\qquad密级 \qquad
\qquad

定 19 t

博 士 学 位 论 文

含银配合物的结构调控与性质

Structural Manipulation and Properties of Silver－based Coordination Complexes

孙 頔

指导教师姓名：	郑兰蒜院士
黄荣彬教授	

答辩委员会主席： \qquad
评 阅 人： \qquad

2011 年 04 月

Structural Manipulation and Properties of Silver-based Coordination Complexes

A Dissertation Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor Philosophy

By

Di Sun

Supervised by
Prof. Lan-Sun Zheng
\& Prof. Rong-Bin Huang

Department of Chemistry
Xiamen University
Nov., 2011

厦门大学学位论文原创性声明

兹呈交的学位论文，是本人在导师指导下独立完成的研究成果。本人在论文写作中参考的其他个人或集体的研究成果，均在文中以明确方式标明。本人依法享有和承担由此论文产生的权利和责任。

声明人（签名）：
年 月 日

厦门大学学位论文著作权使用声明

本人完全了解厦门大学有关保留，使用学位论文的规定。厦门大学有权保留并向国家主管部门或其指定机构送交论文的纸质版和电子版，有权将学位论文用于非赢利目的的少量复制并允许论文进入学校图书馆被查阅，有权将学位论文的内容编入有关数据库进行检索，有权将学位论文的标题和摘要汇编出版。保密的学位论文在解密后适用本规定。本学位论文属于

1，保密（ ），在 年解密后适用本授权书。
2，不保密（ ）
（请在以上相应括号内打＂$\sqrt{\prime \prime}$ ）

作者签名：	日期：	年	日	
导师签名：	日期：	年	月	日

目录

摘 要 i
Abstract iii
第一章 前 言 1
1.1 配位化学概述
1.2 配位聚合物 1
1．2．1 配位聚合物的拓扑结构 2
1．2．2 影响配位聚合物自组装的主要因素 3
1．2．2．1 金属离子的影响 3
1．2．2．2 配体的影响 4
1．2．2．3 反应物配比对配位聚合物结构的影响 9
1．2．2．4 阴离子对配位聚合物的影响 9
1．2．2．5 溶剂对配位聚合物结构的影响 9
1．2．2．6 酸碱度对配位聚合物结构的影响 10
1．2．3 配位聚合物的合成和研究方法 10
1．2．3．1 配位聚合物的合成技术 10
1．2．3．2 配位聚合物的研究方法 13
1．2．4 配位聚合物的应用 14
1.3 配位簇合物 14
1．3．1 银硫簇合物 14
1．3．2 银炔簇合物 15
1.4 本论文选题背景及研究内容 16
参 考 文 献 18
第二章 银氨基吡嗪配位聚合物的结构调控 28
2.1 银离子与 2 －氨基吡嗪自组装 29
2．1．1 实验部分 29
2．1．1．1 试剂信息 29
2．1．1．2 实验仪器及测试条件 29
2．1．1．3 化合物的合成 29
2．1．1．4 晶体结构测定 30
2．1．2．结果与讨论 34
2．1．2．1 晶体结构分析 34
2．1．2．2 化合物 1－3 的荧光性质 38
2．1．2．3 化合物 2 的导电性质 39
2．1．3 结论 40
2.2 银和 2 －氨基吡嗪与多羧酸辅助配体自组装 42
2．2．1 实验部分 42
2．2．1．1 试剂信息 42
2．2．1．2 实验仪器及测试条件 42
2．2．1．3 化合物的合成 42
2．2．1．4 晶体结构测定 44
2．2．2．结果与讨论 48
2．2．2．1 晶体结构分析． 48
2．2．2．2 化合物 4－10 的荧光性能 56
2．2．2．3 化合物 10 的导电性能 57
2.3 结论 57
参 考 文 献 59
第三章 银／氨基嘧啶衍生物／羧酸三元体系自组装 66
3.1 实验部分 67
3．1．1 试剂信息 67
3．1．2 实验仪器及测试条件 67
3．1．3 化合物的合成 67
3．1．3．1 化合物 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(0 \mathrm{xx})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(11)$ 的合成 67
3．1．3．2 化合物 $\left[\mathrm{Ag}_{3}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{3}\left(\mathrm{mal}^{2}\right) \mathrm{NO}_{3}\right]_{\mathrm{n}}(12)$ 的合成． 67
3．1．3．3 化合物 $\left.\left\{\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{glu})\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(13)$ 的合成 68
3．1．3．4 化合物 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{ndc}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(14)\right.$ 的合成 68
3．1．3．5 化合物 $\left\{\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{1.5}(\mathrm{nipa}) \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(15)$ 的合成 68
3．1．3．6 化合物 $\left.\left\{\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{pma})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(16)$ 的合成 68
3．1．3．7 化合物 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)(\mathrm{suc})_{0.5} \mathbf{0 . 5 H}_{2} \mathrm{O}\right]_{\mathrm{n}}$（17）的合成 69
3．1．3．8 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathrm{glu}) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(18)$ 的合成 69
3．1．3．9 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathbf{i p a}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$（19）的合成 69
3．1．3．10 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathbf{t p a})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(\mathbf{2 0})$ 的合成 70
3．1．3．11 化合物 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)(\mathrm{npd})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(21)$ 的合成 70
3．1．3．12 化合物 $\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2} \text {（butca）} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$（22）的合成 70
3．1．3．13 化合物 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(0 \mathrm{ox})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(23)$ 的合成 70
3．1．3．14 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{4}(\mathrm{mal}) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(24)$ 的合成 71
3．1．3．15 化合物 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)(\text { bbdc })_{0.5} \cdot \mathbf{0 . 5 H}_{\mathbf{2}} \mathbf{O}\right]_{\mathrm{n}}(25)$ 的合成 71
3．1．3．16 化合物 $\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{6}(\text { butca }) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(26)$ 的合成 71
3．1．3．17 化合物 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathrm{nipa})\right]_{\mathrm{n}}(27)\right.$ 的合成 71
3．1．3．18 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathrm{suc}) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(28)$ 的合成 72
3．1．3．19 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathbf{i p a}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(29)$ 的合成 72
3．1．3．20 化合物 $\left\{\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{4}(\mathrm{pma}) \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}\right\} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(30)$ 的合成 72
3．1．4 晶体结构测定 72
3.2 结果与讨论 77
3．2．1 化合物（11－30）的合成讨论 77
3．2．2 晶体结构分析 77
3．2．2．1 化合物 $\left\{\left[\mathrm{Ag}_{2}(\mathrm{apym})_{2}(\mathrm{ox})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 1})$ 77
3．2．2．2 化合物 $\left[\mathrm{Ag}_{3}(\mathrm{apym})_{3}(\mathrm{mal}) \mathrm{NO}_{3}\right]_{\mathrm{n}}(12)$ 78
3．2．2．3 化合物 $\left\{\left[\mathrm{Ag}_{2}(\mathrm{apym})_{2}(\mathrm{glu})\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(13)$ 79
3．2．2．4 化合物 $\left\{\left[\mathrm{Ag}_{2}(\mathrm{apym})_{2}(\mathrm{ndc})\right] \cdot \mathbf{2 H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 4})$ 81
3．2．2．5 化合物 $\left\{\left[\mathrm{Ag}_{2}(\mathbf{a p y m})_{1.5}(\text { nipa })\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(15)$ 82
3．2．2．6 化合物 $\left\{\left[\mathrm{Ag}_{4}(\mathrm{apym})_{2}(\mathrm{pma})\right] \cdot \mathbf{2 H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(16)$ 83
3．2．2．7 化合物 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)(\mathrm{suc})_{0.5} \cdot \mathbf{0 . 5 H}_{2} \mathrm{O}\right]_{\mathrm{n}}(17)$ 84
3．2．2．8 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{\mathbf{2}}(\mathbf{g l u}) \cdot \mathbf{1 . 5 H}_{\mathbf{2}} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{1 8})$ 86
3．2．2．9 化合物 $\left[\mathrm{Ag}_{2}\left(\mathbf{N H}_{2} \mathrm{mpym}\right)_{2}(\mathbf{i p a}) \cdot \mathbf{2 H}_{2} \mathrm{O}\right]_{\mathrm{n}}(19)$ 86
3．2．2．10 化合物 $\left[\mathrm{Ag}_{2}\left(\mathbf{N H}_{2} \mathrm{mpym}\right)_{2}(\mathbf{t p a})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(\mathbf{2 0})$ 88
3．2．2．11 化合物 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)(\mathrm{npd})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(21)$ 89
3．2．2．12 化合物 $\left[\mathrm{Ag}_{4}\left(\mathbf{N H}_{2} \mathrm{mpym}\right)_{\mathbf{2}} \text {（butca）} \cdot \mathbf{6 H} \mathbf{H}_{\mathbf{2}} \mathrm{O}\right]_{\mathbf{n}}(\mathbf{2 2)}$ 90
3．2．2．13 化合物 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(0)_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]$（23） 91
3．2．2．14 化合物 $\left[\mathrm{Ag}_{2}\left(\mathbf{N H}_{2} \mathbf{d m p y m}\right)_{4}(\mathrm{mal}) \cdot \mathbf{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 4})$ 92
3．2．2．15 化合物 $\left[\mathrm{Ag}\left(\mathbf{N H}_{2} \mathbf{d m p y m}\right)(\text { bbdc })_{0.5} \cdot \mathbf{0 . 5} \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(25)$ 93
3．2．2．16 化合物 $\left[\mathrm{Ag}_{4}\left(\mathbf{N H}_{2} \mathrm{dmpym}\right)_{6}(\text { butca }) \cdot \mathbf{2 H}_{2} \mathrm{O}\right]_{n}$（26） 95
3．2．2．17 化合物 $\left\{\left[\mathrm{Ag}_{2}\left(\mathbf{N H}_{2} \mathbf{d m p y m}\right)_{2}(\mathbf{n i p a})\right]_{\mathrm{n}}(27)\right.$ 96
3．2．2．18 化合物 $\left[\mathrm{Ag}_{2}\left(\mathbf{N H}_{2} \mathbf{d m p y m}\right)_{\mathbf{2}}(\text { suc }) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$（28） 97
3．2．2．19 化合物 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\text { ipa }) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(29)$ 99
3．2．2．20 化合物 $\left\{\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{4}(\mathrm{pma}) \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}\right] \cdot \mathbf{6 H} \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{3 0})$ 100
3．2．3 化合物 11－30 的荧光性能 100
3.3 本章小结 101
参 考 文 献 103
第四章 含银配位化合物中的水簇 110
4.1 实验部分 111
4．1．1 试剂信息 111
4．1．2 实验仪器及测试条件 111
4．1．3 化合物的合成 111
4．1．3．1 化合物 $\left[\mathrm{Ag}_{2}(\text { bipy })_{2}(\mathbf{o x}) \cdot 7 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(31)$ 的合成 111
4．1．3．2 化合物 $\left[\mathrm{Ag}_{2}(\mathrm{bipy})_{2}(\mathrm{adip}) \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(32)$ 的合成． 112
4．1．3．3 化合物 $\left\{\left[\mathrm{Cu}(\mathrm{eda})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{3} \cdot\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}\right\}(33)$ 的合成． 112
4．1．4 晶体结构测定 112
4.2 结果与讨论 113
4．2．1 化合物（31－33）的合成讨论 114
4．2．2 晶体结构分析 114
4．2．2．1 化合物 $\left[\mathrm{Ag}_{2}(\mathrm{bipy})_{2}(\mathrm{ox}) \cdot \mathbf{7 H}_{2} \mathrm{O}\right]_{\mathrm{n}}(31)$ 114
4．2．2．2 化合物 $\left[\mathrm{Ag}_{2}(\text { bipy })_{\mathbf{2}}(\operatorname{adip}) \cdot \mathbf{6 H} \mathbf{H}_{\mathbf{2}} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{3 2})$ 118
4．2．2．3 化合物 $\left\{\left[\mathrm{Cu}(\mathrm{eda})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{3} \cdot\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot \mathbf{9 H}_{2} \mathrm{O}\right\}$（33）． 119
4．2．3 化合物 31－33 的荧光光谱 121
4.3 本章小结 122
参 考 文 献 124
第五章 基于银簇金属配体的杂金属配合物分步自组装 131
5.1 实验部分 131
5．1．1 试剂信息 132
5．1．2 实验仪器及测试条件 132
5．1．3 化合物的合成 132
5．1．3．1 化合物 $\left\{\left[\mathrm{Cu}_{3}(\mathbf{b i p y})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 11.5 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(34)$ 的合成 132
5．1．3．2 化合物 $\left\{\left[\mathrm{Zn}_{3}(\mathrm{eda})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(35)$ 的合成 132
5．1．3．3 化合物 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cu}_{4}(\mathrm{eda})_{8}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 6})$ 的合成． 133
5．1．3．4 化合物 $\left\{\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{eda}\right)_{0.5}\left[\mathrm{Zn}_{3}(\mathrm{eda})_{6}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}\right\}(37)$ 的合成． 133
5．1．3．5 化合物 $\left\{\left[\mathrm{Zn}_{4.5}(\text { deta })_{5}\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}(38)\right.$ 的合成 133
5．1．3．6 化合物 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Zn}_{3}(\text { pda })_{2}(\mathbf{H p d a})_{2}\right]\left[\mathrm{Ag}_{9}\left(\mathrm{mba}_{9}\right)_{9} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}\right.$（39）的合成 134
5．1．4 晶体结构测定 134
5.2 结果与讨论 135
5．2．1 化合物（34－39）的合成讨论 136
5．2．2 晶体结构分析 136
5．2．2．1 化合物 $\left\{\left[\mathrm{Cu}_{3}(\mathrm{bipy})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot \mathbf{1 1 . 5} \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 4})$ 136
5．2．2．2 化合物 $\left\{\left[\mathrm{Zn}_{3}(\mathrm{eda})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 5})$ 138
5．2．2．3 化合物 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cu}_{4}(\mathrm{eda})_{8}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9} \mid \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 6})\right.$ 138
5．2．2．4 化合物 $\left\{\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{eda}\right)_{0.5}\left[\mathrm{Zn}_{3}(\mathrm{eda})_{6}\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}\right\}(37)\right.$ ． 139
5．2．2．5 化合物 $\left\{\left[\mathrm{Zn}_{4.5}(\mathbf{d e t a})_{5}\right]_{\left.\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot \mathbf{H}_{2} \mathrm{O}\right\} \text {（38）}}\right.$ 140
5．2．2．6 化合物 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Zn}_{3}(\mathrm{pda})_{2}(\mathrm{Hpda})_{2}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}$（39） 141
5．2．3 化合物 34－39的荧光光谱 141
5.3 本章小结 143
参 考 文 献 144
第六章 含特殊价态银配合物的合成及表征 150
6.1 实验部分 151
6．1．1 试剂信息 151
6．1．2 实验仪器及测试条件 151
6．1．3 化合物的合成 151
6．1．3．1 化合物 $\left\{\left[\mathrm{Ag}_{2}{ }_{2} \mathrm{Ag}^{\mathrm{II}}{ }_{0.5}\left(\mathrm{SO}_{4}\right)\left(\mathrm{HSO}_{4}\right)\left(\mathrm{pyz}_{2}\right)_{2.5}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(40)$ 的合成 151
6．1．3．2 化合物 $\left\{\left[\mathrm{Ag}^{\mathrm{I}}\left(\mathrm{SO}_{4}\right)_{0.5}(\mathrm{pyz}) \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(41)\right.$ 的合成 151
6．1．3．3 化合物 $\left[\mathrm{Ag}_{34}\left(\mathrm{CO}_{3}\right)_{12} \mathrm{Cl}_{4}(\mathrm{dppm})_{12}\right](42)$ 的合成 152
6．1．3．4 化合物 $\left[\mathrm{Ag}_{2}(\mathrm{dppm})(\mathrm{NHdmpym})\left(\mathrm{ClO}_{4}\right)\right]_{2}(43)$ 的合成． 152
6．1．3．5 化合物 $\left[\mathrm{Ag}_{2}(\mathrm{dppa})(\mathrm{dppm})\left(\mathrm{ClO}_{4}\right)\right]_{2} \cdot 2 \mathrm{DMF}(44)$ 的合成 152
6．1．4 晶体结构测定 152
6.2 结果与讨论 154
6．2．1 化合物（40－44）的合成讨论 154
6．2．2 晶体结构分析 154
6．2．2．1 化合物 $\left\{\left[\mathrm{Ag}_{2}{ }_{2} \mathbf{A g}^{\mathrm{II}}{ }_{0.5}\left(\mathrm{SO}_{4}\right)\left(\mathrm{HSO}_{4}\right)\left(\mathrm{pyz}_{2}\right)_{2.5}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(40)$ 154
6．2．2．2 化合物 $\left\{\left[\mathrm{Ag}^{\mathbf{1}}\left(\mathrm{SO}_{4}\right)_{0.5}(\mathrm{pyz})\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(41)$ 156
6．2．2．3 化合物 $\left[\mathrm{Ag}_{34}\left(\mathrm{CO}_{3}\right)_{12} \mathrm{Cl}_{4}(\mathrm{dppm})_{12}\right]$（42） 157
6．2．2．4 化合物 $\left[\mathrm{Ag}_{2}(\mathrm{dppm})(\mathrm{NHdmpym})\left(\mathrm{ClO}_{4}\right)\right]_{2}(43)$ 160
6．2．2．5 化合物 $\left[\mathrm{Ag}_{2}(\mathrm{dppa})(\mathrm{dppm})\left(\mathrm{ClO}_{4}\right)\right]_{2} \cdot 2 \mathrm{DMF}(44)$ 161
6．2．3 化合物 40 的紫外吸收和荧光光谱及 I－V 曲线 161
6.3 本章小结 163
参 考 文 献 164
附录 170
致谢 175

Table of Contents

Abstract in Chinese i
Abstract in English iii
Chapter I Introuduction 1
1．1 Brief introduction of coordination chemistry $\cdot 1$
1．2 Coordination polymer $\cdot 1$
1．2．1 Topological motifs of coordination polymer $\cdot 2$
1．2．2 Main factors of influence on the self－assembly of coordination polymers… 3
1．2．2．1 Metal－ion factor 3
1．2．2．2 Ligand factor $\cdot 4$
1．2．2．3 Ratio of ligands to metal ions factor 9
1．2．2．4 Counteranion factor 9
1．2．2．5 Solvent factor 9
1．2．2．6 pH factor 10
1．2．3 Synthesis and structural characterization of coordination polymer 10
1．2．3．1 Synthesis technique s 10
1．2．3．2 Structural characterization method of coordination polymers 13
1．2．4 Application of coordination polymer 14
1．3 Coordination cluster 14
1．3．1 Silver－sulfur cluster 14
1．3．2 Silver－alkyne cluster 15
1．4 The working－out of the subject 16
References 18
Chapter II Structural modulation in the self－assembly system of
$\operatorname{Ag}(\mathbf{I}) / 2$－aminopyrazine 28
2．1 Self－assembly $\mathbf{A g}(\mathbf{I})$ and 2－aminopyrazine 29
2．1．1 Experimental section－ 29
2．1．1．1 Reagents $\cdot 29$
2．1．1．2 Device and instruments 29
2．1．1．3 Synthesis of the compounds 29
2．1．1．4 X－ray crystallography 30
2.1.2 Results and discussion- 34
2.1.2.1 Single-crystal structural analysis* 34
2.1.2.2 The photoluminescence of the compounds $\mathbf{1 - 3}$ 38
2.1.2.3 The conductivity of the compound 2 39
2.1.3 Conclusion• 40
2.2 Self-assembly $\mathbf{A g}(\mathbf{I})$, 2-aminopyrazine and carboxylate- 42
2.2.1 Experimental section 42
2.2.1.1 Reagents 42
2.2.1.2 Device and instruments 42
2.2.1.3 Synthesis of the compounds $\mathbf{4 - 1 0}$ 42
2.2.1.4 X-ray crystallography- 44
2.2.2 Results and discussion 48
2.2.2.1 Single-crystal structural analysis* 48
2.2.2.2 The photoluminescence of the compounds $\mathbf{4 - 1 0}$ 56
2.2.2.3 The conductivity of the compound $\mathbf{1 0}$ 57
2.2.3 Conclusion 57
References 59
Chapter III Self-assembly of $\mathbf{A g}(\mathbf{I}) /$ aminopyrimidyl
derivatives/carboxylate system 66
3.1 Experimental section 67
3.1.1 Reagents 67
3.1.2 Device and instruments 67
3.1.3 Synthesis of the compounds 67
3.1.3.1 Synthesis of $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{ox})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 1})$ 67
3.1.3.2 Synthesis of $\left[\mathrm{Ag}_{3}\left(\mathrm{NH}_{2} \text { pym }\right)_{3}(\mathrm{mal}) \mathrm{NO}_{3}\right]_{\mathrm{n}}(\mathbf{1 2})$ 67
3.1.3.3 Synthesis of $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{glu})\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 3})$ 68
3.1.3.4 Synthesis of $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{ndc})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 4})$ 68
3.1.3.5 Synthesis of $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{1.5}(\text { nipa })\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 5})$ 68
3.1.3.6 Synthesis of $\left\{\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{pma})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 6})$ 68
3.1.3.7 Synthesis of $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)(\mathrm{suc})_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{1 7})$ 69
3.1.3.8 Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathrm{glu}) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{1 8})$ 69
3.1.3.9 Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathrm{ipa}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{1 9})$ 69
3.1.3.10 Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathrm{tpa})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(\mathbf{2 0})$ 70
3.1.3.11 Synthesis of $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)(\mathrm{npd})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(21)$ 70
3.1.3.12 Synthesis of $\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\text { butca }) \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$ (22) 70
3.1.3.13 Synthesis of $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathrm{ox})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 3})$ 70
3.1.3.14 Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{4}(\mathrm{mal}) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(24)$ 71
3.1.3.15 Synthesis of $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)(\mathrm{bbdc})_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(25)$ 71
3.1.3.16 Synthesis of $\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{6}(\text { butca }) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 6}) \cdot$ 71
3.1.3.17 Synthesis of $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathrm{nipa})\right]_{\mathrm{n}}(27)\right.$ 71
3．1．3．18 Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathrm{suc}) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}} \mathbf{(2 8)}$ 72
3．1．3．19 Synthesis of $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathrm{ipa}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 9)}$ $\cdot 72$
3．1．3．20 Synthesis of $\left\{\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{4}(\mathrm{pma}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{3 0})$ $\cdot 72$
3．1．4 X－ray crystallography $\cdot 72$
3．2 Results and discussion－ 77
3．2．1 The discussion on synthesis of compounds $\mathbf{1 1 - 3 0}$ $\cdot 77$
3．2．2 Single－crystal structural analysis 77
3．2．2．1 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{ox})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(11) \cdot$ 77
3．2．2．2 $\left[\mathrm{Ag}_{3}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{3}(\mathrm{mal}) \mathrm{NO}_{3}\right]_{\mathrm{n}}(\mathbf{1 2})$ 78
3．2．2．3 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{glu})\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 3})$ 79
3．2．2．4 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{ndc})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(14)$ －81
3．2．2．5 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{1.5}(\text { nipa })\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 5})$ 82
3．2．2．6 $\left\{\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{pym}\right)_{2}(\mathrm{pma})\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{1 6})$ 83
3．2．2．7 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \text { mpym }\right)(\mathrm{suc})_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(17)$ 84
3．2．2．8 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathrm{glu}) \cdot 1.5 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{1 8})$ 86
3．2．2．9 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \text { mpym }\right)_{2}(\mathrm{ipa}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(19)$ ． －86
3．2．2．10 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2}(\mathrm{tpa})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}(\mathbf{2 0})$ ． 88
3．2．2．11 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \text { mpym }\right)(\mathrm{npd})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 1})$ 89
3．2．2．12 $\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{mpym}\right)_{2} \text {（butca）} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$（22） 90
3．2．2．13 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\mathrm{ox})_{0.5} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 3})$ 91
3．2．2．14 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{4}(\mathrm{mal}) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 4})$ 92
3．2．2．15 $\left[\mathrm{Ag}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)(\mathrm{bbdc})_{0.5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 5})$ 93
3．2．2．16 $\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \text { dmpym }\right)_{6}(\text { butca }) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{2 6})$ 95
3．2．2．17 $\left\{\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\text { nipa })\right]_{\mathrm{n}}(27)\right.$ ． 96
3．2．2．18 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\text { suc }) \cdot \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$（28） 97
3．2．2．19 $\left[\mathrm{Ag}_{2}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{2}(\text { ipa }) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}$（29） 99
3．2．2．20 $\left\{\left[\mathrm{Ag}_{4}\left(\mathrm{NH}_{2} \mathrm{dmpym}\right)_{4}(\mathrm{pma}) \cdot 2 \mathrm{H}_{2} \mathrm{O}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{3 0})$ 100
3．2．3 The photoluminescence of the compounds $\mathbf{1 1 - 3 0}$ 100
3．3 Conclusion 101
References ${ }^{-}$ 103
Chapter IV Water clusters in Ag－containing coordination
complexes 110
4．1 Experimental section 111
4．1．1 Reagents 111
4．1．2 Device and instruments 111
4．1．3 Synthesis of the compounds 111
4．1．3．1 $\left[\mathrm{Ag}_{2}(\text { bipy })_{2}(\mathrm{ox}) \cdot 7 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(31)$ 111
4．1．3．2 $\left[\mathrm{Ag}_{2}(\text { bipy })_{2}(\text { adip }) \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(32)$ 112
4．1．3．3 $\left\{\left[\mathrm{Cu}(\mathrm{eda})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{3} \cdot\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}\right\}(\mathbf{3 3})$ ． 112
4．1．4 X－ray crystallography． 112
4.2 Results and discussion 113
4.2.1 The discussion on the synthesis of 31-33 114
4.2.2 Single-crystal structural analysis 114
4.2.2.1 $\left[\mathrm{Ag}_{2}(\text { bipy })_{2}(\mathrm{ox}) \cdot 7 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{3 1})$ 114
4.2.2.2 $\left[\mathrm{Ag}_{2}(\text { bipy })_{2}(\text { adip }) \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{n}}(\mathbf{3 2})$ 118
4.2.2.3 $\left\{\left[\mathrm{Cu}(\mathrm{eda})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{3} \cdot\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 9 \mathrm{H}_{2} \mathrm{O}\right\}(33)$ 119
4.2.3 The photoluminescence of $\mathbf{3 1 - 3 3}$ 121
4.3 Conclusion 122
References 124
Chapter V Stepwise self-assembly of heterometallic coordinationcomplexes based on polynuclear silver clustermetalloligand.. 131
5.1 Experimental section 131
5.1.1 Reagents 132
5.1.2 Device and instruments 132
5.1.3 Synthesis of the compounds 34-39 132
5.1.3.1 $\left\{\left[\mathrm{Cu}_{3}(\text { bipy })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 11.5 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 4})$ 132
5.1.3.2 $\left\{\left[\mathrm{Zn}_{3}(\mathrm{eda})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 5})$ 132
5.1.3.3 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cu}_{4}(\mathrm{eda})_{8}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 6})$ 133
5.1.3.4 $\left\{\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{H}_{2} \text { eda }\right)_{0.5}\left[\mathrm{Zn}_{3}(\mathrm{eda})_{6}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}\right\}(37)$ 133
5.1.3.5 $\left\{\left[\mathrm{Zn}_{4.5}(\text { deta })_{5}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}$ (38) 133
5.1.3.6 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Zn}_{3}(\mathrm{pda})_{2}(\mathrm{Hpda})_{2}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}$ (39) 134
5.1.4 X-ray crystallography. 134
5.2 Results and discussion 135
5.2.1 The discussion on the synthesis of $\mathbf{3 4 - 3 9}$ 136
5.2.2 Single-crystal structural analysis 136
5.2.2.1 $\left\{\left[\mathrm{Cu}_{3}(\text { bipy })_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 11.5 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 4})$ 136
5.2.2.2 $\left\{\left[\mathrm{Zn}_{3}(\mathrm{eda})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left[\mathrm{Ag}_{6}(\mathrm{mna})_{6}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 5})$ 138
5.2.2.3 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Cu}_{4}(\mathrm{eda})_{8}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}(\mathbf{3 6})$ 138
5.2.2.4 $\left\{\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{eda}\right)_{0.5}\left[\mathrm{Zn}_{3}(\mathrm{eda})_{6}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 7 \mathrm{H}_{2} \mathrm{O}\right\}(37)$ 139
5.2.2.5 $\left\{\left[\mathrm{Zn}_{4.5}(\mathrm{deta})_{5}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}$ (38) 140
5.2.2.6 $\left\{\left(\mathrm{NH}_{4}\right)\left[\mathrm{Zn}_{3}(\mathrm{pda})_{2}(\mathrm{Hpda})_{2}\right]\left[\mathrm{Ag}_{9}(\mathrm{mba})_{9}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\right\}$ (39) 141
5.2.3 The photoluminescence of 34-39 141
5.3 Conclusion 143
References 144
Chapter VI Synthesis and characterization of $\mathrm{Ag}^{\mathrm{II}}$ and Ag^{I}－containing
coordination complexes 150
6．1 Experimental section 151
6．1．1 Reagents 151
6．1．2 Device and instruments 151
6．1．3 Synthesis of the compounds 40－44－ 151
6．1．3．1 $\left\{\left[\mathrm{Ag}_{2}^{\mathrm{I}} \mathrm{Ag}^{\mathrm{II}}{ }_{0.5}\left(\mathrm{SO}_{4}\right)\left(\mathrm{HSO}_{4}\right)(\mathrm{pyz})_{2.5}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{4 0})$ 151
6．1．3．2 $\left\{\left[\mathrm{Ag}^{\mathrm{I}}\left(\mathrm{SO}_{4}\right)_{0.5}(\mathrm{pyz})\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(41)$ 151
6．1．3．3 $\left[\mathrm{Ag}_{34}\left(\mathrm{CO}_{3}\right)_{12} \mathrm{Cl}_{4}(\mathrm{dppm})_{12}\right](42)$ ． 152
6．1．3．4 $\left[\mathrm{Ag}_{2}(\mathrm{dppm})(\mathrm{NHdmpym})\left(\mathrm{ClO}_{4}\right)\right]_{2}(\mathbf{4 3})$ 152
6．1．3．5 $\left[\mathrm{Ag}_{2}(\mathrm{dppa})(\mathrm{dppm})\left(\mathrm{ClO}_{4}\right)\right]_{2} \cdot 2 \mathrm{DMF}(44)$ 152
6．1．4 X－ray crystallography 152
6．2 Results and discussion 154
6．2．1 The discussion on the synthesis of 40－44 154
6．2．2 Single－crystal structural analysis 154
6．2．2．1 $\left\{\left[\mathrm{Ag}_{2}^{\mathrm{I}} \mathrm{Ag}^{\mathrm{II}}{ }_{0.5}\left(\mathrm{SO}_{4}\right)\left(\mathrm{HSO}_{4}\right)(\mathrm{pyz})_{2.5}\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(\mathbf{4 0}) \cdot$ 154
6．2．2．2 $\left\{\left[\mathrm{Ag}^{1}\left(\mathrm{SO}_{4}\right)_{0.5}(\mathrm{pyz})\right] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}(41)$ 156
6．2．2．3 $\left[\mathrm{Ag}_{34}\left(\mathrm{CO}_{3}\right)_{12} \mathrm{Cl}_{4}(\mathrm{dppm})_{12}\right](\mathbf{4 2})$ 157
6．2．2．4 $\left[\mathrm{Ag}_{2}(\mathrm{dppm})(\mathrm{NHdmpym})\left(\mathrm{ClO}_{4}\right)\right]_{2}(43)$ 160
6．2．2．5 $\left[\mathrm{Ag}_{2}(\mathrm{dppa})(\mathrm{dppm})\left(\mathrm{ClO}_{4}\right)\right]_{2} \cdot 2 \mathrm{DMF}(44)$ 161
6．2．3 The UV－Vis spectrum，photoluminescence and I－V curve of $\mathbf{4 0}$ 161
6．3 Conclusion 163
References－ 164
Appendix －170
Acknowledgement 175

摘 要

银离子可以呈现四种氧化态，零价，一价，二价和三价，其中一价银化合物最为常见。一价银离子的电子构型为 $[\mathrm{Kr}] 4 \mathrm{~d}^{10} 5 \mathrm{~s}^{0}$ ，属于闭壳层的电子构型，其配位数可以从二配位到八配位变化。另外，几何上临近的一价银离子由于 5 s 和 5 p轨道能级与 4 d 轨道能级接近，因此它们彼此倾向形成银银弱的作用，被称为＂亲银作用＂。正是由于银离子与众不同的特点，使得含银功能配位聚合物及簇合物的组装，调控及光电性质研究已经成为当今化学研究中最活跃的研究热点之一。

本论文的主要内容如下：
一，两个系列的含银配位聚合物的组装和调控。（1）利用不同的阴离子，合成了三个银／氨基吡嗪配位聚合物（1－3），另外通过引入多功能的羧酸配体得到七个银／氨基吡嗪／羒酸配位聚合物（4－10）。（2）针对银／氨基嘧啶／羧酸体系，我们利用混合配体策略合成了二十个配位聚合物（11－30）。晶体结构分析显示，阴离子，辅助配体的引入以及取代基对于含银的配位聚合物的结构有重要的影响。

二，含银配合物中水簇的合成及结构。（1）利用不同的二羧酸合成了两个银 $/ 4,4^{\prime}$－联吡啶／羧酸配位聚合物（31－32），发现其中包含一个少见的七核水簇。（2）利用六核银金属配体得到一个杂金属超分子化合物（33），发现其中包含一个皇冠状的九核水簇。晶体分析表明，水簇的结构与所形成的主体金属有机框架的晶格孔洞有密切的关系。

三，基于银簇的杂金属配合物的合成及结构。（1）利用六核银金属配体，液液扩散法获得两个杂金属配位聚合物（34－35）。（2）利用九核银金属配体，室温下搅拌得到四个杂金属配合物（36－39）。结构分析表明，不同巯基羧酸配体可形成不同核数的银簇，并且第二金属的引入对产物的结构和发光性能都有显著的影响。

四，含二价银和零价银的配合物的合成及结构。（1）利用氧化法合成了一个含二价银中心的银／吡嗪配位聚合物（40）。作为比较，在无氧化剂的情况下，得到一个简单的纯一价银／吡嗪配位聚合物（41）。（2）表征了一个三十四核的高核银簇 （42），并对其形成机理进行分析。结构分析显示，该高核银簇中含有一个罕见的由六个零价银组成的中性八面体内核。同时我们也捕获到一个氧化副产物（43），为证明整个体系的氧化还原细节提供了依据。由于此化合物的形成涉及到空气中

的二氧化碳，因为我们也在氮气氛下培养晶体得到一个银／嘧啶／双二苯基膦的混合配体的四核银（44）。

此外，我们对化合物（1－40）表征了它们的室温荧光性质并对发光过渡态进行了分析。对化合物 $\mathbf{(2 , 1 0}$ 和 40）进行了电导率测试，表明它们均具有半导体的性质。

关键词：银，氨基嘧啶；氨基吡嗪；配位聚合物；杂金属配合物；水簇；二氧化碳固定

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.
2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.
