR技术主要过程	164
	§ 5.3.3 PCR技术特点	165
	§ 5.3.4 引物的设计原则	166
	§ 5.4 PCR方法获取 290 bp片段	166
	§ 5.4.1 少量提取质粒TR ₃	167
	§ 5.4.2 PCR过程与参数	
	§ 5.5 试剂盒提纯 290 bp DNA片段	174
	§ 5.5.1 PCR产物纯化试剂盒简介	
	§ 5.5.2 提纯的原理及方法过程	
	§ 5.6 提纯 290 bp DNA片段的电泳表征及浓度确定	
	§ 5.6.1 电泳表征提纯的DNA片段	175
	§ 5.6.2 提纯的 290bp的DNA片段浓度确定	178
	本章小结	179
	参考文献:	179
第	六章 DNA酸、碱变性的电化学调控和原位紫外光谱检测	183
	§ 6.1 DNA分子的热变性与复性	183
	§ 6.1.1 DNA增色效应与减色效应	183
	§ 6.1.2 DNA片段复性时间的计算	184
	§ 6.2 DNA紫外可见光谱的原位表征	
	§ 6.2.1 紫外可见光谱简介	186
	§ 6.2.2 光吸收定律	187
	§ 6.3 电化学原位紫外光谱检测系统	
	§ 6.3.1 石英玻璃与紫外胶特性	188
	§ 6.3.2 支架结构	188
	§ 6.3.3 对称串联光学电解池	188
	§ 6.3.4 不对称串联光学电解池	189
	§ 6.3.5 光学串联电解池性能表征	189
	§ 6.4 DNA酸、碱变性的初步研究	191
V	§ 6.4.1 不同pH的缓冲溶液中DNA状态研究	191
	§ 6.4.2 22 bp DNA片段电化学酸、碱变性	195
	§ 6.4.3 290 bp DNA片段的电化学酸、碱变性	198
	本章小结	205
	参考文献:	206
	作者在学期间发表与交流的论文	207
致	谢	208
拍	窗要····································	I
A	Abstract ·····	III

第一章	绪论	1
§ 1.1 pH	「概念及检测方法····································	1
§ 1.1.1	l pH 的定义	1
§ 1.1.2	2 pH 值的重要性 · · · · · · · · · · · · · · · · · · ·	3
§ 1.1.3	3 溶液 pH 值的测量方法	3
§ 1.2 pH	指示电极概述与检测方法比较······	4
§ 1.2.1	l 传统 pH 指示电极 ·······	4
	2 新型 pH 指示检测方法	6
§ 1.2.3	3 pH 检测方法的比较	15
§ 1.3 现	有 pH 值控制方法及优缺点概述 ······	17
	1. 缓冲溶液控制 pH 方法	
§ 1.3.2	2 酸碱滴加控制 pH 方法	19
	3 通过两性电解质的空间 pH 调变2	
§ 1.3.4	4 电极反应改变溶液 pH 值	25
§ 1.3.5	5 各种 pH 值调控方法比较 ·······2	28
§ 1.4 pH	[调控在生命科学研究中的应用和意义2	29
§ 1.4.1	I 酶活性的测定与检测	29
§ 1.4.2	2 蛋白质的分离与检测	31
§ 1.4.3	3 细胞培养及发酵	32
§ 1.4.4	4 pH 成像 ······	32
§ 1.4.5	5 pH 驱动药物等的释放	33
§ 1.4.6	5 pH 驱动分子开关	34
§ 1.5 本	论文的研究目的及设想·····	37
参考文献·		39
第二章	实验仪器与方法·····	57
§ 2.1 试	剂原料与电解池····································	57
· ·		
v	2 制备材料	
§ 2.1.3	3 电解池	58

§ 2.2 仪器使用介绍及实验方法······	60
§ 2.2.1 电化学仪器······	60
§ 2.2.2 荷兰 avsta 光纤光谱仪 ······	63
§ 2.2.3 其它仪器······	65
§ 2.2.4 电化学实验方法 ······	67
参考文献	69
第三章 基于透氢导电钯膜串联电解池的电化学 pH 调	控和方法原理
-	70
§ 3.1 钯体电极及钯膜电极吸放氢的性质····································	70
XXX	70
§ 3.1.2 氢在钯金属表面的吸脱附机理 ······	
§ 3.1.3 钯的吸氢效率及含量 ······	
§ 3.1.4 氢在钯膜中的扩散行为一扩散系数····································	
§ 3.2. 基于透氢导电 Pd 膜的串联电解池 pH 调控方法·······	81
§ 3.2.1 基于串联电解池的 pH 调制原理 ······	81
§ 3.2.2 与其它 pH 控制方法的比较	82
§ 3.3 电化学 pH 调控平台的建立 ······	83
§ 3.3.1 串联两室电解池的形成	84
§ 3.3.2 pH 控制仪的设计和制作 ······	85
§ 3.4 电化学 pH 控制平台可行性研究 ······	93
§ 3.4.1 利用酸碱指示剂的 pH 控制平台可行性研究	93
§ 3.4.2 利用 pH 指示电极的 pH 控制平台可行性研究	95
本章小结 ·····	96
参考文献 ······	98
第四章 电化学 pH 调控平台的性能与 pH 实时调控	105
§ 4.1 控制平台所用辅助电极和 pH 测试电极性能 ⋯⋯⋯⋯	105
§ 4.1.1 Ag/AgCl 电极制备······	
§ 4.1.2 Pd-H pH 指示电极的制备与性能测试 ······	
§ 4.1.3 盐桥制备······	

§ 4.2 钯(氢)膜的电化学性能研究······	110
§ 4.2.1 钯膜表面氢吸附和体相氢吸收·······	110
§ 4.2.2 钯黑钯电极的电化学性能······	112
§ 4.2.3 钯膜预充氢方法与电化学充放氢特性······	122
§ 4.2.4 不同酸度下钯膜-氢电极的极化曲线与交换电流密度测量	127
§ 4.2.5 钯膜扩散系数的测定······	131
§ 4.3 串联电解池中的 pH 调控 ···································	136
§ 4.3.1 钯膜电极在氯化钠溶液中的电化学行为······	136
§ 4.3.2 理论控氢电流的选择······	138
§ 4.3.3 对称两室串联电解池中 pH 实时调控	140
§ 4.3.4 不对称两室串联电解池中的 pH 实时调控······	142
§ 4.3.5 pH 调控过程中溶液氢离子的扩散问题 ·····	148
本章小结 ·····	149
参考文献 ······	150
第五章 DNA 的制备、表征与提纯 ····································	154
§ 5.1 核酸的结构与性质·······	154
§ 5.1.1 核酸的基本组成······	154
§ 5.1.2 DNA 的双螺旋结构	157
§ 5.1.3 DNA 分子的性质 ·······	159
§ 5.2 DNA 电泳表征 ·······	159
§ 5.2.1 电泳技术 ······	160
§ 5.2.2 电泳基本装置·······	162
§ 5.3 PCR (Polymerase Chain Reaction)技术 ······	163
§ 5.3.1 PCR 技术简介······	163
§ 5.3.2 PCR 技术主要过程······	164
§ 5.3.3 PCR 技术特点·······	165
§ 5.3.4 引物的设计原则 ·······	166
§ 5.4 PCR 方法获取 290 bp 片段······	166
1	

§ 5.4.2 PCR 过程与参数 ······	169
§ 5.5 试剂盒提纯 290 bp DNA 片段 ······	·· 174
§ 5.5.1 PCR 产物纯化试剂盒简介 ·······	·· 174
§ 5.5.2 提纯的原理及方法过程 ······	175
§ 5.6 提纯 290 bp DNA 片段的电泳表征及浓度确定	175
§ 5.6.1 电泳表征提纯的 DNA 片段 ······	. 175
§ 5.6.2 提纯的 290 bp 的 DNA 片段浓度确定	178
本章小结 ·····	· 179
参考文献	179
第六章 DNA 酸、碱变性的电化学调控和原位紫外光谱检测··	183
§ 6.1 DNA 分子的热变性与复性 ······	
§ 6.1.1 DNA 增色效应与减色效应 ·······	183
§ 6.1.2 DNA 片段复性时间的计算 ······	184
§ 6.2 DNA 紫外可见光谱的原位表征 ·······	186
§ 6.2.1 紫外可见光谱简介······	186
§ 6.2.2 光吸收定律······	187
§ 6.3 电化学原位紫外光谱检测系统····································	187
§ 6.3.1 石英玻璃与紫外胶特性······	188
§ 6.3.2 支架结构······	188
§ 6.3.3 对称串联光学电解池····································	188
§ 6.3.4 不对称串联光学电解池····································	189
§ 6.3.5 光学串联电解池性能表征 ······	189
§ 6.4 DNA 酸、碱变性的初步研究 ······	191
§ 6.4.1 不同 pH 的缓冲溶液中 DNA 状态研究 ······	191
§ 6.4.2 22 bp DNA 片段电化学酸、碱变性	195
§ 6.4.3 290 bp DNA 片段的电化学酸、碱变性 ······	198
本章小结 ·····	205
参考文献 ······	206
作者在学期间发表与交流的论文 ······	207

Table of Contents

Abstract in Chinese · · · · · · · · · · · · · · · · · ·	I
Abstract in English ·····	····· III
Chapter 1 Introduction ······	····· 1
§ 1.1 pH concept and testing method·····	1
§ 1.1.1 pH definition ······	
§ 1.1.2 The importance of pH value······	3
§ 1.1.3 Method of pH measurement·····	3
§ 1.2 pH indicating electrode overview and comparison of pH detection	
§ 1.2.1 Conventional pH indicator electrode·····	4
§ 1.2.2 New method of pH detection·····	6
§ 1.2.3 Comparation pH control methods ·····	15
§ 1.3 pH value of the existing control method ······	17
§ 1.3.1 pH buffer method·····	18
§ 1.3.2 Dropping acid and base for pH control method ······	19
§ 1.3.3 Space pH modulation by ampholyte ······	22
§ 1.3.4 Changing the solution pH by the electrode reaction ······	25
§ 1.3.5 Comparison of various pH values of control·····	28
§ 1.4 Significance of pH regulation in life science research ······	29
§ 1.4.1 Activity measurement and detection of enzyme ······	29
§ 1.4.2 Separation and detection of protein ·····	31
§ 1.4.3 Cell culture and fermentation ·····	32
§ 1.4.4 pH imaging ····	32
§ 1.4.5 pH-driven release of drugs ·····	33
§ 1.4.6 pH-driven molecular switch·····	34
§ 1.5 Objective of this thesis·····	37
References ·····	39
Chapter 2 Instruments and method section	57
§ 2.1 Reagent materials and electrolytic cell······	57

§ 2.1.1 Reagents and Supplies · · · · 57
§ 2.1.2 Applied Materials · · · · · 57
§ 2.1.3 Electrolytic cell · · · · 58
§ 2.2 Equipment introduction and experimental methods ······ 60
§ 2.2.1 Electrochemical apparatus ·······60
§ 2.2.2 Netherlands avsta fiber spectrometer · · · · · 63
§ 2.2.3 Other instruments · · · · · · 65
§ 2.2.4 Electrochemical testing methods ···············67
References ······69
Chapter 3 Methods and theory of pH control based on conductivity of hydrogen through Pd foil electrolysis cell in the electrochemical
series cell ·······70
§ 3.1 Absorption and desorption properties of hydrogen in Pd and Pd foil
electrode······70
§ 3.1.1 Hydrogen absorption behavior of Pd······70
§ 3.1.2 Adsorption-desorption mechanism of Hydrogen in Pd ······ 75
§ 3.1.3 Efficiency and hydrogen content of Pd ······77
§ 3.1.4 Hydrogen diffusion in Pd foil - diffusion coefficient ······77
§ 3.2. pH regulation method based on conductivity of hydrogen through Pd-
foil in electrolytic series cell ·······81
§ 3.2.1 Principles and theory of pH control based on Series electrolytic cell ·· 81
§ 3.2.2 Comparation with other pH control methods ······ 82
§ 3.3 Electrochemical pH control platform ······ 83
§ 3.3.1 Formation of electrolytic series cell with two compartments · · · · · · 84
§ 3.3.2 Designing and making pH controller · · · · · 85
§ 3.4 Feasibility Study for electrochemical pH control platform93
§ 3.4.1 Feasibility study of pH control platform by acid-base indicator · · · · · · 93
§ 3.4.2 Feasibility study of pH control platform by pH electrode · · · · · · · 95
Summary·····96

References
Chapter 4 Electrochemical pH control platform for real-time
performance and pH regulation 105
§ 4.1 pH control platform and the auxiliary electrode ······ 105
§ 4.1.1 Preparation of Ag / AgCl electrode · · · · 105
§ 4.1.2 Pd-H pH electrode preparation and performance testing ······ 107
§ 4.1.3 Preparation of salt bridge · · · · · 110
§ 4.2 Electrochemical Properties of Palladium (H)······ 110
§ 4.2.1 Hydrogen adsorption on Palladium foil surface and absorption in bulk110
§ 4.2.2 Electrochemical Properties of Pd-black foil electrodes · · · · · 112
§ 4.2.3 Pd foil hydrogen pre-charging method and electrochemical hydriding and
dehydriding characteristics
§ 4.2.4 Pd foil - hydrogen electrode polarization and exchange current density
measurement under different pH ······ 127
§ 4.2.5 Hydrogen diffusion coefficient in Pd foil · · · · 131
§ 4.3 pH control in Electrolytic series cell ······ 136
§ 4.3.1 Electrochemical behavior of Pd foil in sodium chloride solution · · · · 136
§ 4.3.2 Choice of Control current ····· 138
§ 4.3.3 pH regulation in Symmetrical series electrolysis cell with
two-compartments
§ 4.3.4 pH regulation in Asymmetric series electrolysis cell with
two-compartments · · · · · 142
§ 4.3.5 Diffusion of hydrogen ions in the process of pH control····· 148
Summary
References
Chapter 5 DNA Preparation, characterization and purification · · 154
§ 5.1 Structure and properties of nucleic acids · · · · · 154
§ 5.1.1 Basic composition of DNA······ 154
§ 5.1.2 Double helix structure of DNA · · · · 157

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

- 1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.
- 2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.

