brought to you by CORE

学校编码: 10384 学号: 200325073

分类号 <u></u>	密级	
	UDC	

唇の大学

硕士学位论文

电泳沉积纳米羟基磷灰石/碳纳米管 复合涂层及其表征

Electrophoretic Deposition of Nano Hydroxyapatite/Carbon

Nanotubes Composite Coating and Its Characterizations

韩会娟

指导教师姓名:林昌健教授

专业名称:物理化学

论文提交日期: 2006年6月

论文答辩时间:

学位授予日期:

答辩委员会主席: ______ 评 阅 人: _____

2006年6月

Electrophoretic Deposition of Nano Hydroxyapatite/ Carbon Nanotubes Composite Coating and Its Characterizations

A Dissertation Submitted to the Graduate School in Partial Fulfillment of the Requirements for the Degree of

Master of Science

By

Hui-juan Han

Directed by Prof. Chang-Jian Lin

Department of Chemistry, Xiamen University

June, 2006

厦门大学学位论文著作权使用声明

本人完全了解厦门大学有关保留、使用学位论文的规定。厦门大 学有权保留并向国家主管部门或其指定机构送交论文的纸质版和电 子版,有权将学位论文用于非赢利目的的少量复制并允许论文进入学 校图书馆被查阅,有权将学位论文的内容编入有关数据库进行检索, 有权将学位论文的标题和摘要汇编出版。保密的学位论文在解密后适 用本规定。

本学位论文属于

1、保密(),在 年解密后适用本授权书。

2、不保密()

(请在以上相应括号内打"√")

作者签名:	日期:	年	月	日
导师签名:	日期:	年	月	日

厦门大学学位论文原创性声明

兹呈交的学位论文,是本人在导师的指导下独立 完成的研究成果。本人在论文写作中参考的其他个人 或集体的研究成果,均在文中以明确方式标明。本人 依法享有和承担由此论文而产生的权利和责任。

声明人(签名):

年月日

HANNEL HANNEL

目 录

中文摘要····································
英文摘要Ⅳ
第一章 绪 论
§1-1 生物材料简介··················1
§1-1-1生物材料的分类2
§1-1-1-1 高分子生物料料2
§1-1-1-2 生物医用金属
§1-1-1-3 生物陶瓷材料
§ 1-1-2 羟基磷灰石复合材料5
§1-1-2-1 羟基磷灰石/无机复合材料
§1-1-2-2 羟基磷灰石/医用高分子复料5
§1-1-2-2羟基磷灰石涂层/医用金属复合材料6
§1-1-2-3-1 等离子喷涂
§1-1-2-3-2 爆炸喷涂····································
§1-1-2-3-3 激光熔覆7
§ 1-1-2-3-4 溶胶-凝胶法7
§ 1-1-2-3-5 仿生合成法
§1-1-2-3-6 电化学沉积
§1-1-2-3-7 电泳沉积
§1-2 碳纳米管及其生物相容性9
§1-2-1 碳纳米管的结构9
§1-2-2 碳纳米管的制备及纯化10

§1-2-3 碳纳米管的物理、化学性质11
§1-2-4 碳纳米管的生物相容性以及与生物材料的复合
§1-2-4-1 碳纳米管与生物材料的复合
§1-2-4-2 碳纳米管的生物相容性
§1-3 本论文的研究目的和设想·······16
参考文献

第二章 实验仪器和方法22
§ 2-1 电泳沉积体系的建立22
§ 2-2 表征和仪器······23
§2-2-1 X 射线衍射(XRD)23
§ 2-2-2 红外吸收光谱(IR)24
§ 2-2-3 激光拉曼光谱(Raman)24
§ 2-2-4 扫描电子显微镜(SEM)24
§ 2-2-5 透射电子显微镜 (TEM)25
§2-2-6 原子力显微镜(AFM)25
§ 2-2-7 热重分析······25
§ 2-2-8 其他仪器26
§ 2-3 纳米复合涂层的体外细胞培养26
§ 2-3-1 细胞培养26
§ 2-3-2 细胞接种与观测27
§ 2-3-3 MTT 比色实验
§ 2-4 纳米复合涂层的力学性能表征······28
参考文献

第三章 纳米羟基磷灰石粉末的共沉淀法制备
§3-1 纳米羟基磷灰石粉末的共沉淀法制备

§ 3-1-1	制备工艺和流程	·32
§3-2 纳米	羟基磷灰石粉末的表征······	•33
§ 3-2-1	粉末的成分表征	•33
§ 3-2-2	粉末的形貌表征	·35
§3-3 本章	小结	36
参考文献…		·37

§ 4-1 电泳沉积的原理······	
§ 4-1-1 电化学沉积机理	
§4-1-2 基于DLVO理论的沉积机理	
§4-2 电泳沉积复合涂层条件的确定	
§ 4-2-1 悬浮液的 pH 值	42
§ 4-2-2 悬浮液的浓度以及分散剂	43
§ 4-2-3 陈化时间	
§ 4-2-4 悬浮液的分散	44
§4-2-5 电压以及时间的选择	44
§ 4-2-6 基体预处理·····	44
§ 4-2-6-1 酸刻蚀	45
§4-2-6-2电化学刻蚀	45
§ 4-2-6-3 碱刻蚀	45
§ 4-2-7 烧结······	46
§ 4-2-8 碳纳米管的纯化	46
§4-3 HA/MWCNTs 复合涂层的表征 ·······	47
§ 4-3-1 形貌表征·····	48
§ 4-3-2 组分表征·····	53
§ 4-3-3 生物学性能的表征	
§ 4-3-4 力学性能表征	59
§4-4 本章小结······	61

		長征
§ 5-1-2-1 形態	貌分析	
§5-1-2-2 成	分分析	
§5-1-2-3 生物	物学性能分析	
§5-1-2-4 机材	戒性能表征	
§ 5-2 本章小结·		
参考文献		
第六章 结论与	5展望	
作者攻读硕士:	学位期间发表与交流的诉	论文
汝谢		

Contents

Abstract in Chinese I
Abstract in English
Chapter1 Introduction1
§1-1 Brief Introduction of Biomaterials1
§1-1-1Sort of Biomaterials2
§ 1-1-1-1 Biomaterials of Macromolecule2
§ 1-1-1-2 Biomedical Metal
§ 1-1-1-3 Bioceramics Materials
§ 1-1-2 Hydroxyapatite Composite5
§ 1-1-2-1 Hydroxyapatite/mineral Compisite
§ 1-1-2-2 Hydroxyapatite /Biomedical Macromolecule5
§ 1-1-2-2 Hydroxyapatite / Biomedical Metal Composite6
§ 1-1-2-3-1 Plasma Spray6
§ 1-1-2-3-2 Blast Spray6
§ 1-1-2-3-3 Laser Cladding7
§ 1-1-2-3-4 Sol-Gel7
§ 1-1-2-3-5 Biomimic Coating7
§ 1-1-2-3-6 Electrochemical Deposition8
§ 1-1-2-3-7 Electrophoretic Deposition8
§ 1-2 Carbon Nanotube and It's Biocompatibility9
§ 1-2-1 Structure of Carbon nanotube9
§ 1-2-2 Preparation and purification of Carbon Nanotube10

Reference17
§1-3 Objective and Plan of this Dissertation
§ 1-2-4-2 The Biocompatibility of Carbon Nanotube13
§ 1-2-4-1 Compound with Biomaterials of Carbon Nanotube12
Carbon Nanotubes
§ 1-2-4 Biocompatibility and Compound with Biomaterials of
§ 1-2-3 Physical and Chemical Properties of Carbon Nanotube11

Chapter 2 Instrument and Method Used in Experiment22		
§ 2-1 Setup of	Electrophoretic Deposition22	
§ 2–2 Instrun	nent and Test23	
§ 2-2-1	X-ray Diffraction(XRD)23	
§ 2-2-2	Infrared Spectroscopy (IR)24	
§ 2-2-3	Raman Spectroscopy(Raman)24	
§ 2-2-4	Scanning Electron Microscopy (SEM)24	
§ 2-2-5	Transmission Electron Microscope (TEM)25	
§ 2-2-6	Atom Force Microscopy(AFM)25	
§ 2-2-7	Thermal Gravity Analysis(TGA)26	
§ 2-2-8	Others26	
§ 2–3 Cell Cu	lture in Vivo on Nano-Composite Coating26	
§ 2-3-1	Cell culture26	
§ 2-3-2	Cell Culture and Observation27	
§ 2-3-3 I	MTT27	
§ 2–4 Mechar	nical Test of Nano-Composite Coating28	
Reference······	29	

§ 3-1 Co-deposition Preparation of Nano Hydroxyapatite	
§ 3-1-1 Preparation Method and Flow of Hydroxyapatite	32
§ 3-2 Characterization of Nano Hydroxyapatite	
§ 3-2-1 Characterization the Composition of the Powder	33
§ 3-2-2 Characterization the Shape of the Powder	35
§ 3-3 Summary	
Referece	
	Y.

Chapter-	4 Characterization	and	Preparation	of HA/MWCNTs
	Composite Coatin	g		
§ 4-1 Mec	chanism of EPD	••••••		
§ 4-1-1	 chanism of EPD 1 Electrochemical Deposit 2 Mechanism based on DI 	ion······		
§ 4-1-2	2 Mechanism based on DI	.VO Th	eory	
	ertaining the Condition I			
	1 pH Value of the Suspens			
§ 4-2-2	2 The Concentration and t	he Disp	ersant·····	43
§ 4-2-3	3 Aged time			43
§ 4-2-4	4 Dispersion of the Susper	nsion·····		43
§ 4-2-5	5 Selecting of Potential an	d Time·		44
§ 4-2-6	6 Pre-treatment of Substra	te·····		44
§ 4	-2-6-1 Acid Treatment·····			45
§ 4	-2-6-2 Electrochemical Tr	reatmen	t	45
§ 4	-2-6-3 Alkali Treatment…	•••••		45
§ 4-2-7	7 Sintering	••••••		46
§ 4-2-8	8 Purification of Carbon N	Janotub	e	46
§ 4-3 Cha	racterization of HA/MW	CNTs	Composite Coati	ng47
§ 4-3-1	1 Characterization of Mor	phology	·	
	2 Characterization of Com			
§ 4-3-3	3 Characterization of Bioc	ompatil	oility	

§ 4-3-4 Characterization of Mechanical Properties	·59
§ 4–4 Summary	·61
Reference	·62

Chapter 5 EPD HA/ZrO ₂ Composite Coating67
§ 5-1 Preparation and Characterization of Composite Coating68
§ 5-1-1 Preparation of the Composite Coating68
§ 5-1-2 Characterization of Composite Coating68
§ 5-1-2-1 Characterization of Morphology69
§ 5-1-2-2 Characterization of Composition70
§ 5-1-2-3 Characterization of Biocompatibility73
§ 5-1-2-4 Characterization of Mechanical Properties75
§ 5-2 Summary76
Reference77

Chapter 7 Conclusion and Outlook78

Selected Publications and Conference Presentations------80

cknowledgements	8
cknowledgements	••••••

摘要

羟基磷灰石(HA)是人体骨骼和牙齿的主要无机成分,人工合成的 HA 具有良好的生物相容性和生物活性,但是 HA 脆性大、强度低,抗折强度和断裂韧性指标均低于人工致密骨的特性,从而限制了它在生物医学领域的应用。为此人们发展了各种 HA 的复合材料,期望 HA 保持生物活性的同时具有良好的力学性能。其中在医用金属钛表面涂覆 HA 活性涂层是目前复合生物材料领域的研究热点之一。

目前发展了多种在医用金属钛表面涂覆HA活性涂层的方法,但是有各自的缺点。电泳沉积结合后续处理(烧结)因其操作方便、形貌厚度可控、不受基体形貌的限制而倍受欢迎。但是由于HA和金属Ti热膨胀系数的差异,在烧结降温的过程中,HA涂层与基体之间产生拉伸的残余应力导致二者的结合力下降,限制了其在实际中的应用。为了解决该问题同时保持复合材料良好的生物相容性,考虑到多壁碳纳米管(Multi-walled Carbon Nanotube,简称MWCNTs)具有优异的力学性能,能起到增韧补强的作用。ZrO2是生物惰性材料,具有介于HA和Ti的热膨胀系数,可用作梯度材料或复合材料,提高涂层与基体的结合力。本文采用电泳沉积的方法在医用金属钛表面制备HA的复合涂层,并对复合涂层的性质进行表征。

主要研究內容包括:1)制备纳米级HA晶体;2)电泳沉积法制备HA/MWCNTs 复合涂层,探索条件以得到均匀无龟裂的HA和MWCNTs复合涂层;3)对复合涂 层的性质进行表征,包括:形貌、成分、生物学能、机械性能等的表征;4)电 泳沉积法制备HA/ZrO₂复合涂层以及对复合涂层的表征。主要研究结果如下:

- 71. 采用共沉淀法结合水热处理,以NH4H2PO4、Ca(NO3)2为原料,合成了 纳米级HA晶体。控制Ca/P比为 1.67,搅拌条件下向Ca(NO3)2中逐渐滴 加NH4H2PO4,并控制二者的pH值为 10~11 之间,水热处理 12h后,得 到的HA为棒状晶体,成分与人体骨类似(部分CO3²取代了PO4³⁻)晶粒 尺寸为 20-30nm,且纳米HA粉末分散良好,无团聚现象。
 - 首次采用电泳沉积的方法在钛基体表面获得HA/MWCNTs复合涂层。
 电泳沉积的分散剂为乙醇,向悬浮液中加入少量的酸(浓HNO₃)调节

pH值为 4-5,30V恒电压条件下阴极电泳沉积 50s, 得到均匀无龟裂 的厚度约为10µm的复合涂层。Ti基体在电泳沉积之前进行碱刻蚀。以 外径为 50mm的不锈钢圆环作为对电极。首次采用相对较低的烧结温 度(700℃),在高纯氩气的气氛下得到了均匀致密的涂层。该复合涂 层的主要表征结果如下:(1)SEM结果显示,HA/MWCNTs复合涂层 中HA和MWCNTs分散均匀,无团聚现象。烧结之后碳纳米管保持其良 好的管状结构,HA仍然保持良好的棒状晶体结构;(2)XRD结果指出 高温没有导致HA的分解或MWCNTs的氧化;(3)TGA结果表明,随 着悬浮液中MWCNTs含量由 20%上升到 30%,涂层中MWCNTs的含 量也相应有所增加。高温烧结导致了涂层中MWCNTs的少量的氧化, 总体上涂层中MWCNTs的含量为0-8%之间。(4)体外细胞培养实验 表明,细胞与HA/MWCNTs复合材料的表面接触良好,复合材料具有 良好的生物相容性。MWCNTs的掺杂增加了涂层的生物相容性;(5) MTT结果表明, MWCNTs含量为 20%的悬浮液得到的复合涂层, 在烧 结之后生物相容性最好。(6)粘结拉伸实验表明,MWCNTs的掺杂使 烧结之后的涂层与基体的结合力大幅度提高: 20%MWCNTs含量涂层 的结合力为 34.94MPa, 30%MWCNTs含量的涂层结合力为 35.44MPa, 而纯HA涂层的结合力为 20.62MPa。表明该复合涂层可望成为一种综 合性能良好的硬组织生物材料。

采用电泳沉积的方法在钛基体上得到HA/ZrO₂复合涂层。电泳沉积的分 散剂为乙醇,向悬浮液中加入少量的酸(浓HNO₃)调节pH值为 4-5, 30V恒电压条件下阴极电泳沉积条件下得到均匀无龟裂的厚度为 15µm 的复合涂层,Ti基体在电泳沉积之前进行碱刻蚀。采用的烧结温度为 800 ℃,同时保持高纯氩气的气氛,得到较为致密、均匀的涂层。XRD、 EDS结果表明该复合涂层中的主要成分为HA和ZrO₂;SEM结果显示复 合涂层中ZrO₂和HA分布均匀,HA保持在烧结前后均保持其良好的棒状 晶体结构,而ZrO₂则同样保持其片状晶体结构;体外细胞培养实验表明 该复合材料具有良好的生物相容性;HA/ZrO₂复合涂层与基体的结合力 22.56MPa(ZrO₂含量为 20%烧结之后)。

3.

Π

关键词: 羟基磷灰石; 二氧化锆; 电泳沉积; 碳纳米管; 细胞培养

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.