学校编码: 10384 学号: 20720081150614 密级____

唇いとう

硕士学位论文

部分 Co-(Mo, Nb) 基高温合金相平衡的实 验测定与热力学计算

Experimental Investigation and Thermodynamic Calculation of Phase Equilibria in Some Co-(Mo, Nb) Based High-temperature Alloys

周莉

指导教师姓名:	刘兴军 教授
专业名称:	材料学
论文提交日期:	2011年 5月
论文答辩日期:	2011年 6月

2011年6

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。本人在论文写作中参考其他个人或集体已经发表的研究成果,均 在文中以适当方式明确标明,并符合法律规范和《厦门大学研究生学 术活动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组)经费或实验室的

 资助,在(
)实验室完成。(请在以上括号内填写

 课题或课题组负责人或实验室名称,未有此项声明内容的,可以不作

 特别声明。)

声明人(签名):

年 月日

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办 法》等规定保留和使用此学位论文,并向主管部门或其指定机构送交 学位论文(包括纸质版和电子版),允许学位论文进入厦门大学图书 馆及其数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国 博士、硕士学位论文共建单位数据库进行检索,将学位论文的标题和 摘要汇编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于 年 月 日解密,解密后适用上述授权。

() 2. 不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应 是已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委 员会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为 公开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

摘要

Co 基高温合金由于其耐高温、耐腐蚀、抗氧化、耐疲劳强度等优异的综合 使用性能而成为各种涡轮和引擎发动机等的理想材料,并逐渐成为在高温条件下 所不可缺少的重要基础材料。但 Co 基高温合金的发展较晚,以及高温条件下研 究较困难。因此,建立一套完整的理论体系来指导 Co 基高温合金的研发将是一 项非常重要的研究工作。

本论文通过实验测定和热力学计算两种途径研究了 Co-Mo-X (X: Cr, Hf, Ta) 和 Co-Nb-X (X: Mo, Ta) 各三元系在不同温度时的相平衡。其主要研究工作如下:

(1) 采用合金法实验测定了Co-Mo-Cr三元系在1000℃和1100℃,Co-Mo-Hf 三元系在1100℃和1200℃,以及Co-Mo-Ta三元系在900℃、1000℃、1100℃、 1200℃和1300℃时全成分范围内的等温截面相图,并对已报道的Co-Mo-Ta三元 系在1000℃时的等温截面相图进行了修正和补充。

(2) 实验测定了 Co-Nb-Mo 三元系在 1000℃和 1100℃, Co-Nb-Ta 三元系在 900℃、1000℃、1100℃、1200℃和 1300℃时全成分范围内的等温截面相图, 并 对已报道的 Co-Nb-Mo 三元系在 1000℃时的等温截面相图和 Co-Nb-Ta 三元系在 1100℃时的等温截面相图进行了修正和补充。

(3)结合本研究实验测定的结果,系统地收集、整理和评估现有的热力学和 相图数据,采用合理的热力学模型,利用 CALPHAD 技术,对 Co-Mo-Ta 和 Co-Nb-Ta 两个三元系的相平衡进行了热力学优化与计算,计算结果与实验结果 取得了良好的一致性。

本研究获得的相平衡实验结果,以及优化获得的热力学参数,将作为 Co 基高温合金热力学数据库的部分重要组成部分内容,同时,该研究结果将为 Co 基高温合金的成分与组织设计提供重要的理论依据。

关键词: Co 基合金 相图 CALPHAD

Abstract

The Co-base high-temperature alloys show potential application in the field of aircraft turbines and combustor sections due to their superior stress-rupture paremeters, excellent hot corrosion, good oxidation resistance and thermal fatigue resistance etc.. They will play an important role at high temperature in future. However, the Co-base high-temperature alloys were just developed recently, and it is difficult to do research on Co-base alloys at high temperatures. Thus, it is necessary to bulid an integrated theory system for designing the Co-base high-temperature alloys.

In the present work, experimental determination and thermodynamic assessments of the phase equilibria in the Co-Mo-X (X: Cr, Hf, Ta) and Co-Nb-X (X: Mo, Ta) ternary systems were carried out. Major research contents are listed as follows:

(1) The phase equilibira of the Co-Mo-Cr ternary system at 1000° C and 1100° C, and the phase equilibria of the Co-Mo-Hf ternary system at 1100° C and 1200° C. In addition, the phase equilibria of the Co-Mo-Ta ternary system at 900° C, 1000° C, 1100° C, 1200° C and 1300° C have been experimentally determined. And the reported isothermal section of the Co-Mo-Ta ternary system at 1000° C has been modified.

(2) The phase equilibria of the Co-Nb-Mo ternary system at 1000°C and 1100°C have been experimentally determined, and the reported isothermal section of the Co-Nb-Mo ternary system at has been updated. In addition, the phase equilibria of the Co-Nb-Ta ternary system at 900°C, 1000°C, 1100°C, 1200°C and 1300°C have been experimentally determined, and the reported isothermal section of the Co-Nb-Ta ternary system at 1100°C has been modified and updated.

(3) On the basis of experimental data obtained in the present work, the phase equilibria of the Co-Mo-Ta and Co-Nb-Ta ternary systems have been calculated by using the CALPHAD technique. The calculated results are in good agreements with the abtained experimental data.

The obtained results in this work can be applied to establish the thermodynamic database of the Co-base high-temperature alloys, which can provide important

theoretical guidance on compositional design and microstructural control of the Co-base high-temperature alloys.

Keywords: Co-base alloys; Phase equilibria; CALPHAD

摘 要	Ι
Abstract ·······I	Ι
第一章 绪论	1
1.1 高温合金的发展及分类······	1
1.2 钴基高温合金的特性及研究现状	2
121Co等元素的特性及在高温合金中的作用	2
1.2.2 Co基高温合金的研究现状及应用 ·······	4
1.3 相图及其应用	5
1.3.1 相图及其实验测定方法······	
1.3.2 相图计算方法	
1.3.3 相图与材料设计	
1.4 本研究目的和内容1	2
参考文献	7
第二章 相图测定的实验方法及热力学模型	0
2.1 引言2	0
2.2 本研究中采用的实验方法	0
2.2.1 合金样品的制备	0
2.2.2 热处理方法	1
2.2.3 显微组织观察2	1
2.2.4 成分分析	2
2.2.5 X-ray 结构分析2	2
2.2.6 相转变温度的测定	2
2.3 本研究所采用的热力学模型2	3
2.3.1 纯组元····································	4
2.3.2 液相和端际固溶体相·······2	5
2.3.3 化学计量比化合物·······2	6
2.3.4 金属间化合物溶体相2	7

目 录

参 考 文 献	
第三章 Co-Mo-X (X: Cr, Hf, Ta) 三元系相平衡的实验	测定33
3.1 引言	
3.2 Co-Mo-Cr三元系相平衡的实验测定	
3.2.1 Co-Mo-Cr三元系相平衡的研究现状	
3.2.2 Co-Mo-Cr三元系相平衡的实验结果与讨论	••••••34
3.3 Co-Mo-Hf三元系相平衡的实验测定	••••••47
3.3.1 Co-Mo-Hf三元系相平衡的研究现状	••••••47
3.3.2 Co-Mo-Hf三元系相平衡的实验结果与讨论	
3.4 Co-Mo-Ta三元系相平衡的实验测定	
3.4.1 Co-Mo-Ta三元系相平衡的研究现状	
3.4.2 Co-Mo-Ta三元系相平衡的实验结果与讨论	•••••60
3.5 小结	
· · · · ·	
参 考 文 献	/0
参 考 文 献	
第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测数	定 79 79
第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定	主 79 79 79
第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测数	主 79 79 79
第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定	主 79 79 79 79
 第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定 4.2.1 Co-Nb-Mo三元系相平衡的研究现状 	主 79 79 79 79 79
 第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定 4.2.1 Co-Nb-Mo三元系相平衡的研究现状 4.2.2 Co-Nb-Mo三元系相平衡的实验结果与讨论 	主 79 79 79 79 79 79 79 79
第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定 4.2.1 Co-Nb-Mo三元系相平衡的研究现状 4.2.2 Co-Nb-Mo三元系相平衡的研究现状 4.3.2 Co-Nb-Ta三元系相平衡的实验结果与讨论 4.3.1 Co-Nb-Ta三元系相平衡的研究现状 4.3.2 Co-Nb-Ta三元系相平衡的实验结果与讨论	主 79 79 79 79
 第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定 4.2.1 Co-Nb-Mo三元系相平衡的研究现状 4.2.2 Co-Nb-Mo三元系相平衡的实验结果与讨论 4.3.2 Co-Nb-Ta三元系相平衡的实验测定 4.3.1 Co-Nb-Ta三元系相平衡的研究现状 	主 79 79 79 79
第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定 4.2.1 Co-Nb-Mo三元系相平衡的研究现状 4.2.2 Co-Nb-Mo三元系相平衡的研究现状 4.3.2 Co-Nb-Ta三元系相平衡的实验结果与讨论 4.3.1 Co-Nb-Ta三元系相平衡的研究现状 4.3.2 Co-Nb-Ta三元系相平衡的实验结果与讨论	主 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79
第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定 4.2.1 Co-Nb-Mo三元系相平衡的研究现状 4.2.2 Co-Nb-Mo三元系相平衡的实验结果与讨论 4.3.1 Co-Nb-Ta三元系相平衡的研究现状 4.3.1 Co-Nb-Ta三元系相平衡的研究现状 4.3.2 Co-Nb-Ta三元系相平衡的研究现状 4.3.2 Co-Nb-Ta三元系相平衡的实验结果与讨论	È ······ 79 ····· 79 ···· 79 ···· 79 ···· 79 ··· 79 ····· 79 ··· 79 ··· 79 ··· 79 ··· 79 ··· 79 ··· 79 ··· 79 ··· 79 ···
 第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测定 4.1 引言 4.2 Co-Nb-Mo三元系相平衡的实验测定 4.2.1 Co-Nb-Mo三元系相平衡的研究现状 4.2.2 Co-Nb-Mo三元系相平衡的实验结果与讨论 4.3 Co-Nb-Ta三元系相平衡的实验测定 4.3.1 Co-Nb-Ta三元系相平衡的实验结果与讨论 4.3.2 Co-Nb-Ta三元系相平衡的实验结果与讨论 4.4 小结 参 考 文 献 	を・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 第四章 Co-Nb-X (X: Mo, Ta) 三元系相平衡的实验测器 4.1 引言	を・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

5.2.2 计算结果与讨论	
5.3 Co-Nb-Ta三元系相平衡的热力学优化与计算··	
5.3.1 热力学优化与计算过程·······	
5.3.2 计算结果与讨论	
5.4 小结	
参 考 文 献	······124
第六章 结论	
致 谢	
攻读硕士学位期间发表论文	

CONTENTS

Abstract	
CHAPTER 1 Introduction	
1.1 Development and types of high-temp	erature alloys1
1.2 Characters and development of C	o-based alloys2
1.2.1 Characters and functions of element	its in high-temperature alloys2
1.2.2 Application and development of C	o-based alloys ••••••4
1.3 Phase diagram and its applications \cdot	
1.3.1 Phase diagram and its determination	on method ······5
1.3.3 Phase diagram and material design	11
1.4 Major purpose and content of this w	ork12
Reference	
Reference	17
CHAPTER 2 Experimental methods	s and thermodynamic models…20
2.1 Introduction	
	20
2.2 Experimental methods used in this v	
	20 20 20 20
2.2.1 The preparation of alloy samples.	ork20
2.2.1 The preparation of alloy samples ••2.2.2 Heat treatment method ••••••	20 vork 20
2.2.1 The preparation of alloy samples2.2.2 Heat treatment method2.2.3 Observation of microstructures	20 20 20 20 20 21
 2.2.1 The preparation of alloy samples 2.2.2 Heat treatment method 2.2.3 Observation of microstructures 2.2.4 Determination of alloy composition 	20 20 20 20 20 20 21 21
 2.2.1 The preparation of alloy samples 2.2.2 Heat treatment method 2.2.3 Observation of microstructures 2.2.4 Determination of alloy compositio 2.2.5 Analyzation of structures by XRD 	20 20 20 21 21 21 21 22
 2.2.1 The preparation of alloy samples 2.2.2 Heat treatment method 2.2.3 Observation of microstructures 2.2.4 Determination of alloy compositio 2.2.5 Analyzation of structures by XRD 	vork 20 20 20 21 21 n 22 10 22 11 22 12 22 13 22 14 22 15 22 16 22 17 22 18 22 19 22 10 22
 2.2.1 The preparation of alloy samples 2.2.2 Heat treatment method 2.2.3 Observation of microstructures 2.2.4 Determination of alloy compositio 2.2.5 Analyzation of structures by XRD 2.2.6 Determination of phase transformation 2.3 Thermodynamic models used in this 	vork 20 20 20 21 21 n 22 10 22 11 22 12 22 13 22 14 22 15 22 16 22 17 22 18 22 19 22 10 22
 2.2.1 The preparation of alloy samples 2.2.2 Heat treatment method 2.2.3 Observation of microstructures 2.2.4 Determination of alloy compositio 2.2.5 Analyzation of structures by XRD 2.2.6 Determination of phase transformation 2.3 Thermodynamic models used in this 2.3.1 Pure elements	vork 20 20 20 21 21 n 22 tion 22 work 23
 2.2.1 The preparation of alloy samples 2.2.2 Heat treatment method 2.2.3 Observation of microstructures 2.2.4 Determination of alloy compositio 2.2.5 Analyzation of structures by XRD 2.2.6 Determination of phase transformation 2.3 Thermodynamic models used in this 2.3.1 Pure elements	vork 20 20 20 21 21 n 22 tion 22 work 23 24

	······27
Reference	
CHAPTER 3 Experimental investigation of phase equilibrium	ria in the
Co-Mo-X (X: Cr, Hf, Ta) ternary systems	
3.1 Introduction	
3.2 Experimental investigation of phase equilibria in the Co-Mo-Cr	system 33
3.2.1 Research progress of phase equilibria in the Co-Mo-Cr system	
3.2.2 Experimental results and discussion	
3.3 Experimental investigation of phase equilibria in the Co-Mo-Hf s	system …47
3.3.1 Research progress of phase equilibria in the Co-Mo-Hf system ···	••••••47
3.3.2 Experimental results and discussion	······48
3.4 Experimental investigation of phase equilibria in the Co-Mo-Ta s	system 59
3.4.1 Research progress of phase equilibria in the Co-Mo-Ta system ···	
3.4.2 Experimental results and discussion	•••••60
3.5 Conclusions	
Reference	
CHAPTER 4 Experimental investigation of phase equilib	ria in the
Co-Nb-X (X: Mo, Ta) ternary system	······79
4.1 Introduction	79
4.1 Introduction4.2 Experimental investigation of phase equilibria in the Co-Nb-Mo	•••••79 system ••79
4.2 Experimental investigation of phase equilibria in the Co-Nb-Mo4.2.1 Research progress of phase equilibria in the Co-Nb-Mo system.	••••• 79 system •• 79 •••••79
 4.1 Introduction 4.2 Experimental investigation of phase equilibria in the Co-Nb-Mo 4.2.1 Research progress of phase equilibria in the Co-Nb-Mo system 4.2.2 Experimental results and discussion 	system ··79 •····79 •····79
 4.1 Introduction 4.2 Experimental investigation of phase equilibria in the Co-Nb-Mo 4.2.1 Research progress of phase equilibria in the Co-Nb-Mo system 4.2.2 Experimental results and discussion 4.3 Experimental investigation of phase equilibria in the Co-Nb-Ta s 	system79 system79 79 81 system93
 4.1 Introduction 4.2 Experimental investigation of phase equilibria in the Co-Nb-Mo 4.2.1 Research progress of phase equilibria in the Co-Nb-Mo system 4.2.2 Experimental results and discussion 	system ·· 79 system ·· 79 ····· 81 ystem ··· 93 ···· 93

CHAPTER 5 Thermodynamic calculation of the Co-(, ,
5.1 Introduction	109
5.2 Thermodynamic calculation of the Co-Mo-Ta ternary system	
5.2.1 Optimization procedure	
5.2.2 Results and discussions	
5.3 Thermodynamic calculation of the Co-Nb-Ta ternary system	
5.3.1 Optimization procedure	
5.3.2 Results and discussions	
5.4 Conclusions	
Reference	
CHAPTER 6 Conclusions	
Acknowledgements	
Publications	

第一章 绪论

1.1 高温合金的发展及分类

高温合金是指在600℃以上的高温氧化气氛中和燃气腐蚀条件下承受较大应 力作用长期使用的合金总称,一般具有高强度、低蠕变、良好的抗氧化性、抗硫 化性、耐热腐蚀性、耐疲劳性以及长期组织稳定性等优异性能^[1-5]。

高温合金的发展源于 1929 年,为了满足航空燃气涡轮的工作温度的不断提高和复杂应力的严格要求。英国学者 M.R. Bedford、H.D. Piling 和 M.S. Merica在 80/20 Ni-Cr 合金中偶然加入一些 Ti 和 Al 得到了一种现代高温合金中最基本的强化相 γ'相 (γ'相是有序面心立方结构 (L1₂)的金属间化合物相),使得材料的高温蠕变性能得到了很大的提高,即具有金属间化合物析出强化的尼莫尼克75 (Nimonic75)合金研制成功^[6]。Ti、Mo、Co等元素的添加进一步提高了高温合金的蠕变等性能,从而研究成功了 Nimonic80A、Nimonic90、 Nimonic105 等多种性能优异的高温合金^[7]。其合金对应的成分如表 1.1 所示。其后随着航空工业的迅猛发展,新技术新工艺不断出现,到二十世纪四十年代,出现了真空熔炼法,由此人们可以获得纯净高质量的合金;到了五十年代,人们发现通过加入Mo、W 等难熔金属到合金液中可以显著提高其耐热性能^[8]。六十年代以来,一系列先进的生产工艺相继被开发出来,如定向凝固技术及单晶技术等,这些新工艺的出现大大促进了高温合金的发展,並进一步提高了合金的使用温度^[9]。

高温合金一般按照其成分主要分为镍基、铁基和钴基,也有铬基、钛基等高 温合金。在工业生产中,镍基合金作为高温合金发展最快,使用最广;其次是铁 基合金^[10]。镍基合金即以镍为主的合金,其中的合金元素有形成沉淀硬化相 γ' 的合金元素、固溶强化元素和晶界强化元素,大致分为以下几类:(1) Ti、Co与 Ni 形成 γ 面心立方奥氏体,是高温合金的基体元素;(2) V、Cr、Mo、W 为固 溶强化元素,它们在 γ-Ni 中都有一定的溶解度;(3) Al、Ti、Nb、Ta 元素可以 形成 γ' 相;(4) 晶界强化元素有 B、C、Mg、Zr^[11]。表1.2为国内外部分镍基高 温合金牌号及其化学成分。镍基高温合金的发展一般是通过改变合金成分来提高 合金的使用温度,但随着发动机性能的不断提高,镍基高温合金的使用温度已经 接近极限(最高使用温度为1050℃),用改变其合金成分来提高使用温度已非常困 难^{⁽⁹⁾。铁基高温合金是指以铁为基的奥氏体型高温合金,其中的合金元素 Al、 Ti、Nb 等也可形成 γ'相; C、N、P 等元素能形成碳化物沉淀相 (MC、M₇C₃、 M₂₃C₆ 和 M₆C),使合金得到强化; B、Zr等元素强化晶界。一般铁基合金是通 过碳化物析出强化,使用温度普遍在600-700℃之间,最高不过750℃左右^[12]。国 内外开发出一系列 Fe-Ni-Cr 系固溶强化型、沉淀硬化型高温合金,如 GH140、 GH130、GH135、K13 和 K14 等,其化学成分如表1.3所示。}

目前,国外作涡轮叶片长期使用的镍基变形合金的最高使用温度为950℃, 作导向叶片或较小应力的涡轮叶片的镍基铸造合金的最高使用温度为1050℃;铁 基变形合金国外大多使用温度在700℃以下。我国在这方面进行了较多的工作, 已可能将铁基变形合金的工作温度提高到750-800℃,铁基铸造合金也有一定发 展,有可能用作900℃以下的导向叶片及涡轮叶片^[12]。

钴和铁、镍在元素周期表中同属WIIA族,其晶体结构和性能都很近似,钴基高温合金是以Co为基体的高温合金。固溶体的高温强度高于镍基合金;耐热腐蚀的性能优于镍基合金;使用温度比镍基合金约高。然而,由于其价格较高,低温 (200-700℃)的屈服强度较低,且比重比镍基合金约高10%。这些原因影响了 钴基高温合金的应用^[13]。表1.4为部分钴基高温合金的化学成分。

在2006年,日本东北大学的石田清仁教授等人在 Co-Al-W 高温合金中发现 γ′结构的 Co₃(Al, W) 相析出,并且实验测定其合金熔点比镍基合金约高50℃左 右,加入Ta以后,其硬度也有所提高[™]。虽然钴的价格较高,但是随着高温环境 的需求越来越高,新型Co基高温合金的研发将具有重要意义。

1.2 钴基高温合金的特性及研究现状

1.2.1 Co 等元素的特性及在高温合金中的作用

(1) Co元素的性能特点

钴 (Co)^{II5, I6}在门捷列夫元素周期表中属于WII族金属,原子序数是 27,原子 量是 58.9332。纯钴的熔点 1768℃,沸点 3201℃。钴在 400℃以下具有稳定的密 排六方结构,高温下稳定的晶体结构为面心立方结构。钴因具有极高的居里点, ε-Co 在所有稳定温度范围内均为铁磁性,在实践中钴及其钴合金是极重要的磁 性材料和精密合金。

钻在地壳中含量不小,大于常见金属铅、锡等,但明显比铁少得多。砷钴矿 和辉砷钴矿是自然界中的主要钴矿,把辉砷钴矿或砷钴灼烧成氧化物后用铝还原 即可制得。金属钴比铁具有更强的硬度和延展性,但相对于铁,其磁性较差,与 钐,镍,铝等共熔可得良好的磁性钢。钴同水和空气不发生作用,但能迅速地被 盐酸、硫酸和硝酸所侵蚀,还会缓慢地被氢氟酸、氨水和氢氧化钠所侵蚀。

(2) Mo 元素的性能特点

钼 (Mo)^[15, 16]是瑞典的埃尔姆于 1782 年用 亚麻子油调过的木炭和钼酸混合 物密闭灼烧而得。在门捷列夫元素周期表中属于VI族金属,化学符号为Mo,原 子序数是 42,原子量是 95.94。纯钼的熔点 2890℃,沸点 4912℃,具有良好的 导热、导电性和低的膨胀系数,在 1100-1650℃的高温下有高的比强度,与钨相 比,易加工且塑性好。

(3) Nb 元素的性能特点

铌 (Nb)^[15,16]是灰白色金属,其密度较小 (8.6g/cm³),熔点2468℃,沸点4742 ℃,在1100-1250℃温度下,铌具有最高的比强度及较低的韧性–脆性转变温度, 较好的焊接性能和耐腐蚀性能,是在所有重要的高温材料中不可或缺的合金添加 剂。在氧气中红热时也不被完全氧化,高温下与硫,碳,氮直接化合,不与无机 酸或碱作用,也不溶于王水,纯Nb在电子管中用于除去残留气体,钢中掺铌能 提高钢在高温时的抗氧化性,改善钢的焊接性能;Nb还用于制造高温金属陶瓷。

一般高温合金中含钴、铬、钨、铌、钼和碳等元素,钴主要固溶于 γ 基体 中,部分进入 γ'中,有固溶强化作用;降低铝、钛在基体中的溶解度从而增加 γ' 相的数量和提高其溶解温度;这些作用对提高合金的蠕变抗力效果显著^[17]。难熔 金属钨、钼、钽、铌和锆等及其合金,由于具有熔点高、耐高温和抗腐蚀性强等 突出优点,从20世纪50年代以来,一直被列入重要航天材料之一,应用领域涉及到 固、液火箭发动机,重返大气层的航天器,航天核动力系统等方面。铌是镍基、镍 铁基和铁基高温合金中一种重要的强化元素。铌作为钴基高温合金添加剂具有固 溶强化作用,能提高合金的强度、高温抗蠕变强度、抗氧化和抗热腐蚀的能力^[18]。 含铌的高温合金广泛的应用于航天航空飞机发动机中耐热度最高,应力负荷最大 部件的制造,如涡轮盘叶片导向叶片等,也用于地热燃气涡轮发动机,如潜艇和

3

发电厂用发动机的相关部件^[19]。钼可对高温合金进行固溶强化和沉淀硬化等,使高温合金具有优异的综合性能。将纯钼的再结晶温度由1000℃提高到1700℃以上后,钼仍可保持高温时的强度和塑性。在早期的发动机推力矢量控制中也曾采用钼制造燃气舵,但烧蚀严重,为了减轻纯钨高温结构材料的重量和弥补纯钼材料烧蚀性能不佳的缺点,在钨中添加不同含量钼的钨钼合金得到了较为广泛的研究和应用,钼含量的增加可提高抗热震性能,但熔点降低,烧蚀率增加^[20]。除此之外,铪在高温合金中主要是为了提高铸造合金的中温强度与塑性,也可以作为碳化物的稳定剂,减少或有可能消除二次碳化物的反应^[3]。钽具有最低韧脆性转变温度,在-196℃的温度下依然保持塑性。钽系合金具有较高的高温强度,易变形加工和良好的焊接性,在航空航天工业中作为高温结构材料得到应用。铬能显著提高钴的室温和高温力学性能^[21]。当铬含量为24%时,钻基合金的高温持久强度最大;在Ni-Co二元合金中加铬也能提高钴基合金的强度,当含铬量达27%时,硬度和热强性最高^[22, 23]。从难熔金属及其合金性质可以看出,在钴基高温合金中添加相关难熔金属将会加强钴基高温合金材料的各项性能,使其应用更广泛^[7]。

1.2.2 Co 基高温合金的研究现状及应用

钴基高温合金是在20世纪30年代末期,由于活塞式航空发动机用涡轮增压器的需要开始研制。1942年,Austenal实验室用钴基Vitallium (Co-27Cr-5Mo-0.5Ti) 假牙合金铸造了几个模型在涡轮盘上进行实验,发现具有优良的使用性能,涡轮叶片问题得以解决,从而开始了钴基高温合金的研制^[24]。由于钴合金体系的低温瞬时屈服强度不高,在980℃以上的条件下,其抗氧化性能不好,以及价格方面等因素,使其发展远落后于镍基合金。1966年,在钴基高温合金中添加镧而改善了抗氧化性能。其后随着W、Ta等难熔金属的添加提高了组织稳定性并起到固溶强化作用^[17,24]。

在强化机制方面, 传统的钴基高温合金的强化机制是加入适量的高熔点金属 实现固溶强化和碳化物析出强化^[26]。2006年, 日本东北大学的石田清仁教授等人 在Co-Al-W三元合金中发现了 L1₂ 结构的 γ' (Co₃(Al, W))相, 证实了在钴基合金 中存在有序金属间化合物析出强化, 并且测定了该钴基合金的最高熔点可达1100 ℃(比镍基合金约高50℃)^[14]; Co₃Al相在Co-Al二元系中为 L1₂ 结构的亚稳相^[27], 当加入第三元素 (如W) 时,可以形成 γ' (Co₃(Al, W)) 稳定相。根据在钴基二

4

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.