学校编码: 10384

UDC

学号: 20520070153578

唇の大学

博士学位论文

嫁接铜催化剂和杂多金属氧酸盐负载金催 化剂上的甲烷和纤维二糖的选择氧化反应 研究

Studies on the Selective Oxidations of Methane and Cellobiose over Grafted Copper and Polyoxometalates-Supported Gold Catalysts

安冬丽

指导教师姓名:王野 教授

朱红平 教授

专业名称:物理化学

论文提交日期: 2010年9 月

论文答辩时间: 2010年9 月

学位授予日期: 2010年 月

答辩委员会主席:_____

人:_____ 评 阅

2010年9月

A thesis submitted to Xiamen University for P. H. Degree

Studies on the Selective Oxidations of Methane and Cellobiose

over Grafted Copper and Polyoxometalates-Supported Gold

Catalysts

By

Dongli An

Prof.

Supervisor:

Ye Wang

Hongping Zhu

State Key Laboratory of Physical Chemistry of Solid Surfaces

College of Chemistry and Chemical Engineering

Xiamen University

August, 2010

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组) 经费或实验室的

 资助,在(
)实验室完成。(请在以上括号内填写课

 题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特

 别声明。)

声明人(签名):

年 月 日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办法》等 规定保留和使用此学位论文,并向主管部门或其指定机构送交学位论文 (包括纸质版和电子版),允许学位论文进入厦门大学图书馆及其数据库 被查阅、借阅。本人同意厦门大学将学位论文加入全国博士、硕士学位论 文共建单位数据库进行检索,将学位论文的标题和摘要汇编出版,采用影 印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于年 月 日解密,解密后适用上述授权。

() 2. 不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应是 已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委员会审 定的学位论文均为公开学位论文。此声明栏不填写的,默认为公开学位论 文,均适用上述授权。)

声明人 (签名):

年 月 日

目录

摘要		 •••••	••••••	 ••••••	I
Abst	tract	 		 	III

第一章 绪 论

第一章 绪 论
1.1 甲烷选择氧化反应
1.1.1 甲烷的转化与利用
1.1.2 甲烷选择氧化研究进展3
1.1.2.1 甲烷非催化气相选择氧化-气相自由基反应
1.1.2.2 多相催化体系中的甲烷选择氧化制甲醇和甲醛4
1.1.2.2.1 O2 为氧化剂的甲烷选择氧化反应4
1.1.2.2.1.1 Mo 系催化剂4
1.1.2.2.1.2 V 系催化剂
1.1.2.2.1.3 Fe 系催化剂
1.1.2.2.1.4 其他金属催化剂
1.1.2.2.2 N ₂ O 为氧化剂的甲烷选择氧化反应10
1.1.2.3 均相催化体系中的甲烷选择氧化反应
1.1.2.3.1 甲烷均相催化选择氧化制甲醇
1.1.2.3.2 甲烷其他官能团化体系
1.1.3 甲烷单加氧酶 (MMO)18
1.2 纤维素类生物质的催化转化
1.2.1 生物质简介
1.2.1.1 生物质的基本概念
1.2.1.2 生物质的基本组成
1.2.2 纤维素概况
1.2.3 纤维素类生物质的氧化反应
1.2.3.1 纤维素及纤维二糖的氧化反应
1.2.3.1.1 纤维素的氧化反应

1.2.3.1.2 纤维二糖的氧化反应
1.2.3.2 葡萄糖的氧化反应
1.2.3.2.1 多相催化氧化制葡萄糖酸
1.2.3.2.1.1 Pt 系和 Pd 系催化剂
1.2.3.2.1.2 Au 系催化剂
1.2.3.2.2 均相催化氧化制葡萄糖酸
1.2.3.2.3 氧化制葡萄糖酸的其他方法
1.3 论文的构思和目的
1.3.1 甲烷选择氧化制甲醛32
1.3.2 纤维二糖选择氧化制葡萄糖酸33
1.4 论文的组成和概要
参考文献

第二章 N-杂环卡宾稳定下的双亚胺单核铜(I)化合物的合成、表征与

有机叠氮化反应的研究

2.1	引言
2.2	实验部分
2.2	2.1 化合物的表征
	2.2.1.1 熔点测试
	2.2.1.2 核磁共振谱
	2.2.1.3 元素分析
	2.2.1.4 晶体结构测试与解析47
2.2	2.2 双亚胺氮碳氮(NCN)型钳形配体的合成与表征47
2.2	2.3 1,3-二异丙基-4,5-二甲基咪唑-2-碳卡宾 IPM(7)的合成49
2.2	2.4 双亚胺氮碳氮(NCN)型钳形配体稳定的八核铜化合物(L ₂ Cu ₈ Br ₆) (8)
	的合成
2.2	2.5 八核铜化合物(L ₂ Cu ₈ Br ₆)(8)与 1,3-二异丙基-4,5-二甲基咪唑-2-碳卡宾
	(7)反应制备(NHC)CuL (9)和(IPM)CuBr (10)
2.2	2.6 N-杂环卡宾稳定下的双亚胺单核铜(I)化合物的叠氮化反应制备

(IPM)CuN(1-ad)NN(L)(11)	··52
2.2.7 N-杂环苯基铜卡宾的叠氮化反应制备(NHC)Cu[N(Ph)NN(C10H15)]	(12)
	··53
2.3 结果与讨论	··53
2.4 本章小结	··68
参考文献	·69

第三章 嫁接法制备含高分散铜物种的 CuO_x/SBA-15 催化剂及其表

2.	_
11	

3.1 引言
3.2 原料和试剂
3.3 嫁接法制备 CuO_x/SBA-15 催化剂的过程示意
3.4 CuO _x /SBA-15-gra 的制备方法
3.4.1 介孔分子筛 SBA-15 的制备与前期处理
3.4.2 CuO _x /SBA-15-gra 的制备
3.4.3 CuO _x /SBA-15-imp 的制备
3.5 CuO _x /SBA-15 的表征
3.5.1 X 射线粉末衍射(XRD)77
3.5.2 低温 N ₂ 物理吸附78
3.5.3 电子顺磁共振(EPR)78
3.5.4 傅立叶红外光谱(FT-IR)
3.5.5 紫外可见漫反射光谱(UV-Vis)
3.5.6 N ₂ O 滴定法测定铜分散度(N ₂ O Titration)78
3.5.7 H ₂ 程序升温还原(H ₂ -TPR)80
3.6 结果与讨论 ··········80
3.6.1 SBA-15 氨基功能化制备 SBA-15-APTES80
3.6.2 席夫碱缩合反应制备 Cu(acac) ₂ /SBA-15-APTES84
3.6.3 CuO _x /SBA-15-gra 催化剂的表征
3.6.3.1 X 射线粉末衍射87

	3.6.3.2 N ₂ 物理吸附)
	3.6.3.3 程序升温 H2 还原)
	3.6.3.4 催化剂中铜的分散度	3
	3.6.3.5 催化剂中铜的配位状态	1
	3.6.3.5.1 紫外可见漫反射94	1
	3.6.3.5.2 电子顺磁共振	5
3.5	本章小结	7
参考	考文献	3

第四章 含高分散铜物种的 CuO_x/SBA-15 催化剂上的甲烷选择氧化

4.1 引言 ·······102
4.2 原料与试剂
4.3 催化剂反应性能的评价和计算方法
4.3.1 催化剂的性能评价
4.3.2 计算方法
4.4 反应结果与讨论 ·······106
4.4.1 CuO _x /SBA-15-gra 催化剂的甲烷选择氧化反应性能106
4.4.2 制备方法对催化性能的影响
4.4.3 CuO _x /SBA-15-gra 催化剂的进一步表征和构效关联112
4.4.3.1 反应后催化剂结构表征与构效关联
4.4.3.1.1 X 射线粉末衍射
4.4.3.1.2 反应前后催化剂分散度对比(N ₂ O 滴定)
4.4.3.1.3 紫外可见漫反射
4.4.3.2 反应条件下铜催化剂中活性位的考察116
4.4.3.2.1 电子顺磁共振
4.4.3.2.2 CO 吸附 FT-IR 研究
4.4.3.2.3 XPS 表征 0.6 wt% CuOx/SBA-15-gra 催化剂上铜的价态…122
4.4.4 0. 6 wt% CuO _x /SBA-15-gra 催化剂上甲烷选择氧化反应动力学研究

反应

4.4.4.1	表观活化能
4.4.4.2	反应途径的考察
4.4.4.3	速率方程
4.4.4	.3.1 甲烷分压对反应的影响
4.4.4	.3.2 氧气分压对反应的影响
4.4.4.4	脉冲法考察 0.6 wt% CuO _x /SBA-15-gra 催化剂上晶格氧的作
	用
4.4.4.5	脉冲法考察 0.6 wt% CuO _x /SBA-15-gra 催化剂上气相氧的活
	化
4.5 CuO _x /SB	A-15 上甲烷选择氧化制甲醛的反应机理 132
4.6 本章小绰	i133
参考文献	

第五章 Keggin结构磷钨杂多酸铯盐负载金催化纤维二糖转化制葡萄

糖酸

5.1 引言	
5.2 实验部分	140
5.2.1 原料和试剂	
5.2.2 催化剂的制备	
5.2.2.1 Keggin 结构杂多金属氧酸盐的合成方法	
5.2.2.2 负载型 Au 催化剂的制备	
5.2.3 催化剂的表征	
5.2.3.1 X 射线粉末衍射(XRD)	
5.2.3.2 低温 N2物理吸附(N2-Adsorption)	
5.2.3.3 红外光谱(FT-IR)	
5.2.3.4 NH3-程序升温脱附(NH3-TPD)	
5.2.3.5 高分辨透射电子显微镜(HR-TEM)	
5.2.3.6 原子吸收分光光度计	144

5.2.3.7 挂	∃描电子显微镜(SEM)
5.2.3.8 X-	-射线光电子能谱(XPS)
5.2.3.9 分	↑散度与粒径关系和 H₂-O₂ 滴定145
5.2.4 催化质	反应146
5.2.4.1 催	崔化剂的性能评价
5.2.4.2 🗲	千维二糖水相催化转化反应结果分析
5.3 结果与讨	论147
5.3.1 磷钨	杂多酸铯盐负载 Au 催化剂的表征
5.3.1.1 年	泡含量测定 147
5.3.1.2	磷钨杂多酸铯盐及其负载催化剂的结构
5.3.1.3	磷钨杂多酸铯盐 Cs _x H _{3.0-x} PW ₁₂ O ₄₀ (x = 1.0-3.0)及其负载 Au 催化剂
	形貌特征152
	.0 wt% Au/Cs _x H _{3.0-x} PW ₁₂ O ₄₀ (x = 1.0-3.0)系列催化剂中 Au 物种的
ť	介态表征
5.3.1.5 ($Cs_xH_{3.0-x}PW_{12}O_{40}$ (x = 1.0-3.0)和 Au/Cs _x H _{3.0-x} PW ₁₂ O ₄₀ (x = 1.0-3.0)系
3	〕 样品的酸性158
$5.3.2 \operatorname{Cs}_{x}\mathrm{H}_{2}$	3.0-xPW12O40 上纤维二糖的催化转化反应160
5.3.3 磷钨	品杂多酸铯盐负载金催化剂上纤维二糖选择氧化制备葡萄糖酸的
研究	
5.3.3.1	磷钨杂多酸铯盐负载不同金属催化剂的催化性能比较162
5.3.3.2	载体对金催化剂催化纤维二糖选择氧化反应性能的影响163
5.3.3.3	不同种类杂多金属氧酸盐载体负载金催化剂的催化性较164
5.3.3.4	铯含量对 1.0 wt% Au/ Cs _x H _{3.0-x} PW ₁₂ O ₄₀ 上纤维二糖选择氧化反应
	性能的影响
5.3.3.5	还原温度对 1.0 wt% Au/Cs2.2H0.8PW12O40 催化剂上纤维二糖选择
	氧化反应性能的影响
5.3.3.6	金负载量对 Au/Cs2.2H0.8PW12O40 催化剂上纤维二糖选择氧化反应
	性能的影响
5.3.3.7	各种动力学参数对纤维二糖选择氧化反应性能的影响167

5.3.3.7.1 反应温度的影响
5.3.3.7.2 反应时间的影响
5.3.3.7.3 O2 压力的影响169
5.3.3.7.4 催化剂量的影响
5.3.3.8 Au/Cs _{2.2} H _{0.8} PW ₁₂ O ₄₀ 催化剂稳定性考察
5.3.4 Au/Cs _x H _{3.0-x} PW ₁₂ O ₄₀ 催化剂上葡萄酸转化的研究
5.3.5 Au/Cs _x H _{3.0-x} PW ₁₂ O ₄₀ 催化剂上中间产物葡萄糖转化的研究176
5.3.6 纤维二糖选择氧化反应中的结构和性能关系
5.3.6.1 催化剂比表面积的影响
5.3.6.2 催化剂酸性和 Au 粒径的影响
5.3.7 以1.0 wt% Au/TiO2 为催化剂催化纤维二糖制备葡萄糖酸考察 Au 粒径
与酸性的影响180
5.3.7.1 1.0 wt% Au/TiO2 催化剂制备方法
5.3.7.2 1.0 wt% Au/TiO2 催化剂表征
5.3.7.3 1.0 wt% Au/TiO2 催化剂催化性能与讨论
5.3 本章小结
参考文献
引六章 结 论

第六章 结 论

6.1	甲烷选择氧化反应	7
6.2	纤维二糖选择氧化反应	8
6.3	N-杂环卡宾稳定下的双亚胺单核铜(I)化合物的合成、表征与有机叠氮化	
	反应的研究	9

博士在读期间发表论文目录 192

致	谢	·	194
---	---	---	-----

CONTENTS

Abstract in Chinese	I
Abstract	

Chapter 1 General Introduction 1.1 Selective Oxidation of Methane 1.1.1 Transformation and Utilization of Methane in the Current Chemical Industry......2 1.1.2 Research Progress in Selective Oxidation of Methane 3 1.1.2.1 Selective Oxidation of Methane under Non-catalytic Conditions3 1.1.2.2 Heterogeneous Catalytic Selective Oxidation of Methane to Formaldehyde and Methanol 1.1.2.2.1 Selective Oxidation of Methane by Oxygen4 1.1.2.2.1.1 Molybdenum-Containing Catalysts ------4 1.1.2.2.1.2 Vanadium-Containing Catalysts ------6 1.1.2.2.1.3 Iron-Containing Catalysts -----7 1.1.2.2.2 Selective Oxidation of Methane by N₂O10 1.1.2.3 Homogeneous Catalytic Selective Oxidation of Methane to Methanol 1.1.2.3.2 Other Routes for the Oxidative Functionalization of Methane 1.1.3 Methane Monooxygenase (MMO) ······18 1.2.1 Biomass ------23

1.2.2 Cellulose23
1.2.3 Oxidation of Cellulosic Conpounds24
1.2.3.1 Oxidation of Cellulose and Cellobiose25
1.2.3.1.1 Oxidation of Cellulose25
1.2.3.1.2 Oxidation of Cellobiose26
1.2.3.2 Oxidation of Glucose27
1.2.3.2.1 Heterogenous Oxidation of Glucose to Gluconic Acid
1.2.3.2.1.1 Platinum-Containing and Palladium-Containing Catalysts28
1.2.3.2.1.2 Gold-Containing Catalysts29
1.2.3.2.2 Homogeneous Oxidation of Glucose to Gluconic Acid
1.2.3.2.3 Other Routes for Prodution of Gluconic Acid
1.3 The Objectives of This Thesis
1.3.1 Selective Oxidation of Methane to Formaldehyde
1.3.2 Selective Oxidation of Cellobiose to Gluconic Acid
1.4 The Outline of This Thesis
References 34

Chapter 2 Mononuclear Bis(imino)arylcopper(I) N-Heterocyclic

Carbene Complex: Synthesis, Structure, and Reaction

with Organic Azide

2.1 Introduction
2.2 Experimental
2.2.1 Characterization of Compound47
2.2.1.1 Melting Points ······47
2.2.1.2 NMR Spectra47
2.2.1.3 Elemental Analyses 47
2.2.1.4 X-Ray Structure Determination and Refinement
2.2.2 Synthesis and Characterization of Bis(imino)aryl NCN-Pincer Ligand 47
2.2.3 Synthesis of C[N(<i>i</i> Pr)CMe] ₂ (7) 49

2.2.4 Synthesis of L ₂ Cu ₈ Br ₆ (8)
2.2.5 Reaction of $L_2Cu_8Br_6(8)$ with $C[N(iPr)CMe]_2(7)$ to (NHC)CuL (9) and
(IPM)CuBr (10)51
2.2.6 Synthesis of (IPM)CuN(1-ad)NN(L)(11) 52
2.2.7 Synthesis of (NHC)Cu[N(Ph)NN(C ₁₀ H ₁₅))(12)53
2.3 Results and Discussion53
2.4 Conclusions
References

Chapter 3 Characterizations of Highly Dispersed CuO_x/SBA-15

Catalysts Prepared by Grafting Approach

3.1 Introduction 74
3.2 Materials and Reagents 75
3.3 Scheme of Preparation of CuO _x /SBA-15 Catalysts by the Grafting
Method
3.4 Preparation of CuO _x /SBA-15-gra
3.4.1 Preparation and Pretreatment of SBA-1576
3.4.2 Preparation of CuO _x /SBA-15-gra
3.4.3 Preparation of CuO _x /SBA-15- <i>imp</i> 77
3.5 Characterization of CuO_x/SBA-15 77
3.5.1 XRD Characterizations 77
3.5.2 N ₂ Physical Adsorption 78
3.5.3 EPR Characterizations 78
3.5.4 FT-IR Characterizations 78
3.5.5 UV-Vis Characterizations78
3.5.6 N ₂ O Titration78
3.5.7 H ₂ -TPR Characterizations80
3.6 Results and Discussion80
3.6.1 Functionalisation of the SBA-15 with (3-aminopropyl)triethoxysilane 80

3.6.2 Anchoring of the Copper(II) Complex Through Schiff Condensation
Reaction84
3.6.3 Discussion and Characterizations of Highly Dispersed CuOx/SBA-15
Catalysts Prepared by Grafting Approach
3.6.3.1 XRD Characterizations 87
3.6.3.2 N ₂ Physical Adsorption 89
3.6.3.3 H ₂ -TPR Characterizations 90
3.6.3.4 Dispersion of Copper Species in Catalysts
3.6.3.5 Coordination State of the Copper Species in Catalysts94
3.6.3.5.1 UV-Vis Characterizations94
3.6.3.5.2 EPR Characterizations95
3.7 Conclusions
References 98

Chapter 4 Selective Oxidation of Methane over Containing Highly

Dispersed Cu Species CuO_x/SBA-15 Catalysts

4.1 Introduction
4.2 Materials and Reagents 103
4.3 Evaluation of Catalytic Properties 104
4.3.1 Catalytic Reaction 104
4.3.2 Calculations of Methane Conversion and Products Selectivities
4.4 Results and Discussion106
4.4.1 Catalytic Performances in Selective Oxidation of Methane over
CuO _x /SBA-15-gra Catalysts ······106
4.4.2 Effects of Preparation Methods on Catalytic Performances
4.4.3 Further Characterization of CuO _x /SBA-15-gra Catalysts and
Structure-Reactivity Relationships 112
4.4.3.1 Characterization of the Used Catalysts and Structure-Reactivity
Relationships ······113

4.4.3.1.1 XRD Characterizations113
4.4.3.1.2 Dispersion of Copper Species in Fresh and Used Catalysts114
4.4.3.1.3 UV-Vis Characterizations 114
4.4.3.2 States of Copper Species in Catalysts under Reaction116
4.4.3.2.1 EPR Characterizations116
4.4.3.2.2 CO Adsorption FT-IR ······118
4.4.3.2.3 XPS Characterizations
4.4.4 Studies on Reaction Kinetics over 0. 6 wt% CuO _x /SBA-15-gra Catalysts
4.4.4.1 Apparent Activation Energy123
4.4.4.2 Reaction Route
4.4.4.3 Rate Equation
4.4.4.3.1 Effect of CH ₄ Partial Pressure
4.4.4.3.2 Effect of O ₂ Partial Pressure 126
4.4.4.4 Investigations of Role of Lattice Oxygen by Pulse Reactions 128
4.4.4.5 Investigations of Activation of Molecular O2 over 0. 6 wt%
CuO _x /SBA-15-gra Catalysts130
4.5 The Reaction Mechanism of Selective Oxidation of Methane over
CuO _x /SBA-15 Catalyst132
4.6 Conclusions 133
References ······134

Chapter 5 Selective Oxidation of Cellobiose to Gluconic Acid Over

Keggin-Type Polyoxometalate-Supported Au Nanoparticle

Catalysts

5.1 Introduction	
5.2 Experimental	
5.2.1 Materials and Reagents	
5.2.2 Preparation of Catalysts	

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.