学校编码: 10384

学 号: 200225084

分类号	密级
IIDC	

厦门大学 证论文

SBA-15 负载金属氧化物催化剂上的甲 烷选择氧化反应

Selective Oxidation of Methane Over SBA-15-Supported Metal Oxide Catalysts

杨薇

指导教师姓名: 王 野 教授

专业名称: 物理化学

论文提交日期: 2005 年 7 月

论文答辩日期: 2005 年 月

学位授予日期: 2005 年 月

答辩	委员会	主席:	
评	阅	人:	

2005年7月

Selective Oxidation of Methane Over SBA-15-Supported Metal Oxide Catalysts

By Wei Yang

Supervisor: Prof. Ye Wang

The State Key Laboratory for Physical Chemistry of Solid Surface and Department of Chemistry, Xiamen University July, 2005

厦门大学学位论文原创性声明

兹呈交的学位论文,是本人在导师指导下独立完成的 研究成果。本人在论文写作中参考的其他个人或集体的研 究成果,均在文中以明确方式标明。本人依法享有和承担 由此论文而产生的权利和责任。

> 声明人(签名): 2005 年 7 月 1 日

目 录

摘要 ·······I
AbstractII
第一章 绪 论
第一节 天然气工业状况1
1.1 世界各国天然气状况1
1.2 天然气转化途径2
第二节 甲烷催化氧化制甲醛反应的研究背景
2.1 甲烷均相催化氧化制 C ₁ 含氧化合物 3
2.2 甲烷多相催化氧化制 C ₁ 含氧化合物 4
$2.2.1 O_2$ 为氧化剂的甲烷选择氧化反应4
$2.2.2N_2O$ 为氧化剂的甲烷选择氧化反应7
第三节 介孔分子筛10
3.1 沸石分子筛简介 10
3.2 介孔分子筛的特性 11
3.3 SBA-15 与 MCM-41 及其应用12
第四节 本文的目的及思路
第五节 论文组成及概要 14
参考文献
第二章 实验部分
第一节 原料与试剂22
第二节 催化剂的制备 23
2.1 SBA-15 的制备

	2.2 MCM-41 的制备 ······	· 23
	2.3 负载型催化剂的制备	· 23
	2.3.1 SBA-15 负载 MoO _x 系列催化剂的制备	· 24
	2.3.2 SBA-15 负载 VO _x 系列催化剂的制备	· 24
	2.3.3 直接合成法制备的 Fe-SBA-15 系列催化剂	25
	2.3.4 浸渍法制备的 FeO _x /SBA-15 系列催化剂	· 25
9	第三节 催化剂反应性能评价	· 26
9	第四节 催化剂的表征	· 28
	4.1 X 射线粉末衍射(XRD)····································	· 28
	4.2 N ₂ 物理吸附	· 28
	4.3 透射电镜	· 28
	4.4 激光 Raman 光谱 ·······	29
	4.5 紫外可见光谱	29
	4.6 程序升温还原	
A S	参考文献	30
	-7/1/	
4	三章 SBA-15 负载 MoOx 催化甲烷选择氧化	
-	第一节 前言	
5	第二节 MoO _x /SBA-15 催化剂的甲烷选择氧化反应性能	
	2.1 不同载体的比较	
	2.2 MoO _x /SBA-15 的甲烷选择氧化反应性能	
	2.3 P 修饰 MoO _x /SBA-15 催化剂的甲烷选择氧化反应性能	
9	第三节 催化剂的表征与构效关联	
	3.1 XRD 结果	
	3.2 TEM 结果 ······	38

$3.3~N_2$ 物理吸附结果	39
3.4 激光 Ramam 光谱 ······	41
3.5 催化剂的构效关联	43
第四节 本章小结	44
参考文献	45
效而变 CD A 15 点类 NO 提及用格供及气化	
第四章 SBA-15 负载 VO _x 催化甲烷选择氧化	
第一节 前言	47
第二节 VO _x /SBA-15 催化剂甲烷选择氧化反应性能	
2.1 不同载体的比较	48
2.2 不同钒源的比较	49
2.3 负载量的影响	49
2.4 反应条件对催化性能的影响	51
2.5 P 修饰 VO _x /SBA-15 催化剂甲烷选择氧化反应性能…	52
第三节 催化剂表征及构效关联	53
3.1 XRD 结果 ······	53
3.2 N ₂ 物理吸附结果	55
3.3 Raman 光谱 ······	56
3.4 H ₂ -TPR 结果	57
3.5 催化剂的构效关联	59
第四节 本章小结	60
参考文献	61
第五章 SBA-15 负载 FeO _x 催化甲烷选择氧化	
第一节 前言	63

第二章	ち Fe-SBA-15(DHT)与 Fe/SBA-15(IMP)甲烷选择氧化反应性飼	能及
构效关耶	关 ·······	64
2	.1 Fe-SBA-15(DHT)的合成 ······	64
2	.2 XRD 结果······	65
2	.3 TEM 结果 ······	67
2	.4 N ₂ 物理吸附数据	67
2	5 UV-Vis 结果······	69
2	.6 O ₂ 为氧化剂的甲烷选择氧化反应性能	70
2	.7 N ₂ O 为氧化剂的甲烷选择氧化反应性能	71
2	.8 催化剂的构效关联	73
第三节	艿 酸性添加物与碱性添加物修饰的 FeOx∕SBA-15 甲烷选择氧化	七反
应性能		74
3	.1 O ₂ 为氧化剂 FeO _x /SBA-15 的甲烷选择氧化反应性能	74
3	.2 酸性添加物修饰 FeO _x /SBA-15 的甲烷选择氧化反应性能	75
3	.3 碱性添加物修饰 FeO _x /SBA-15 的甲烷选择氧化反应性能	77
3	.4 P-1 wt%FeO _x /SBA-15 与 Li-1 wt%FeO _x /SBA-15 的比较	80
3	.5 N_2O 为氧化剂的 $FeO_x/SBA-15$ 甲烷选择氧化反应性能	81
3	.6 N_2O 为氧化剂酸性添加物修饰 $FeO_x/SBA-15$ 的反应性能	83
3	.7 N_2O 为氧化剂碱性添加物修饰 $FeO_x/SBA-15$ 的反应性能	85
第四节	节 催化剂的表征和构效关联········	87
4	.1 XRD 结果 ······	87
4	.2 BET 结果 ······	89
4	.3 H ₂ -TPR 结果······	91
4	.4 Raman 光谱 ······	92
4	5 UV-Vis 结果	93
4	6 催化剂的构效关联	96

第五节 本章小结		98
参考文献		99
第六章 结论	1	101
硕士在读期间发表论文目录	1	103
致谢		105

CONTENTS

Abstract in Chinese
Abstract in English
CHAPTER 1 General Introduction
Section 1 Industrial Situation of Natural Gas 1
1.1 Situation of Natural Gas In the World ····································
1.2 Transform Approach of Natural Gas 2
Section 2 Selective Oxidation of Methane 3
2.1 Homogeneous Catalytic Selective Oxidation of Methane 3
2.2 Heterogeneous Catalytic Selective Oxidation of Methane 4
2.2.1 Selective Oxidation of Methane with O ₂ 5
2.2.2 Selective Oxidation of Methane with N_2O
Section 3 Mesoporous Molecular Sieves
3.1 Brief Introduction of Zeolite
3.2 Nature of Mesoporous Molecular Sieves 1
3.3 Introduction of SBA-15 and MCM-41
Section 4 The Objectives of this Thesis
Section 5 The Outline of this Thesis
References
CHAPTER 2 Experimental
Section 1 Materials and Reagents 22
Section 2 Synthesis of Catalytic Materials
2.1 Synthesis of SBA-15

	2.2 Synthesis of MCM-41
	2.3 Preparation of Supported Catalysts ———————————————————————————————————
	2.3.1 Preparation of MoO _x /SBA-15 ····································
	2.3.2 Preparation of VO _x /SBA-15 ····································
	2.3.3 Preparation of FeOx/SBA-15 by DHT Method25
	2.3.4 Preparation of FeOx/SBA-15 by IMP Method
9	Section 3 Evaluation of Catalytic Properties 26
	Section 4 Characterizations of Catalysts
	4.1 XRD Characterizations ————————————————————————————————————
	4.2 N ₂ Physical Adsorption ————————————————————————————————————
	4.3 TEM28
	4.4 Raman Spectroscopy 29
	4.5 UV-Vis
	4.6 H ₂ -TPR
]	References 30
	-7/1/
CI	HAPTER 3 Selective Oxidation of Methane Over MoO _x /SBA-15
	Section 1 Introduction
	Section 2 Selective Oxidation of Methane Over MoO _x /SBA-15 32
•	2.1 Difference Among the Supports 32
	2.2 Selective Oxidation of Methane Over MoO _x /SBA-15
	2.3 Selective Oxidation of Methane Over Phosphorus Modified
	MoO _x /SBA-15
(Section 3 Characterizations of Catalysts and the Structure-Reactivity
	Relationships
	3.1 XRD Results
	5.1 711D Results

3.2 TEM Results — 38
3.3 N ₂ Physical Adsorption
3.4 Raman Spectroscopy 41
3.5 the Structure-Reactivity Relationships 43
Section 4 Conclusions ————————————————————————————————————
References 45
CHAPTER 4 Selective Oxidation of Methane Over VO _x /SBA-15
Section 1 Introduction
Section 2 Selective Oxidation of Methane over VO _x /SBA-1548
2.1 Difference Among the Supports 48
2.2 Catalytic Performance of VO _x /SBA-15 with Different Vanadium
Sources49
2.3 Catalytic Performance of VO _x /SBA-15 with Different Vanadium
Content
2.4 Catalytic Performance under Different Reaction Conditions 51
2.5 Catalytic Performance of Phosphorus Modified VO _x /SBA-15 ······ 52
Section 3 Characterizations of Catalysts and the Structure-Reactivity
Relationships 53
3.1 XRD Results 53
3.2 N ₂ Physical Adsorption55
3.3 Raman Spectroscopy 56
3.4 H ₂ -TPR Results57
3.5 the Structure-Reactivity Relationships59
Section 4 Conclusions 60
Dafaranaag 61

(CHAPTER 5 Selective Oxidation of Methane Over FeO _x /SBA-15
	Section 1 Introduction 63
	Section 2 Selective Oxidation of Methane Over Fe-SBA-15(DHT) and
	Fe/SBA-15(IMP) and the Structure-Reactivity Relationships 64
	2.1 Synthesis of Fe-SBA-15(DHT)64
	2.2 XRD Results65
	2.3 TEM Results67
	2.4 N ₂ Physical Adsorption 67
	2.5 UV-Vis Results 69
	2.6 Selective Oxidation of Methane with O ₂ ·······70
	2.7 Selective Oxidation of Methane with N ₂ O ······71
	2.8 the Structure-Reactivity Relationships73
	Section 3 Selective Oxidation of Methane Over Acidic Oxides and Alkali
	Oxides Modified FeO _x /SBA-15 ·················74
	3.1 Selective Oxidation of Methane with O ₂ Over FeO _x /SBA-15·······74
	3.2 Catalytic Performance of Methane with O2 Over Acidic Oxides
	Modified FeO _x /SBA-15 ·······75
	3.3 Catalytic Performance of Methane with O ₂ Over Alkali Oxides
	Modified FeO _x /SBA-15 ······77
	3.4 Catalytic Performance of P-1 wt%FeO _x /SBA-15 and Li-1
	wt%FeO _x /SBA-1580
	3.5 Selective Oxidation of Methane with N ₂ O Over FeO _x /SBA-15 ····· 81
	3.6 Catalytic Performance of Methane with N ₂ O Over Acidic Oxides
	Modified FeO _x /SBA-15 ······83
	3.7 Catalytic Performance of Methane with N ₂ O Over Alkali Oxides
	Modified FeO _x /SBA-15 ·······85

Section 4 Characterizations of Catalysts and the	Structure-Reactivity
Relationships	87
4.1 XRD Results ·····	87
4.2 N ₂ Physical Adsorption	89
4.3 H ₂ -TPR Results ·····	91
4.4 Raman Spectroscopy	92
4.5 UV-Vis Results······	93
4.6 the Structure-Reactivity Relationships	96
Section 5 Conclusions	98
References	99
CHAPTER 6 Results	101
List of Publication	103
ACKNOWLEDGMENTS	105

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

- 1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.
- 2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.