

学校编码: 10384 学号: 20720090153130 UDC 分类号密级

博士 学 位 论 文

六种新型LED用红色荧光粉的制备和发光性能研究 Study on Preparation and Luminescent Properties of Six Novel Red Phosphors for LED

指导教师姓名:曾人杰教授 专业名称:材料学 论文提交日期:2012-9-5 论文答辩时间:2012-9-8 学位授予日期:

答辩委员会主席:

评 阅 人:

2012年08月

厦门学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成 果。本人在论文写作中参考其他个人或集体已经发表的研究成果, 均在文中以适当方式明确标明,并符合法律规范和《厦门大学研究 生学术活动规范(试行)》。

另外,该学位论文为()) 课题
(组)的研究成果,获得()) 课题(组)经费或
实验室的资助,在() 实验室完成。(请在以上括
号内填写课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作特别声明。)

声明人 (签名):

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送 交学位论文(包括纸质版和电子版),允许学位论文进入厦门大学 图书馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加 入全国博士、硕士学位论文共建单位数据库进行检索,将学位论文 的标题和摘要汇编出版,采用影印、缩印或者其它方式合理复制学 位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

() 2. 不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论 文应是已经厦门大学保密委员会审定过的学位论文,未经厦门大学 保密委员会审定的学位论文均为公开学位论文。此声明栏不填写的, 默认为公开学位论文,均适用上述授权。)

声明人 (签名):

年 月 日

HANNEL HANNEL

目录

摘要	····· I
ABSTRACT	····· III
第一章绪论	1
1.1 LED概述	1
1.1.1 LED的原理和结构	1
1.1.2 LED的发展历史	2
1.1.3白光LED的实现方案	2
1.1.4 LED存在的问题	4
1.2 LED红色荧光粉的研究现状	4
1.2.1硫化物红色荧光粉的研究现状	5
1.2.2氮(氧)化物红色荧光粉的研究现状	7
1.2.3(卤)硅酸盐红色荧光粉的研究现状	10
1.2.4卤磷酸盐红色荧光粉的研究现状	13
1.2.5钨酸盐红色荧光粉的研究现状	15
1.3本研究的目的和意义及内容	17
1.3.1本研究的目的和意义	17
1.3.2本研究的内容	
参考文献	
第二章实验	
2.1实验原料和仪器及设备	
2.1.1实验原料	
2.1.2仪器和设备	
2.2样品制备	
2.2.1制备方法的确定	
2.2.2固相法制备荧光粉的步骤	
2.2.3溶胶-凝胶法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的步骤	
2.2.4固相法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的研究内容	30
2.2.5溶胶-凝胶法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的研究内容…	
2.2.6固相法制备另5种荧光粉的研究内容	
2.3样品的测试与表征	

	2.3.1 XRD分析	32
	2.3.2发光性质测量	32
	2.3.3粒度分布测量	33
	2.3.4 FT-IR分析	33
	2.3.5 DTA-TG分析	33
	2.3.6样品色坐标计算	34
参考	5文献	35
第三章E	Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的制备和性能研究	38
3.1争	氟化钠用量的优化	38
	3.1.1氟化钠用量对荧光粉样品晶相的影响	38
	3.1.2氟化钠用量对荧光粉样品发光性能的影响	39
3.2	固相混合料的DTA-TG分析	40
3.3丸	热处理温度对荧光粉样品晶相和发光性能的影响	42
	3.3.1热处理温度对荧光粉样品晶相的影响	42
	3.3.2热处理温度对荧光粉样品发光性能的影响	43
3.4]	Eu ³⁺ 离子掺杂量对荧光粉样品的影响	44
	3.4.1 Eu ³⁺ 离子掺杂量对荧光粉样品晶相的影响	44
	3.4.2Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的光谱分析	48
	3.4.3 Eu ³⁺ 离子掺杂量对荧光粉样品发光性能的影响	50
3.5	固相法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉颗粒的形貌分析	53
3.6	固相法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的粒度分析	53
3.7举	容胶-凝胶法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的FT-IR分析	55
3.8游	疑胶的DTA-TG分析	60
3.9¥	容胶-凝胶法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉颗粒的形貌分析	62
3.10	溶胶-凝胶法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的粒度分析	62
3.11	溶胶-凝胶法和固相法制备Eu ³⁺ 掺杂氟硅酸钠镧荧光粉的发光性能对	比
		64
3.12	2本章小结	64
参考	5文献	65
第四章研	挂酸盐荧光粉KLaSiO4: Eu ³⁺ 的制备和性能研究	77
4.1	Eu ³⁺ 离子掺杂量对KLaSiO ₄ : Eu ³⁺ 荧光粉晶相的影响	77

		c -
	4.2KLa _{0.98} SiO ₄ : 0.02Eu ³ 荧光粉的光谱分析 ····································	· 80
	4.3 Eu ^{**} 离子掺杂量对KLaSiO ₄ : Eu ^{**} 荧光粉发光性能的影响 ···········	· 82
	4.3.1 Eu ³⁺ 离子掺杂量对KLaSiO ₄ : Eu ³⁺ 荧光粉发光强度的影响	• 82
	4.3.2 Eu ³⁺ 离子的掺杂量对KLaSiO ₄ : Eu ³⁺ 荧光粉色坐标的影响	• 84
	4.4KLa _{0.98} SiO ₄ : 0.02Eu ³⁺ 荧光粉颗粒的形貌分析	· 85
	4.5KLa _{0.98} SiO ₄ : 0.02Eu ³⁺ 荧光粉的粒度分析	· 85
	4.6本章小结	· 87
	参考文献	· 88
第王	互章卤硅酸盐荧光粉Ca ₄ Si ₂ O ₇ F ₂ : Eu ³⁺ 的制备和性能研究	· 91
	5.1 Eu ³⁺ 离子掺杂量对Ca ₄ Si ₂ O ₇ F ₂ : Eu ³⁺ 荧光粉晶相的影响	· 91
	5.2Ca _{3.92} Si ₂ O ₇ F ₂ : 0.08Eu ³⁺ 荧光粉的光谱分析	• 94
	5.3 Eu ³⁺ 离子掺杂量对Ca ₄ Si ₂ O ₇ F ₂ : Eu ³⁺ 荧光粉发光性能的影响	· 97
	5.3.1 Eu ³⁺ 离子掺杂量对Ca ₄ Si ₂ O ₇ F ₂ : Eu ³⁺ 荧光粉发光强度的影响	· 97
	5.3.2 Eu ³⁺ 离子掺杂量对Ca ₄ Si ₂ O ₇ F ₂ : Eu ³⁺ 荧光粉色坐标的影响	· 98
	5.4Ca _{3.92} Si ₂ O ₇ F ₂ : 0.08Eu ³⁺ 荧光粉颗粒的形貌分析	. 99
	5.5Ca _{3.92} Si ₂ O ₇ F ₂ : 0.08Eu ³⁺ 荧光粉的粒度分析	101
	5.6本章小结	102
	参考文献	102
第ブ	六章卤磷酸盐荧光粉Ba10F2(PO4)6: Eu ³⁺ 的制备和性能研究	106
	6.1 Eu ³⁺ 离子掺杂量对Ba ₁₀ F ₂ (PO ₄) ₆ : Eu ³⁺ 荧光粉晶相的影响	106
	6.2Ba _{9.8} F ₂ (PO ₄) ₆ : 0.2Eu ³⁺ 荧光粉的光谱分析	109
	6.3 Eu ³⁺ 离子掺杂量对Ba ₁₀ F ₂ (PO ₄) ₆ : Eu ³⁺ 荧光粉发光性能的影响	112
	6.3.1 Eu ³⁺ 离子掺杂量对Ba ₁₀ F ₂ (PO ₄) ₆ : Eu ³⁺ 荧光粉发光强度的影响	112
	6.3.2 Eu ³⁺ 离子掺杂量对Ba ₁₀ F ₂ (PO ₄) ₆ : Eu ³⁺ 荧光粉色坐标的影响	113
	6.4Ba _{9.8} F ₂ (PO ₄) ₆ : 0.2Eu ³⁺ 荧光粉颗粒的形貌分析	114
	6.5Ba _{9.8} F ₂ (PO ₄) ₆ : 0.2Eu ³⁺ 荧光粉的粒度分析	116
	6.6本章小结	116
	参考文献	117
第十	上章钨酸盐荧光粉SrLa ₆ W ₁₀ O ₄₀ : Eu ³⁺ 的制备和性能研究	120
	7.1 Eu ³⁺ 离子掺杂量对SrLa ₆ W ₁₀ O ₄₀ : Eu ³⁺ 荧光粉晶相的影响	120
	7.2SrLa _{5 85} W ₁₀ O ₄₀ : 0.15Eu ³⁺ 荧光粉的光谱分析	123

7.3 Eu ³⁺ 离子掺杂量对SrLa ₆ W ₁₀ O ₄₀ : Eu ³⁺ 荧光粉发光性能的影响	126
7.3.1 Eu ³⁺ 离子掺杂量对SrLa ₆ W ₁₀ O ₄₀ : Eu ³⁺ 荧光粉发光强度的影响…	126
7.3.2 Eu ³⁺ 离子掺杂量对SrLa ₆ W ₁₀ O ₄₀ : Eu ³⁺ 荧光粉色坐标的影响	128
7.4SrLa _{5.85} W ₁₀ O ₄₀ : 0.15Eu ³⁺ 荧光粉颗粒的形貌分析	129
7.5SrLa _{5.85} W ₁₀ O ₄₀ : 0.15Eu ³⁺ 荧光粉的粒度分析	129
7.6本章小结	131
参考文献	···132
第八章钨酸盐荧光粉Sr ₉ La ₂ W ₄ O ₂₄ : Eu ³⁺ 的制备和性能研究	135
8.1 Eu ³⁺ 离子掺杂量对Sr ₉ La ₂ W ₄ O ₂₄ : Eu ³⁺ 荧光粉晶相的影响	…135
8.2Sr ₉ La _{1.96} W ₄ O ₂₄ : 0.04Eu ³⁺ 荧光粉的光谱分析	…137
8.3 Eu ³⁺ 离子掺杂量对Sr ₉ La ₂ W ₄ O ₂₄ : Eu ³⁺ 荧光粉发光性能的影响	139
8.3.1 Eu ³⁺ 离子掺杂量对Sr ₉ La ₂ W ₄ O ₂₄ : Eu ³⁺ 荧光粉发光强度的影响…	139
8.3.2 Eu ³⁺ 离子掺杂量对Sr ₉ La ₂ W ₄ O ₂₄ : Eu ³⁺ 荧光粉色坐标的影响	…141
8.4Sr ₉ La _{1.96} W ₄ O ₂₄ : 0.04Eu ³⁺ 荧光粉颗粒的形貌分析	142
8.5Sr ₉ La _{1.96} W ₄ O ₂₄ : 0.04Eu ³⁺ 荧光粉的粒度分析	…142
8.6本章小结	144
参考文献	145
结论与展望	…147
致谢	150
博士期间发表的论文和参与的课题研究	151

Content

AbstractinChinese ······ I
AbstractinEnglish······III
1 Introduction ······1
1.1 Introduction to LED ······1
1.1.1 The structure and principles of LED1
1.1.2 The development history of LED2
1.1.3 Methods of generating white light from LED2
1.1.4 Problems of LED ······4
1.2 Research status of red phosphorsfor LED4
1.2.1Research status of sulfide red phosphor
1.2.2 Research status of (oxy) nitridered phosphor7
1.2.3 Research status of (halogen) silicate red phosphor 10
1.2.4 Research status of halogen phosphate red phosphor
1.2.5 Research status of tungstate red phosphor
1.3The purpose, significance and contenst of this study
1.3.1The purposeand significance of this study17
1.3.2The contents of this study
Reference 18
2 Experimentals ······ 26
2.1 Raw materials and instruments 26
2.1.1 Raw materials
2.1.2 Instruments and equipment
2.2 Sample preparation
2.2.1Preparation methods
2.2.2 Process of phosphor preparation by solid state reaction processing \cdots 28
2.2.3Process ofNaLa ₄ (SiO ₄) ₃ F: Eu ³⁺ phosphor prepared by sol-gel
processing 29
2.2.4 Research contents ofNaLa4(SiO4)3F: Eu3+phosphor prepared by solid

state reaction processing
2.2.5Research contents ofNaLa ₄ (SiO ₄) ₃ F: Eu ³⁺ phosphor prepared by sol-gel
processing 31
2.2.6Research contents of other five novel phospors prepared bysolid state
reaction processing
2.3 Characterization 32
2.3.1 XRD
2.3.2 Measurement of luminescence properties
2.3.3 Measurement of particle size distribution
2.3.4 FT–IR ······ 33
2.3.5 DTA-TG
2.3.6 Calculation of CIE Chromaticity Coordinates
Reference 35
3Preparation and research on Eu ³⁺ -doped sodium lanthanum fluoride silicate phosphor
3.1Dosage optimization of sodium fluoride
3.1.1 Effects of sodium fluoride dosage on the phase structure of phosphors
3.1.2 Effects of sodium fluoride dosage on the luminescent properties of
phosphors ······ 39
3.2DTA-TG analysis of solid state reaction raw materials mixture
3.3 Effects of heat treat temperature on the phase structure and luminescent
properties of phosphors ······ 42
3.3.1Effects of heat treat temperature on the phase structure of phosphors \cdot 42
3.3.2 Effects of heat treat temperature on the luminescent properties of
phosphors ······ 43
3.4 Effects of Eu ³⁺ doping contenton the phosphor samples
3.4.1 Effects of Eu^{3+} doping contenton the phase structure of phosphors \cdots 44
3.4.2Spectrum analysis of Eu ³⁺ -doped sodium lanthanum fluoride
silicatephosphor ····· 48
3.4.3 Effects of Eu ³⁺ doping contenton the luminescent properties of

phosphors ······ 50
3.5Morphology analysis of Eu ³⁺ -doped sodium lanthanum fluoride
silicatephosphorprepared by solid state reaction method
3.6Particle size analysis of Eu ³⁺ -doped sodium lanthanum fluoride
silicatephosphor prepared by solid state reaction method
3.7FT-IR analysis of the preparation process of Eu ³⁺ -doped sodium lanthanum
fluoride silicatephosphor prepared by sol-gel method
3.8DTA-TG analysis of gel······ 60
3.9Morphology analysis of Eu ³⁺ -doped sodium lanthanum fluoride silicate
phosphor prepared bysol-gel method
3.10 Particle size analysis of Eu ³⁺ -doped sodium lanthanum fluoride
silicatephosphor prepared bysol-gel method
3.11 Comparison of Eu ³⁺ -doped sodium lanthanum fluoride silicatephosphor
prepared by solid state reaction method and sol-gel method
3.12Summary
Reference 65
4Preparation and research on silicate phosphorsKLaSiO ₄ : Eu ³⁺ ······ 77
4.1 Effects of Eu^{3+} doping contenton the phase structure of KLaSiO ₄ :
Eu ³⁺ phosphors ······ 77
4.2Spectrum analysis ofKLa _{0.98} SiO ₄ : 0.02Eu ³⁺ phosphors
4.3 Effects of Eu ³⁺ doping contenton the luminescent properties of KLaSiO ₄ : Eu ³⁺
phosphors ······82
4.3.1 Effects of Eu ³⁺ doping contenton the luminescent intensities of KLaSiO ₄ :
Eu ³⁺ phosphors ····· 83
4.3.2 Effects of Eu ³⁺ doping contenton theCIE Chromaticity Coordinates of
phosphorsKLaSiO ₄ : Eu ³⁺ ····· 84
4.4Morphology analysis ofKLa _{0.98} SiO ₄ : 0.02Eu ³⁺ phosphors ······ 85
4.5Particle size analysis of KLa _{0.98} SiO ₄ : 0.02Eu ³⁺ phosphors
4.6Summary 87
Reference 88
5Preparation and research on halogen silicate phosphors $Ca_4Si_2O_7F_2$: Eu^{3+} 91

5.1 Effects of Eu^{3+} doping contenton the phase structure of $Ca_4Si_2O_7F_2$:
Eu ³⁺ phosphors ····· 91
5.2 Spectrum analysis of Ca _{3.92} Si ₂ O ₇ F ₂ : 0.08Eu ³⁺ phosphors94
5.3 Effects of Eu ³⁺ doping contenton the luminescent properties of Ca ₄ Si ₂ O ₇ F ₂ :
Eu ³⁺ phosphors ····· 97
5.3.1 Effects of Eu ³⁺ dopingcontenton the luminescent intensities of
$Ca_4Si_2O_7F_2$: Eu^{3+} phosphors · · · · · · · 97
5.3.2 Effects of Eu ³⁺ doping contenton theCIE Chromaticity Coordinates of
$Ca_4Si_2O_7F_2$: Eu^{3+} phosphors $\cdots $ 98
5.4Morphology analysis ofCa _{3.92} Si ₂ O ₇ F ₂ : 0.08Eu ³⁺ phosphors
5.5Particle size analysis ofCa _{3.92} Si ₂ O ₇ F ₂ : 0.08Eu ³⁺ phosphors ······101
5.6Summary
Reference 102
6Preparation and research on halogen phosphatephosphors $Ba_{10}F_2(PO_4)_6$: Eu ³⁺ ····· 106
6.1 Effects of Eu^{3+} doping contenton the phase structure of $Ba_{10}F_2(PO_4)_6$: Eu^{3+}
phosphors ······106
6.2 Spectrum analysis ofBa _{9.8} F ₂ (PO ₄) ₆ : 0.2Eu ³⁺ phosphors ······109
6.3 Effects of Eu^{3+} doping contenton the luminescent properties of $Ba_{10}F_2(PO_4)_6$:
Eu ³⁺ phosphors ····· 111
6.3.1 Effects of Eu ³⁺ doping contenton the luminescent intensities of
$Ba_{10}F_2(PO_4)_6$: Eu^{3+} phosphors · · · · · · · · · · · · · · · · · · ·
6.3.2 Effects of Eu ³⁺ doping contenton theCIE Chromaticity Coordinates of
$Ba_{10}F_2(PO_4)_6$: Eu^{3+} phosphors ······113
6.4Morphology analysis ofBa _{9.8} F ₂ (PO ₄) ₆ : 0.2Eu ³⁺ phosphors ······ 114
6.5Particle size analysis ofBa _{9.8} F ₂ (PO ₄) ₆ : 0.2Eu ³⁺ phosphors ······116
6.6 Summary
Reference 117
7Preparation and research on tungstate phosphors $SrLa_6W_{10}O_{40}$: Eu^{3+} 120
7.1 Effects of Eu^{3+} doping contenton the phase structure of $SrLa_6W_{10}O_{40}$:
Eu ³⁺ phosphors ······120
7.2 Spectrum analysis of $SrLa_{5.85}W_{10}O_{40}$: 0.15Eu ³⁺ phosphors ······123

7.3 Effects of Eu^{3+} doping contenton the luminescent properties of $SrLa_6W_{10}O_{40}$:
Eu ³⁺ phosphors ······126
7.3.1 Effects of Eu ³⁺ doping contenton the luminescent intensities of
$SrLa_6W_{10}O_{40}$: Eu^{3+} phosphors $\cdots 126$
7.3.2 Effects of Eu ³⁺ doping contenton theCIE Chromaticity Coordinates of
$SrLa_6W_{10}O_{40}$: Eu^{3+} phosphors $\cdots 128$
7.4Morphology analysis ofSrLa _{5.85} W ₁₀ O ₄₀ : 0.15Eu ³⁺ phosphors ······129
7.5 Particle size analysis of SrLa _{5.85} W ₁₀ O ₄₀ : 0.15Eu ³⁺ phosphors ······129
7.6 Summary131
Reference 132
8Preparation and research on tungstatephosphorsSr ₉ La ₂ W ₄ O ₂₄ : Eu ³⁺ ······135
8.1 Effects of Eu ³⁺ doping contenton the phase structure of Sr ₉ La ₂ W ₄ O ₂₄ : Eu ³⁺
phosphors ······135
8.2 Spectrum analysis of Sr ₉ La _{1.96} W ₄ O ₂₄ : 0.04Eu ³⁺ phosphors ······137
8.3 Effects of Eu ³⁺ doping contenton the luminescent properties of Sr ₉ La ₂ W ₄ O ₂₄ :
Eu ³⁺ phosphors ·····139
8.3.1 Effects of Eu ³⁺ doping contenton the luminescent intensities of
$Sr_9La_2W_4O_{24}$: Eu^{3+} phosphors $\cdots 139$
8.3.2 Effects of Eu ³⁺ doping contenton theCIE Chromaticity Coordinates of
$Sr_9La_2W_4O_{24}$: Eu^{3+} phosphors $\cdots 141$
8.4Morphology analysis of Sr ₉ La _{1.96} W ₄ O ₂₄ : 0.04Eu ³⁺ phosphors ······142
8.5Particle size analysis of Sr ₉ La _{1.96} W ₄ O ₂₄ : 0.04Eu ³⁺ phosphors ·······142
8.6 Summary
Reference 145
Conclusions ·····147
Acknowledgements ·····150
Publlshedpapers and projects research involved duringPh. D. Program151

HANNEL HANNEL

摘要

LED(Light Emitting Diode, 发光二极管)是一种固体光源,具有寿命长、 功耗低、低碳节能、无汞污染、无紫外辐射等特点,是二十一世纪一种新型重要 光源。其中"荧光粉转换型"(phosphor conversion, pc)白光LED(pc-LED)受 到了高度关注,荧光粉性能的好坏直接影响此类LED的发展。然而,常见蓝光芯 片加黄粉(或黄粉加红粉)的白光LED方案存在如下问题:(1)"单一的黄粉" 缺少红区发射,复合白光显色性差,色温高;(2)"黄粉加红粉"的方案中,"红 粉"存在:(i)常用的"硫化物红粉"不稳定并易产生有害气体;(ii)新型氮化 物、氮氧化物红粉的制备,需要高温、高压、气氛等苛刻的条件。近紫外芯片加 三基色荧光粉的白光LED方案存在红粉发光效率低等问题。开发新型、稳定、制 备条件简单、有实用价值的红色荧光粉是一项非常有意义的工作。

本研究分别制备了Eu³⁺掺杂氟硅酸钠镧、硅酸钾镧[KLaSiO₄]、氟硅酸钙 [Ca₄Si₂O₇F₂]、氟磷酸钡[Ba₁₀F₂(PO₄)₆]、钨酸盐[SrLa₆W₁₀O₄₀]和[Sr₉La₂W₄O₂₄]共6 种新型红色荧光粉,借助XRD、SEM、FT-IR、DTA-TG、荧光光谱仪和激光粒 度仪等对荧光粉进行了表征。此外,本研究还在展望部分对荧光粉行业存在争议 问题进行了论述。主要研究内容与结果如下:

1、采用固相法制备了新型Eu³⁺掺杂氟硅酸钠镧红色荧光粉,系统地研究了 制备工艺参数对其性能的影响。研究发现:固相法合成氟硅酸钠镧相的最低温度 为750 ℃,制得氟硅酸钠镧纯相的最低温度为850 ℃;最优的热处理温度为 950 ℃;氟化钠的最优用量(相对化学计量比的倍数)x = 1.3;该荧光粉在近紫 外光(395 nm)激发下发射最强,还可有效被蓝光(465 nm)激发;该荧光粉的 猝灭浓度为0.025,Eu³⁺离子在氟硅酸钠镧基质中的临界距离约为1.768 nm;掺杂 量最优时,掺杂量x = 0.1时,荧光粉的色坐标为(0.618, 0.355),接近红色标准 色坐标(0.67, 0.33);固相法制得该荧光粉颗粒呈类球形,棱、面清晰;该荧光 粉的 D_{50} (中位粒径)为5.25 μ m,粒度分布窄,适合LED封装。

2、采用溶胶-凝胶法制备了Eu³⁺掺杂氟硅酸钠镧荧光粉,并将其与固相法制 得的该荧光粉进行了对比,研究结果表明:溶胶-凝胶法合成氟硅酸钠镧和制得 氟硅酸钠镧纯相的最低温度分别为650 ℃和750 ℃;溶胶-凝胶法制得该荧光粉 的*D*₅₀为2.50 µm,颗粒呈无规则形状;其发光性能劣于固相法所制的Eu³⁺掺杂氟 硅酸钠镧荧光粉,原因是:样品经950 ℃热处理后仍残余有害碳,且晶粒较小、

Т

表面玻璃相多。

3、采用固相法制备了新型硅酸盐红色荧光粉KLaSiO₄: Eu³⁺,研究了其发光 性能,结果表明: 该荧光粉可被近紫外光 (395 nm)和蓝光 (465 nm)激发;其 猝灭浓度为0.02, Eu³⁺离子在KLaSiO₄基质中的临界距离为3.83 nm; 掺杂量最优 时,KLa_{0.98}SiO₄: 0.02Eu³⁺荧光粉的色坐标为 (0.614, 0.385); 其D₅₀为2.45 μm, 颗粒呈六方片状,棱、面清晰,粒度分布窄。

4、采用固相法制备了新型氟硅酸盐红色荧光粉Ca₄Si₂O₇F₂: Eu³⁺,对其发光 性能的研究结果表明: 该荧光粉可被近紫外光(395 nm)和蓝光(465 nm)激发; 其猝灭浓度为0.02, Eu³⁺在Ca₄Si₂O₇F₂基质中的临界距离为1.692 nm; 掺杂量最优 时, Ca_{3.92}Si₂O₇F₂: 0.08Eu³⁺荧光粉的色坐标为(0.596, 0.403); 颗粒呈无规则形 状, 棱、面清晰; 该荧光粉的D₅₀为6.49 μm,粒度分布窄,适合LED封装。

5、采用固相法制备了新型氟磷酸盐红色荧光粉Ba₁₀F₂(PO₄)₆: Eu³⁺, 对其发光 性能的研究结果表明: 该荧光粉可有效被近紫外光 (395 nm) 和蓝光 (465 nm) 激发; 其猝灭浓度为0.02, Eu³⁺离子在Ba₁₀F₂(PO₄)₆基质中的临界距离为1.877 nm; 掺杂量最优时, Ba_{9.8}F₂(PO₄)₆: 0.2Eu³⁺荧光粉的色坐标为 (0.624, 0.376); 颗粒呈 六方片状, 棱、面清晰; 该荧光粉的 D_{50} 为6.18 μ m, 粒度分布窄, 适合LED封装。

6、采用固相法制备了新型钨酸盐红色荧光粉SrLa₆W₁₀O₄₀: Eu³⁺, 对其发光性能的研究结果表明:该荧光粉适合近紫外光(395 nm)和蓝光(465 nm)激发; 其猝灭浓度为0.025; Eu³⁺在SrLa₆W₁₀O₄₀基质中的临界距离为2.222 nm;掺杂量最优时,SrLa_{5.85}W₁₀O₄₀: 0.15Eu³⁺荧光粉的色坐标为(0.652, 0.348),比商业LED 用近紫外红色荧光粉Y₂O₂S: Eu³⁺(0.622, 0.351)更靠近红色标准色(0.67, 0.33); 该荧光粉的 D_{50} 为12.81 μ m,粒度分布宽,部分颗粒呈类球形,颗粒团聚严重,棱、 面清晰,晶粒发育较好。

7、采用固相法制备了新型Sr₉La₂W₄O₂₄: Eu³⁺红色荧光粉,对其发光性能的研究结果表明:该荧光粉适合近紫外光(395 nm)和蓝光(465 nm)激发;其猝灭浓度为0.02; Eu³⁺在Sr₉La₂W₄O₂₄基质中的临界距离为2.981 nm;掺杂量最优时,Sr₉La_{1.96}W₄O₂₄: 0.04Eu³⁺荧光粉的色坐标为(0.671, 0.329),非常靠近红色标准 色(0.67, 0.33),该荧光粉的 D_{50} 为2.43 μ m,颗粒呈类方形,棱、面清晰,晶粒 发育较好。

关键词:发光材料;荧光性能;发光二极管

П

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.