校编码: 10384			分类号 <u></u>	密级_
学号:20520061151977				UDC
	à	3	 .?	

K I K I

硕士学位论文

纳米 Co₃O₄ 和 Co-Mn-O 复合氧化物的合成 及其在富氢气氛下 CO 选择氧化反应中的催 化性能的研究

Synthesis of Co₃O₄ and Co-Mn-O Composite Oxide Catalysts and Their Catalytic Application in Selective Oxidation of CO in H₂-rich Gases

刘先红

指导教师姓名: 王 野 教 授 专 业 名 称: 物 理 化 学 论文提交日期: 2009 年 8 月 论文答辩时间: 2009 年 月

学位授予日期: 2009 年 月

答辩委员会主席:_____

评 阅 人:_____

2009年8月

A thesis submitted to Xiamen University for M. S. Degree

Synthesis of Co₃O₄ and Co-Mn-O Composite Oxide Catalysts and Their Catalytic Application in Selective Oxidation of CO in H₂-rich Gases

Xianhong Liu

Supervisors: Ye Wang

Pro.

State Key Laboratory of Physical Chemistry of Solid Surfaces

College of Chemistry and Chemical Engineering

Xiamen University

August, 2009

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

另外,该学位论文为()课题(组)
的研究成果,获得()课题(组)经费或实验室的
资助,在()实验室完成。(请在以上括号内填写课
题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特别声明。)

声明人(签名):

年 月 Η

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,

于 年 月 日解密,解密后适用上述授权。

()2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应 是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委 员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为 公开学位论文,均适用上述授权。)

> 声明人(签名): 年 月 日

////

目 录

第一章 绪 论

1.1 引言 ···································
1.2 富氢气中 CO 的选择氧化反应(PROX)
1.3 富氢气氛中 CO 选择氧化催化剂
1.3.1 负载贵金属催化剂体系 2
1.3.1 贝载贡金属催化剂体系 2 1.3.1.1 铂系催化剂 2
1.3.1.2 Au 催化剂3
1.3.2 非贵金属催化剂 4
1.3.2.1 氧化铜催化剂
1.3.2.2 钴催化剂6
1.4 一氧化碳选择性脱除反应的机理研究
1.4.1 Langmuir-Hinshelwood 机理7
1.4.2 氧化-还原机理 7
1.4.3 其他机理
1.5 纳米材料的概述
1.5.1 纳米材料的定义及分类 9
1.5.2 纳米材料的特性 9
1.5.3 纳米材料的的制备方法10
1.5.3.1 水(或溶剂)热法
1.5.3.2 模板法
1.5.3.3 气相沉积法13

i

1.6 Co₃O₄的合成 13

1.6.1 CO ₃ O ₄ 的性质 ····································
1.6.2 纳米 CO ₃ O ₄ 合成的研究进展14
1.7 论文的构思与目的
1.8 论文的组成和概要
参考文献
第二章 实验部分
2.1 原料与试剂
2.2 主要仪器
2.3 催化材料的制备
2.3.1 不同形貌的 Co ₃ O ₄ 的合成 26
2.3.1.1 微乳液法制备纳米 Co3O4
2.3.1.2 软模板法
2.3.1.3 水(或溶剂)热法制备纳米 Co ₃ O ₄
2.3.1.4 纳米 Co-Mn-O 复合氧化物的制备
2.3.1.5 其他纳米 Co-M-O(M= Cu、Mo、Cr、V、Ag)复合氧化物的合成·27
2.4 催化剂的表征
2.4.1 X 射线粉末衍射(XRD) 28
2.4.2 低温 N ₂ 物理吸附(N ₂ -Adsorption)
2.4.3 程序升温还原(H ₂ -TPR 和 CO-TPR)
2.4.4 程序升温脱附(TPD)29
2.4.5 X 射线光电子能谱(XPS)29
2.4.6 高倍扫描电镜(SEM)表征
2.4.7 高分辨透射电镜(TEM)30
2.4.8 电子能谱测试(EDS)30
2.4.9 热重(TG)30

2.4.10 CO 脉冲实验	
2.4.11 原位漫反射测试(DRIFTS)	
2.5 催化剂反应性能评价和计算方法	
2.5.1 催化剂反应性能评价	
2.5.2 计算方法	
参考文献	

第三章 纳米Co₃O₄的控制制备及其在CO选择氧化反应中的催化性能的研究

3.1 引言
3.2 使用微乳法制备纳米 Co₃O₄ ····································
3.2.1 使用微乳法制备的纳米 Co ₃ O ₄ 的形貌观察
3.2.2 X 射线粉末衍射分析 36
3.3 软模板法制备纳米 Co₃O 4 ····································
3.3.1 软膜板-空气氧化法制备 Co ₃ O ₄ 步骤37
3.3.1.1 CoCl2浓度对制得的 Co3O4 形貌和尺寸的影响
3.3.1.2 反应时间对生成 Co ₃ O ₄ 形貌和尺寸的影响
3.3.1.3 程序升温焙烧的升温速率对产物 Co ₃ O ₄ 形貌和尺寸的影响 39
3.3.2 软模板-微乳溶剂热法制备纳米 Co ₃ O ₄ 的步骤 40
3.3.2.1 软模板-微乳溶剂热法制备纳米 Co ₃ O ₄ 的形貌40
3.3.3 X 射线粉末衍射分析 40
3.4 尿素均匀沉淀-水热合成-空气氧化法制备纳米 Co₃O₄
3.4.1 尿素均匀沉淀-水热合成-空气氧化法制备纳米 Co ₃ O ₄ 4
3.4.2 尿素均匀沉淀-水热合成-空气氧化法制备纳米 Co ₃ O ₄ 表征4
3.4.2.1 尿素均匀沉淀-水热合成法制备前驱体的 XRD 图42

参考文献
3.5 本章小结
3.4.6 纳米 Co ₃ O ₄ 在富氢气氛下 CO 选择氧化反应中的催化性能 50
3.4.5 商品 Co ₃ O ₄
3.4.4 尿素均匀沉淀-水热合成-空气氧化法纳米 Co3O4 典型形貌形成机理 ····· 48
3.4.3 尿素均匀沉淀-水热合成法制备的前驱体的热失重曲线48
3.4.2.7 水热反应溶剂对产物 Co ₃ O ₄ 形貌的影响47
3.4.2.6 表面活性剂对产物 Co ₃ O ₄ 形貌和尺寸的影响46
3.4.2.5 反应物 Co(NO ₃)2浓度对产物 Co ₃ O ₄ 形貌和尺寸的影响 45
3.4.2.4 水热反应时间对产物形貌的影响44
3.4.2.3 尿素均匀沉淀-水热合成法制备前驱体碱式碳酸钴的形貌 43
3.4.2.2 尿素均匀沉淀-水热合成-空气氧化法制备纳米 Co ₃ O ₄ 的 XRD 图…42

第四章 纳米 Co-Mn-O 复合氧化物催化剂的制备及其在 CO 选择 氧化反应中催化性能的研究

~

1

4.1 引言	
4.2 催化剂的催化性能······	
4.2.1 含 Co 双组分纳米 Co-M-O 复合氧化物催化剂的催化性能	 56
4.2.2 Ce 掺杂的 Co-Cu-O 纳米复合氧化物的催化性能	58
4.2.3 Co-Mn-O 纳米复合氧化物的催化性能研究	59
4.2.3.1 复合氧化物中 Co/Mn 原子比对其催化性能的影响	59
4.2.3.2 焙烧温度对催化性能的影响	61
4.2.3.3 催化剂稳定性测定	
4.3 催化剂的表征	65
4.3.1 X 射线粉末衍射表征	
4.3.2 N2物理吸附表征 ·······	

4.3.3 TEM 表征	···· 68
4.3.4 EDS 表征 ••••••	•••• 69
4.3.5 程序升温还原法表征催化剂的还原性	···· 70
4.3.6X射线光电子能谱表征	···· 73
4.3.7 程序升温脱附(TPD)	•••• 74
4.3.7.1 CO-TPD 实验	74
4.3.7.2 CO ₂ -TPD 实验	76
4.3.7.3 O ₂ -TPD 实验	77
4.4.反应条件对 CO 氧化反应性能的影响	•••• 78
4.4.1 反应气氛中 H ₂ 存在与否对 CO 反应得影响	•••• 78
4.4.2 氧气的含量对催化剂催化性能的影响	···· 79
4.4.3 不同反应温度氧分压对催化活性的影响	80
4.5 CO 脉冲实验······	81
4.6 原位红外漫反射(DRIFTS)实验	84
4.6.1 原位红外漫反射实验结果	•••• 84
4.6.2 机理探究·······	•••• 86
4.7 本章小结	86
参考文献	87
第五章 结论	90
硕士在读期间发表论文目录	93
致谢	94

HANNEL HANNEL

CONTENTS

Abstract in	Chinese	Ι
Abstract in	English	III

Ku

Chapter 1 General Introduction

1.1 Introduction
1.2 Selective Oxidation of CO in H₂-rich Streams
1.3 Catalysts For Selective Oxidation of CO in H2-rich Streams
1.3.1 Surportted Noble Metal Catalysts 2
1.3.1.1 Pt Catalysts ······2
1.3.1.2 Au Catalysts···································
1.3.2 Non-noble Metal Catalysts 4
1.3.2.1 CuO Catalysts ······ 5
1.3.2.2 Co Catalysts······ 6
1.4 The Mechanism Study For Selective Remove of CO
1.4.1 Langmuir-Hinshelwood Mechanism 7
1.4.2 Oxide-Redox Mechanism 7
1.4.3 Other Mechanism 7
1.5 Summarization of Nanomaterials9
1.5.1 The Definition and Classification of Nanomaterials9
1.5.2 Nanomaterials Characteristics9
1.5.3 Nanomaterials Preparation Method ••••••••••••••••••••••••••••••••••••
1.5.3.1 Hydrothermal(Solvothermal) Method
1.5.3.2 Template Method 12
1.5.3.3 Vapor Deposition Method 13

1.6 Synthsis of Co ₃ O ₄ ·····	13
1.6.1 Properties of Co ₃ O ₄ ······	······ 13
1.6.2 Progress in Synthesis of Co ₃ O ₄	•••••• 14
1.7 The Objectives of this Thesis	17
1.8 The Outline of this Thesis	
References	
Chapter 2 Experimental	
2.1 Materials and Reagents	24
2.2 Apparatus	
2.3 Preparation of Catalysts	
2.3.1 Preparation of Co ₃ O ₄ with Different Shapes	
2.3.1.1 Preparation of Nano Co ₃ O ₄ by Microemulsion Method	
2.3.1.2 Preparation of Co ₃ O ₄ by Soft Template Method	
2.3.1.3 Preparation of Nano Co ₃ O ₄ by Hydrothermal(Solvothermal) Meth-	od … 27
2.3.1.4 Preparation of Nano Co-Mn-O Composite Oxides	27
2.3.1.5 Preparation of Other Co ₃ O ₄ -based Binary Oxides	
2.4 Characterization of Catalysts	
2.4.1 XRD	······ 28
2.4.2 N ₂ -Adsorption	······ 28
2.4.3 H ₂ -TPR and CO-TPR	28
2.4.4 TPD •••••	······ 29
2.4.5 XPS	······ 29
2.4.6 SEM	······ 30
2.4.7 TEM	······ 30
2.4.8 EDS	······ 30
2.4.9 TG	30

2.4.10 CO Pulse Experiment ·····	
2.4.11 In-siu DRIFTS ······	······ 31
2.5 Evaluation of Catalytic Performence	
2.5.1 The Catalytic Reaction	
2.5.2 The Formula of CO Conversion and O ₂ Selectivity	
References	

Chapter 3 Shape Control Synthesis of Co₃O₄ and their Catalytic

Performances for Preferential Oxidation of CO

3.1 Introduction
3.2 Co ₃ O ₄ Prepared by Microemulsion Method
3.2.1 The Morphologies of Nano Co ₃ O ₄ Prepared by Microemulsion 36
3.2.2 XRD 36
3.3 Co ₃ O ₄ Prepared by Soft Template Method
3.3.1 Preparation of Co ₃ O ₄ by Soft Template Method
3.3.1.1 The Impact of Concentrations on Morphologies and Sizes
3.3.1.2 The Impact of Reaction Time on Morphologies and Sizes
3.3.1.3 The Impact of Temperature Rising Rate on Morphologies and Sizes 39
3.3.2 Preparation of Co ₃ O ₄ by Soft Template- Sovent Thermal Method 40
3.3.2.1 The Morphologies of Co ₃ O ₄ Prepared ······· 40
3.3.3 XRD 40
3.4 Co ₃ O ₄ prepared by Urea Precipitation-Hydrothermal-Air Oxidation41
3.4.1 Preparation of Co ₃ O ₄ by Urea Precipitation-Hydrothermal-Air Oxidation ••• 41
3.4.2 Nano Co ₃ O ₄ Characterization 41
3.4.2.1 The XRD Patterns of Precursor 421
3.4.2.2 The XRD Patterns of Nano Co_3O_4

3.4.2.3 The Morphologies of PrecursorCo(OH) _x (CO ₃) _y $\cdots $ 43
3.4.2.4 The Impact of Reaction Time on Morphologie and Size
3.4.2.5 The Impact of Concentrations on Morphologies and Size45
3.4.2.6 The Impact of Surfactant on Morphologies 46
3.4.2.7 The Impact of Solvent on Morphologies
3.4.3 The TG Curves of the Precursor 48
3.4.4 The Formation Mechanism of Nano Co ₃ O ₄ with Different Morphologies 48
3.4.5 Commercial Co ₃ O ₄ ····································
3.4.6 Catalytic Performances of Nano Co ₃ O ₄ 50
3.5 Conclusions 51
References ······· 52
-17.7
Charter 4 The Smith sets of Cabalt and Manageress Comments Oridan
Chapter 4 The Synthesis of Cobalt and Manganese Composite Oxides
and their Catalytic Performances for Preferential Oxidation of CO
and their Catalytic Performances for Preferential Oxidation of CO
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56 4.2.1 Catalytic Performances of Co-M-O Composite Oxides 56
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56 4.2.1 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.2 Catalytic Performances of Ce Doped Co-Cu-O Composite Oxides 56 4.2.2 Catalytic Performances of Ce Doped Co-Cu-O Composite Oxides 56
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56 4.2.1 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.2 Catalytic Performances of Ce Doped Co-Cu-O Composite Oxides 56 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56 4.2.1 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.2 Catalytic Performances of Ce Doped Co-Cu-O Composite Oxides 56 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3.1 The Effects of Co/Mn Atomic Molar Ratios 59
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56 4.2.1 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.2 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxides 59 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3.1 The Effects of Co/Mn Atomic Molar Ratios 59 4.2.3.2 The Effects of Calcination Temperature 61
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56 4.2.1 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.2 Catalytic Performances of Ce Doped Co-Cu-O Composite Oxides 56 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3.1 The Effects of Co/Mn Atomic Molar Ratios 59 4.2.3.2 The Effects of Calcination Temperature 61 4.2.3.3 Stability Test 62
and their Catalytic Performances for Preferential Oxidation of CO 4.1 Introduction 55 4.2 Catalytic Performances 56 4.2.1 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.2 Catalytic Performances of Co-M-O Composite Oxides 56 4.2.3 Catalytic Performances of Ce Doped Co-Cu-O Composite Oxides 59 4.2.3 Catalytic Performances of Co-Mn-O Composite Oxide 59 4.2.3.1 The Effects of Co/Mn Atomic Molar Ratios 59 4.2.3.2 The Effects of Calcination Temperature 61 4.2.3.3 Stability Test 63

4.3.4 EDS •••••• 69

4.25 H TDD - 100 TDD	70
4.3.6 XPS	
4.3.7 TPD	
4.3.7.1 CO-TPD	
4.3.7.2 CO ₂ -TPD	
4.3.7.3 O ₂ -TPD·····	
4.4 The Effects of Reaction Conditions •	78
4.4.1 The Effects of H ₂	
4.4.2 The Effects of O ₂	
4.4.3 The Effects of O ₂ Pressure	
4.6 In-siu DRIFTS	
4.6.1 Results of In-siu DRIFTS	
4.6.2 Mechanism Investigation	
4.7 Conclusions	
References	
-///	
Chapter 5 General Conclusions	
List of Publication	
Acknowledgements	0.4
Acknowledgements	
Y	

HANNEL HANNEL

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.