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摘 要 

CO2 的电催化还原是环境科学，能源科学，电化学等研究领域的前沿课题。

金属单晶电极具有明确的表面原子排列结构，为认识界面微观结构，电催化反应

的表面过程提供了一个理想模型。两者结合不仅把 CO2 还原反应的研究从宏观

唯象推进到表面微观过程，而且为在微观层次设计、筛选和研制高性能电催化剂

提供指导。 

本论文研制了 Pt(100)、Pt(110)、Pt(111)、Pt(510)、Pt(310)、Pt(210)、Pt(320)

和 Pt(991)等八个 Pt 单晶电极，并通过表面处理获得同一电极的不同表面结构，

运用电化学循环伏安方法（CV），程序电位阶跃暂态技术和原位 FTIR 光谱，研

究了在上述不同表面结构的 Pt 单晶电极及 Sb 修饰的 Pt 基础单晶面上 CO2 电催

化还原的表面过程和反应动力学，以甲酸为探针分子进一步研究了电催化的表面

结构效应。取得如下重要结果： 

1. CO2 电催化还原的表面结构效应。Pt 单晶电极上 CO2 的电催化还原是表

面结构敏感的反应。当电位扫描上限 Eu = 0.75 V（vs SCE）时，即电极表面保持

确定结构的条件下，三个基础晶面中，Pt(110)给出最高的反应活性，Pt(100)的反

应活性略低，而 Pt(111)则相对“惰性”。阶梯晶面的电催化特性表现为该晶面所含

各种结构表面位的电催化特性的组合。不同冷却气氛得到的 Pt(hkl)-Ⅰ（Ar + H2）

与 Pt(hkl)-Ⅱ（空气）上 CO2还原吸附态产物的氧化电量（ 2r CO
OXQ − ）和覆盖度（

2r COθ − ）

呈现相同的变化趋势，但具有较为开放结构的 Pt(hkl)-Ⅱ对 CO2 的还原活性要高

于表面结构更为有序的 Pt(hkl)-Ⅰ。当 Eu = 1.25 V 时，由于氧的吸脱附导致电极

表 面 重 构 ， 各 单 晶 电 极 的 电 催 化 性 能 发 生 了 不 同 的 变 化 。 定 义

Q
Q
Δ = 2 2

2

(1.25 ) (0.75 )

(0.75 )

OX OX
r CO V r CO V

OX
r CO V

Q Q
Q

− −

−

−
，从而定量比较两种结构的同一电极对 CO2还原性

能：Pt(111)上得到最大的
Q

Q
Δ

，即其对 CO2 还原的电催化活性得到最大程度的提

高；电极上（110）表面位密度小于（等于）50％的四个单晶电极的
Q

Q
Δ

值为正，

即催化活性提高，而电极上（110）表面位密度大于 50％的三个单晶电极的
Q

Q
Δ

值
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为负，指示电催化活性降低。这一结果说明对于 CO2 还原反应，具有开放结构

的（110）表面位具有较高的电催化活性，而相对有序的（100）表面位则具有较

高的稳定性。 

2. 电极电位和表面结构对 CO2 还原的影响规律。CO2 在 Pt 单晶电极上还原

平均速率的最大值（
max

υ ）均位于-0.20 V 附近，即对 CO2 电催化还原，电极电

位对同一材料基底的电极所产生的影响是相同的，但不同的表面结构对反应动力

学的影响具有显著的差异。 

3. CO2 电催化还原的表面机制。Pt 单晶电极上直接吸附 CO 的氧化电量

（ CO
satQ ）和饱和覆盖度（ CO

satθ ）均明显大于 CO2 还原吸附态产物的氧化电量

（ 2r CO
satQ − ）和饱和覆盖度（ 2r CO

satθ − ），证明 CO2 还原需要邻近 Pt 表面位的参与，

并且其还原产物在电极表面呈均匀分布。Sb 吸附在电极表面改变了 Pt 单晶电极

对 CO2 还原的电催化活性，并且随 Sb 覆盖度（θSb）改变，其相应的反应活性也

随之变化。Sbad 对 Pt(100)和 Pt(110)电极表面的修饰均在不同程度上抑制了 CO2

在电极表面还原反应，但其抑制程度随 θSb 的变化规律不同。Sb/Pt(100)电极上，

CO2 还原吸附态产物（r-CO2）的氧化峰电流（jp）和氧化电量（ 2r CO
OXQ − ）随 θsb

的增大呈峰形变化，并在 θsb = 0.19 处取得最大值，即 θsb = 0.19 的 Sb/Pt(100)电

极对 CO2 还原具有最高的催化活性；Sb/Pt(110)电极上，r-CO2 的 jp 和 2r CO
OXQ − 随 θsb

增加单调递减。与此相反，Sb 在 Pt(111)电极表面吸附显著提高了对 CO2还原的

催化活性，且 r-CO2 的 jp 和 2r CO
OXQ − 均随 θsb 增大线性增加。 

4. CO2 电催化还原反应机理和活性中心结构。运用原位 FTIR 光谱检测到在

Pt 单晶及 Sb 修饰的 Pt 基础单晶面上 CO2 的还原吸附态产物均是 CO 物种，主要

以线式和桥式两种方式吸附在电极表面。综合 CV 研究结果，提出了 Pt 单晶电

极上 CO2电催化还原的反应机理，并探讨了 CO2与电极表面的相互作用机制， 进

一步提出阶梯晶面上形成的特殊“椅式”和“船式”立体表面位体现了电催化活性

中心的结构特征。 

5. 甲酸电氧化对催化活性中心结构的验证。甲酸氧化同样为表面结构敏感

的电催化反应。甲酸氧化对（110）表面结构的变化更为敏感。同一电极的不同
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表面结构对甲酸氧化的性能指出，相对开放的表面结构构成高催化活性的基本要

素，但相对有序的表面结构则提供较好的稳定性。与 CO2 还原研究中获得的规

律一致，即阶梯晶面对甲酸氧化的电催化活性并非随其相应的（100）和（110）

表面位的密度线性变化，而与表面上“椅式”立体位的密度密切相关，进一步证实

阶梯晶面上形成的这种特殊的表面位构成了催化活性中心。  

本论文的研究工作在表面原子排列结构层次揭示了催化剂的表面结构与反

应性能之间的内在联系规律，提出了电催化活性中心的结构模型，对于发展电催

化的基础理论，指导设计和研制高催化活性和高稳定性的电催化剂具有重要意

义。 

 

关键词：Pt 单晶电极；电催化；CO2；HCOOH；表面结构效应 
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Abstract 

     Electrochemical reduction of CO2 is closely related to environment, energy and 

eletrocatalysis. Single crystal electrodes can provide well-defined surface structure of 

atomic arrangement, which have been used as model electrocatalysts to study the 

intrinsic structure function relationship of electrocatalysis. The study of 

electrocatalytic reduction of CO2 on Pt single crystal electrodes can reveal, on the one 

hand, the surface processes at a microscopic level, and direct the designing and 

screening electrocatalysts of high performance, on the other hand. 

Three basal planes, Pt(100)，Pt(110) and Pt(111), five stepped surfaces, 

Pt(510)，Pt(310)，Pt(210)，Pt(320) and Pt(991) were prepared in this work. Different 

treatments were applied to these Pt single crystal electrodes, which lead to produce 

different surface structure of the same electrode. The surface processes and kinetics of 

CO2 reduction on above surfaces, as well as on basal planes modified with irreversibly 

adsorbed (IRA) Sb adatoms, were investigated. Besides HCOOH oxidation was used 

as a probe reaction to confirm further the structure effects in electrocatalysis. Cyclic 

voltammetry, programmed potential step technique and in situ FTIR spectroscopy 

were employed in the study. The main results are summarized below. 

1. Surface structure effects in electrocatalytic reduction of CO2. It has found 

that the electrocatalytic reduction of CO2 depends strongly on Pt surface structure. 

When the upper limit potential (Eu) was 0.75 V (vs SCE), the activity order is ranked 

Pt(110) > Pt(100) » Pt(111) for the three basal planes; the electrocatalytic property of 

a stepped surface may be considered as a certain combination of the properties of 

different surface sites presented on the surface. The oxidation charge of the reduced 

CO2 species (r-CO2) ( 2r CO
OXQ − ) and the coverage of r-CO2 (

2r COθ − ) on both Pt(hkl)-Ⅰ, 

cooled in Ar + H2, and Pt(hkl)-Ⅱ, cooled in air after flame annealing, show the same 

trend of variation, while the Pt(hkl)-Ⅱ with a structure that is more open than 

Pt(hkl)-Ⅰis more active than Pt(hkl)-Ⅰ. When Eu was raised to 1.25 V, the surface of 

electrodes has been reconstructed because of oxygen adsorption at high potentials. 

Such surface reconstruction resulted in the change of electrocatalytic activity of Pt 
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single crystal electrodes. The difference in electrocatalytic activity towards CO2 

reduction for a given Pt single crystal electrode with different surface structures has 

been depicted by the quantity Q
Q
Δ = 2 2

2

(1.25 ) (0.75 )

(0.75 )

OX OX
r CO V r CO V

OX
r CO V

Q Q
Q

− −

−

−
.The largest Q

Q
Δ  was 

obtained on Pt(111), i.e., the activity of Pt(111) has been augmented the most 

significant after its reconstruction. Q
Q
Δ  on those Pt single crystal electrodes with a 

(110)-site density below 50% is positive, illustrating that the activity of corresponding 

electrodes increased; while Q
Q
Δ  on those electrodes with a (110)-site density over 

50% is negative, indicating a loss of activity. The results revealed that the (110) sites 

with relatively more open structure exhibit a high activity, and the (100) sites with 

relatively more order structure provide a better stability. 

     2. The effects of electrode potential and surface structure in CO2 reduction. it 

has measured that the maximum average rate (
max

υ ) of CO2 reduction on all Pt single 

crystal electrodes regardless of the surface structure is at around -0.20 V, which 

implies that the electrode potential has the same effect for CO2 reduction on the Pt 

electrode, however, different surface structure can affect significantly the kinetics of 

this reaction. 

3. Surface mechanism of CO2 reduction. Both the charge of oxidation of 

directly adsorbed CO in saturation ( CO
satQ ) and the corresponding coverage ( CO

satθ ) are 

larger than the oxidation charge of adsorbed product in saturation from CO2 reduction 

( 2r CO
satQ − ) and the corresponding coverage ( 2r CO

satθ − ), which illustrated that adjacent sites 

are necessary for assisting the reaction. The electrocatalytic properties of Pt single 

crystal electrodes were altered by the presence of IRA Sbad on electrodes surface. The 

activity of Sb/Pt(hkl) is the function of coverage of Sbad (θSb). IRA Sbad on Pt(100) 

and Pt(110) electrodes has decreased the activity of these surfaces. The peak current 

(jp) and 2r CO
OXQ − of r-CO2 on Sb/Pt(100) electrode are varied with θSb, yielding a 
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volcano-type distribution. The maximum jp and 2r CO
OXQ −  were measured at θsb = 0.19, 

indicating that such surface displays the highest activity for this reaction. With the 

decrease of θsb, the jp and the 2r CO
OXQ − of r-CO2 on Sb/Pt(110) electrode decreased 

monotonically. However, Sbad on Pt(111) has increased the activity. With the increase 

of θsb, the jp and the 2r CO
OXQ − of r-CO2 on Sb/Pt(111) electrode increased linearly.  

4. Reaction mechanism and active center of CO2 reduction. The adsorbed 

products of CO2 reduction on Pt single crystal electrodes and IRA Sb modified basal 

planes were determined by in situ FTIR spectroscopy as linear- and bridge-bonded 

CO species. Based on these results, a reaction mechanism of CO2 reduction on Pt 

single crystal electrodes was proposed. It has revealed that the active sites on Pt single 

crystal electrodes for CO2 reduction consist of “Chair” and “Boat” sites on stepped 

surface. Such steric sites represent the characters of active centers for this 

electrocatalytic reaction. 

     5. Structure of active centers was confirmed by HCOOH oxidation. HCOOH 

oxidation depends also strongly on Pt surface structure. This reaction was more 

sensitive to the change of (110) structure and employed to confirm further the active 

centers. The different surface structure of the same Pt single crystal electrode 

displayed different reactivity, which showed that relatively open surface structure 

exhibits a higher performance, but at the same time relatively ordered surface 

structure provides a better stability. The results are in accordance with those obtained 

in studies of CO2 reduction. It has found that the electrocatalytic property of (100) and 

(110) sites on stepped surfaces do not present a linear relation with the surface density 

of these sites, but are related to surface density of active sites, i.e., the “Chair” sites. 

This result further confirmed that the active centers in electrocatalysis are those sites 

of steric structure as formed on stepped surfaces.  

 

Key words: Pt single crystal electrode; Electrocatalysis; CO2; HCOOH; Surface 

structure effect 
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