学校编码:	10384	分类号	_密级
学 号:	20520060153204		UDC

唇の大了

博士学位论文

银-氨基嘧啶衍生物配位聚合物和铂-汞、钯-汞异核 金属双膦配合物的合成、结构研究与发光性质 Syntheses, Structures and Photoluminescences of Ag-aminopyrimidines Coordination Polymers and Pt-Hg & Pd-Hg Heterometallic Diphosphine Complexes

骆耿耿

指 导教师姓名:	黄荣彬教授 郑兰荪教授	
	Prof. Richard Eisenberg	
专业名称:	无机化学	
论文提交日期:	2009年11月	
论文答辩日期:	2009年11月	
学位授予日期:	2009年 月	
	答辩委员会主席:	
	评 阅 人:	

2009年11月

Syntheses, Structures and Photoluminescences of Ag-aminopyrimidines Coordination Polymers and Pt-Hg & Pd-Hg Heterometallic Diphosphine Complexes

A Dissertation Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor Philosophy

By

Geng-Geng Luo

Supervised by

Prof. Rong-Bin Huang, Prof. Lan-Sun Zheng

& Prof. Richard Eisenberg

Department of Chemistry

Xiamen University

Nov., 2009

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组)经费或实验室的

 资助,在(
)实验室完成。(请在以上括号内填写

 课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作

 特别声明。)

声明人(签名):

月 日 年

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

()2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应 是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委 员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为 公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

中文摘要····································
Abstract······iii
第一章 前言
1.1 配位化学概述
1.2 配位聚合物
1.2.1 配位聚合物的拓扑结构·······2
1.2.2 影响配位聚合物自组装的主要因素····································
1.2.2.1 金属离子的影响 3
1.2.2.2 配体的影响
1.2.2.2.1 含氮杂环类配体的配位聚合物·······4
1.2.2.2.2 含羧酸类配体的配位聚合物·······8
1.2.2.2.3 含混合配体的配位聚合物······10
1.2.2.3 阴离子对配位聚合物的影响······11
1.2.2.4 反应物配比对配位聚合物结构的影响·······················12
1.2.2.5 溶剂对配位聚合物结构的影响························12
1.2.2.6 酸碱度对配位聚合物结构的影响
1.2.2.7 有机或无机模板分子对配位聚合物结构的影响13
1.2.3 配位聚合物的合成和研究方法·······14
1.2.3.1 配位聚合物的合成方法······14
1.2.3.1.1 溶液中自组装
1.2.3.1.2 水热或溶剂热法
1.2.3.1.1 离子液体中结晶法
1.2.3.2 配位聚合物的研究方法······16
1.2.4 配位聚合物的应用
1.3 本论文选题背景及研究内容······17
参考文献

第二章 银离子与氨基嘧啶衍生物配位聚合物的结构调控25
2.1 AgNO₃与 2-氨基嘧啶衍生物的自组装
2.1.1 实验部分
2.1.1.1 试剂信息26
2.1.1.2 实验仪器及测试条件
2.1.1.3 化合物的合成
2.1.1.3.1 化合物[Ag(L ₁)(NO ₃)] _n (1)的合成26
2.1.1.3.2 化合物[Ag ₄ (L ₂) ₆ (NO ₃) ₄] (2)的合成
2.1.1.3.3 化合物[Ag(L ₃)(NO ₃)] _n (3)的合成27
2.1.1.3.4 化合物[Ag ₃ (L ₄) ₃ (NO ₃) ₃] _n (4)的合成27
2.1.1.3.5 化合物[Ag(L ₄)(NO ₃)] _n (5)的合成27
2.1.1.4 晶体结构测定······27
2.1.2 结果与讨论29
2.1.2.1 晶体结构分析
2.1.2.1.1 化合物[Ag(L ₁)(NO ₃)] _n (1)29
2.1.2.1.2 化合物[Ag ₄ (L ₂) ₆ (NO ₃) ₄] (2)
2.1.2.1.3 化合物[Ag(L ₃)(NO ₃)] _n (3)
2.1.2.1.4 化合物[Ag ₃ (L ₄) ₃ (NO ₃) ₃] _n (4)
2.1.2.1.5 化合物[Ag(L ₄)(NO ₃)] _n (5)35
2.1.2.2 化合物 1-5 的荧光性能 ····································
2.1.3 结论
2.2 AgClO₄与2-氨基嘧啶衍生物的自组装 ········38
2.2.1 实验部分38
2.2.1.1 试剂信息38
2.2.1.2 实验仪器及测试条件 38
2.2.1.3 化合物的合成·······38
2.2.1.3.1 化合物[Ag ₂ (L ₁) ₃ (ClO ₄) ₂](6)的合成
2.2.1.3.2 化合物[Ag ₂ (L ₂) ₄ (ClO ₄) ₂](7)的合成
2.2.1.3.3 化合物[Ag5(L2)6(ClO4)2·4H2O](ClO4)3 (8)的合成

2.2.1.3.4 化合物[Ag(L ₃)(ClO ₄)] _n (9)的合成
2.2.1.3.5 化合物[Ag(L ₄)(ClO ₄)] _n (10)的合成
2.2.1.4 晶体结构测定40
2.2.2 结果与讨论·······41
2.2.2.1 晶体结构分析
2.2.2.1.1 化合物[Ag ₂ (L ₁) ₃ (ClO ₄) ₂] (6)41
2.2.2.1.2 化合物[Ag ₂ (L ₂) ₄ (ClO ₄) ₂] (7)
2.2.2.1.3 化合物[Ag ₅ (L ₂) ₆ (ClO ₄) ₂ .4H ₂ O](ClO ₄) ₃ (8)42
2.2.2.1.4 化合物[Ag(L ₃)(ClO ₄)] _n (9)46
2.2.2.1.5 化合物[Ag(L ₄)(ClO ₄)] _n (10)47
2.2.2.2 化合物 6-10 的荧光性能·······49
2.2.3 结论49
2.3 AgCF ₃ SO ₃ (AgCF ₃ CO ₂)与 2-氨基嘧啶衍生物自组装
2.3.1 实验部分50
2.3.1.1 试剂信息50
2.3.1.2 实验仪器及测试条件
2.3.1.3 化合物的合成50
2.3.1.3.1 化合物[Ag(L ₂)(CF ₃ SO ₃)(H ₂ O)] _n (11)的合成50
2.3.1.3.2 化合物[Ag ₄ (L ₂) ₄ (CF ₃ CO ₂) ₄] _n (12)的合成50
2.3.1.3.3 化合物[Ag(L ₃)][Ag(L ₃)(CF ₃ SO ₃) ₂] (13)的合成50
2.3.1.3.4 化合物[Ag ₂ (L ₄) ₃ (CF ₃ SO ₃) ₂] (14)的合成51
2.3.1.3.5 化合物[Ag(L ₄)(CF ₃ CO ₂)] _n (15)的合成51
2.3.1.4 晶体结构测定51
2.3.2 结果与讨论53
2.3.2.1 晶体结构分析53
2.3.2.1.1 化合物[Ag(L ₂)(CF ₃ SO ₃)(H ₂ O)] _n (11)和[Ag ₄ (L ₂) ₄ (CF ₃ CO ₂) ₄] _n (12)
2.3.2.1.2 化合物[Ag(L ₃)][Ag(L ₃)(CF ₃ SO ₃) ₂] (13)55
2.3.2.1.3 化合物[Ag ₂ (L ₄) ₃ (CF ₃ SO ₃) ₂] (14)和[Ag(L ₄)(CF ₃ CO ₂)] _n (15)58

2.2	.2.2 化合物 11-15 的荧光性能····································
2.2.3	结论60
参考文書	献61
第三章	对称性芳香羧酸配体对银-氨基嘧啶衍生物体系结构调控的
	影响67
3.1 实验	金部分67
3.1.1	试剂信息67
3.1.2	实验仪器及测试条件
3.1.3	化合物的合成68
3.1	.3.1 化合物[Ag ₃ (BTC)(APYM) ₂] _n (16)的合成68
3.1	.3.2 化合物[Ag(BTC) _{1/3} (ADMP)] _n (17)的合成68
3.1	.3.3 化合物[Ag(BDC) _{1/2} (ADMP)] _n (18)的合成68
3.1.4	晶体结构测定
3.2 结果	₹与讨论······
3.2.1	化合物16-18的合成讨论
3.2.2	晶体结构分析·······71
3.2	.2.1 化合物[Ag ₃ (BTC)(APYM) ₂] _n (16)71
3.2	.2.2 化合物[Ag(BTC) _{1/3} (ADMP)] _n (17)74
3.2	.2.3 化合物[Ag(BDC) _{1/2} (ADMP)] _n (18)75
3.2.3	化合物 16-18 的荧光性能77
3.3 结计	£78
参考文献	献78
笹 四音 1	Pt ⁺ -Hg ²⁺ 和 Pd ⁺ -Hg ²⁺ 异金属双膦配合物的元件组装
	佥部分······84
	试剂信息····································
	实验仪器及测试条件84
	配合物的合成85
4.1	.3.1 配合物[HgPt ₂ (dppp) ₂ (µ ₃ -Cl) ₂ I ₂](DMF)(H ₂ O)(19)85

4.1.3.2 配合物 Pt(dppp)(NCS)2 (20)的合成	•••••85
4.1.3.3 配合物 Hg ₂ Pd ₂ (µ ₃ -Cl) ₂ (dppp) ₂ I ₄ (21)的合成	85
4.1.3.4 化合物 Ag ₂ Br ₂ (Ph ₃ P) ₂ (22)和 Ag ₂ I ₂ (Ph ₃ P) ₂ (23)	85
4.1.4 晶体结构测定······	•••••86
4.2 结果与讨论······	
4.2.1 Pt ⁺ -Hg ²⁺ (19), Pd ⁺ -Hg ²⁺ (21)异核金属配合物的合成讨论	
4.2.2 晶体结构分析	90
4.2.2.1 配合物[HgPt2(dppp)2(µ3-Cl)2I2](DMF)(H2O)(19)的结构	
4.2.2.2 配合物 Pt(dppp)(NCS)2 (20)的结构	•••••91
4.2.2.3 配合物 Hg ₂ Pd ₂ (µ ₃ -Cl) ₂ (dppp) ₂ I ₄ (21)的结构	93
4.2.3 异核金属配合物的活性元件组装机理	•••••94
4.2.3.1 Pt ⁺ -Hg ²⁺ 异核三金属配合物的组装机理····································	•••••94
4.2.3.2 Pd ⁺ -Hg ²⁺ 异核四金属配合物的组装机理	95
4.2.3.3 双核银化合物 22, 23 的单晶结构 ·······	98
4.2.4 异核金属配合物的发光性能	99
4.3 本章小结	100
参考文献	101
第五章 基于卤代 BODIPY 衍生物为光敏剂的可见光解水释	氢······105
5.1 实验部分	108
5.1.1 试剂信息	108
5.1.2 实验仪器及测试条件	109
5.1.3 化合物 24-28 的合成	•••••110
	111
5.1.4 光催化水释氢实验	
5.1.4 光催化水释氢实验	
	•••••111
5.1.5 含 BDPI 敏化剂体系的量子产率测定	·····111 ·····112
5.1.5 含 BDPI 敏化剂体系的量子产率测定 ····································	••••••111 •••••• 112 •••••112
5.1.5 含 BDPI 敏化剂体系的量子产率测定	111 112 112 112

5.2.3.1.1 BDPH-TEOA-Pt/TiO2体系114
5.2.3.1.2 BDPX(X=Br, I)-TEOA-Pt/TiO2体系
5.2.3.1.3 多相光催化分解水制氢气反应机理························118
5.2.3.2 BDPX(X=H, Br, I)-TEOA-Co.均相光催化体系119
5.2.3.2.1 BDPX(X=H, Br, I)-TEOA-Co.体系释氢研究119
5.2.3.2.2 荧光猝灭实验
5.2.3.2.3 BDPI-TEOA-Co.(27)体系光照前后的紫外可见光谱123
5.2.3.2.4 均相光催化分解水制氢气反应机理
5.3 本章小结
参考文献
参考文献
第六章 总结和展望
第六章 总结和展望
第六章 总结和展望
 第六章 总结和展望128 6.1 国内工作总结与展望128 6.2 国外工作总结与展望129
 第六章 总结和展望
 第六章 总结和展望

Table of Contents

Abstract in Chinesei
Abstract in Englishiii
Chapter I Introuduction1
1.1 Brief introduction of coordination chemistry1
1.2 Coordination polymers2
1.2.1 Topological structures of coordination polymers3
1.2.2 Main factors of influence on coordination relymour
1.2.2.1 Metal-ion-dependent
1.2.2 Main factors of influence on coordination polymers 1.2.2.1 Metal-ion-dependent 1.2.2.2 Ligand-dependent 1.2.2.2 Ligand-dependent 1.2.2.2 Ligand-dependent 1.2.2.2 Ligand-dependent 1.2.2.4 Coordination polymers containing N-donor ligands
1.2.2.2.1 Coordination polymers containing N-donor ligands4
1.2.2.2.2 Coordination polymers containing O-donor ligands8
1.2.2.2.3 Coordination polymers containing mixed ligands10
1.2.2.3 Counter-ion-dependent11
1.2.2.4 Influence of the ratio of ligands to metal ions on the structures of
coordination polymers12
1.2.2.5 Solvent-dependent12
1.2.2.6 pH-dependent13
1.2.2.7 Influence of the organic or inorganic molecules as templates on the
structures of coordination polymers13
1.2.3 Synthesis and structural characterization of coordination polymers14
1.2.3.1 Synthesis of coordination polymers14
1.2.3.1.1 Self assembly in solution
1.2.3.1.2 Hydrothermal or solvothermal methods 1.2.3.1.2 Hydrothermal or solvothermal methods
1.2.3.1.1 Crystallization in ionic liquid
1.2.3.2 Structural characterization of coordination polymers16
1.2.4 Application of coordination polymers16
1.3 The working-out of the subject 17
References19
Chapter II Structural study in the self-assembly system of silver(I)
aminopyrimidyl derivatives25

2.1	Structural diversity in the (AgNO ₃ -2-aminopyrimic	lyl derivatives)
	system·····	······26
2	2.1.1 Experimental section	26
	2.1.1.1 Reagents	26
	2.1.1.2 Device and instruments	
	2.1.1.3 Synthesis of the compounds	
	2.1.1.3.1 Synthesis of the compound $[Ag(L_1)(NO_3)]_n$ (1)	·····26
	2.1.1.3.2 Synthesis of the compound $[Ag_4(L_2)_6(NO_3)_4]$ (2).	
	2.1.1.3.3 Synthesis of the compound $[Ag(L_3)(NO_3)]_n$ (3)	27
	2.1.1.3.4 Synthesis of the compound $[Ag_3(L_4)_3(NO_3)_3]_n$ (4):	
	2.1.1.3.5 Synthesis of the compound $[Ag(L_4)(NO_3)]_n$ (5)	
	2.1.1.4 X-ray crystallography	·····27
2		
	2.1.2.1 Single-crystal structural characterization	
	2.1.2.1.1 The compound $[Ag(L_1)(NO_3)]_n$ (1)	29
	2.1.2.1.2 The compound $[Ag_4(L_2)_6(NO_3)_4]$ (2)	30
	2.1.2.1.3 The compound [Ag(L ₃)(NO ₃)] _n (3)	32
	2.1.2.1.4 The compound $[Ag_3(L_4)_3(NO_3)_3]_n$ (4)	
	2.1.2.1.5 The compound $[Ag(L_4)(NO_3)]_n$ (5)	
	2.1.2.2 The photoluminescence of the compounds 1-5	
2	2.1.3 Conclusion	
2.2	Structural diversity in the (AgClO ₄ -2-aminopyrimic	lyl derivatives)
	system	
2	2.2.1 Experimental section	
<u>l (1)</u>	2.2.1.1 Reagents	
17	2.2.1.2 Device and instruments	
	2.2.1.3 Synthesis of the compounds	
	2.2.1.3.1 Synthesis of the compound $[Ag_2(L_1)_3(ClO_4)_2]$ (6).	
	2.2.1.3.2 Synthesis of the compound $[Ag_2(L_2)_4(ClO_4)_2]$ (7).	
	2.2.1.3.3 Synthesis of the compound [Ag ₅ (L ₂) ₆ (ClC	D ₄) ₂ 4H ₂ O](ClO ₄) ₃
	(8)	
	2.2.1.3.4 Synthesis of the compound $[Ag(L_3)(ClO_4)]_n$ (9)	
	2.2.1.3.5 Synthesis of the compound $[Ag(L_4)(ClO_4)]_n$ (10).	

2.2.1.4 X-ray crystallography40
2.2.2 Results and discussion41
2.2.2.1 Single-crystal structural characterization41
2.2.2.1.1 The compound $[Ag_2(L_1)_3(ClO_4)_2]$ (6)41
2.2.2.1.2 The compound $[Ag_2(L_2)_4(ClO_4)_2]$ (7)42
2.2.2.1.3 The compound $[Ag_5(L_2)_6(ClO_4)_2.4H_2O](ClO_4)_3$ (8)42
2.2.2.1.4 The compound [Ag(L ₃)(ClO ₄)] _n (9)46
2.2.2.1.5 The compound $[Ag(L_4)(ClO_4)]_n$ (10)47
2.2.2.2 The photoluminescence of the compounds 6-1049
2.2.3 Conclusion49
2.3 Structural diversity in the (AgCF ₃ SO ₃ (AgCF ₃ CO ₂)-2-aminopyrimidyl
derivatives)system
2.3.1 Experimental section50
2.3.1.1 Reagents50
2.3.1.2 Device and instruments50
2.3.1.3 Synthesis of the compounds50
2.3.1.3.1 The compound $[Ag(L_2)(CF_3SO_3)(H_2O)]_n$ (11)50
2.3.1.3.2 The compound $[Ag_4(L_2)_4(CF_3CO_2)_4]_n$ (12)50
2.3.1.3.3 The compound [Ag(L ₃)][Ag(L ₃)(CF ₃ SO ₃) ₂] (13)50
2.3.1.3.4 The compound $[Ag_2(L_4)_3(CF_3SO_3)_2]$ (14)51
2.3.1.3.5 The compound $[Ag(L_4)(CF_3CO_2)]_n$ (15)51
2.3.1.4 X-ray crystallography51
2.3.2 Results and discussion53
2.3.2.1 Single-crystal structural characterization53
2.3.2.1.1 The compounds $[Ag(L_2)(CF_3SO_3)(H_2O)]_n(11)$
and $[Ag_4(L_2)_4(CF_3CO_2)_4]_n$ (12)53
2.3.2.1.2 The compound $[Ag(L_3)][Ag(L_3)(CF_3SO_3)_2]$ (13)55
2.3.2.1.3 $[Ag_2(L_4)_3(CF_3SO_3)_2]$ (14) and $[Ag(L_4)(CF_3CO_2)]_n$ (15)58
2.2.2.2 The photoluminescence of the compounds 11-1560
2.2.3 Conclusion60
References61
Chapter III Influence of symmetric benzene-polycarboxylate acids on
the structures of previous silver-aminopyrimidyl

derivative system67	7
3.1 Experimental section67	7
3.1.1 Reagents67	7
3.1.2 Device and instruments67	7
3.1.3 Synthesis of the compounds68	8
3.1.3.1 Synthesis of the compound $[Ag_3(BTC)(APYM)_2]_n$ (16)68	
3.1.3.2 Synthesis of the compound $[Ag(BTC)_{1/3}(ADMP)]_n$ (17)68	3
3.1.3.3 Synthesis of the compound $[Ag(BDC)_{1/2}(ADMP)]_n$ (18)68	8
3.1.4 X-ray crystallography69	9
3.2 Results and discussion ·······7(
3.2.1 The discussion on synthesis of compounds 16-1870	0
3.2.2 Single-crystal structural characterization71	1
3.2.2.1 The compound [Ag ₃ (BTC)(APYM) ₂] _n (16)71	l
3.2.2.2 The compound [Ag(BTC) _{1/3} (ADMP)] _n (17)74	ł
3.2.2.3 The compound [Ag(BDC) _{1/2} (ADMP)] _n (18)75	5
3.2.3 The photoluminescence of the compounds 16-1877	
3.3 Conclusion78	8
References·······78	8
Chapter IV Unit construction of heterometallic complexes84	4
4.1 Experimental section84	4
4.1.1 Reagents84	4
4.1.2 Device and instruments	4
4.1.3 Synthesis of the complexes	5
4.1.3.1 Synthesis of the complex $[HgPt_2(dppp)_2(\mu_3-Cl)_2I_2](DMF)(H_2O)(19)$.85	5
4.1.3.2 Synthesis of the complex Pt(dppp)(NCS) ₂ (20)85	;
4.1.3.3 Synthesis of the complex $Hg_2Pd_2(\mu_3-Cl)_2(dppp)_2I_4$ (21)85	5
4.1.3.4 Synthesis of complexes $Ag_2Br_2(Ph_3P)_2(22)$ and $Ag_2I_2(Ph_3P)_2(23)$ 85	5
4.1.4 X-ray crystallography86	6
4.2 Results and discussion89	9
4.2.1 The discussion on the synthesis of heterometallic complexes89	9
4.2.2 Single-crystal structural characterization90	0
4.2.2.1 The complex $[HgPt_2(dppp)_2(\mu_3-Cl)_2I_2](DMF)(H_2O)(19)$)

4.2.2.2 The complex Pt(dppp)(NCS) ₂ (20)91
4.2.2.3 The complex Hg ₂ Pd ₂ (μ_3 -Cl) ₂ (dppp) ₂ I ₄ (21)93
4.2.3 The self-assembly mechanism of heterometallic complexes by unit
construction94
4.2.3.1 The self-assembly mechanism of Pt^+-Hg^{2+} heterometallic complex94
4.2.3.2 The self-assembly mechanism of Pd^+-Hg^{2+} heterometallic complex95
4.2.3.3 Single-crystal structural characterization of compounds 22 , 23 98
4.2.4 The photoluminescence of heterometallic omplexes
4.3 Conclusion100
References101
Chapter V BODIPY and its halogenated derivatives for visible
light-driven hydrogen production from water105
5.1 Experimental section
5.1.1 Reagents108
5.1.2 Device and instruments 109
5.1.3 Synthesis of the compounds 24-28110
5.1.4 Hydrogen evolution experiments
5.1.5 Quantum yield measurement 111
5.2 Results and discussion
5.2.1 Single-crystal structural characterization112
5.2.2 Frontier orbitals of BDPX (X = H (24), Br (25), I (26))113
5.2.3 Hydrogen evolution studies 114
5.2.3.1 BDPX(X= H,Br,I)-TEOA-Pt/TiO ₂ heterogenerous catalytic system 114
5.2.3.1.1 BDPH-TEOA-Pt/TiO ₂ system
5.2.3.1.2 BDPX(X=Br, I)-TEOA-Pt/TiO ₂ system
5.2.3.1.3 heterogenerous catalytic mechanism of visible light-driven
hydrogen production from water118
5.2.3.2 BDPX(X=H, Br, I)-TEOA-Co.homogenerous catalytic system 119
5.2.3.2.1 BDPX(X=H,Br,I)-TEOA-Co.hydrogen evolution studies119
5.2.3.2.2 Quenching experiments122
5.2.3.2.3 UV-vis spectra of BDPI-TEOA-Co.(27) system123
5.2.3.2.4 homogenerous catalytic mechanism of visible light-driven

hydrogen production from water •••••••124	ŀ
5.3 Conclusion	1
References······120	5
hapter VI Summary and outlook128	3
6.1 Summary and outlook of the dissertation for my domestic research128	3
6.2 Summary and outlook of the dissertation for my foreign research129)
opendix 113	l
ppendix 2132	2
ppendix 313-	1
cknowledgements13	5

XII

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.