brought to you by

学校编	嗣码:10384	分类号	密级
学	号:200236018	UDC	

硕士学位论文

厦门大学

TiO₂纳米管阵列的制备、表征及性能研究

Investigation of Fabrication, Characterization and Performance of the TiO₂ Nanotubes on Ti Substrate

赖跃坤

指导教师姓名:	林昌健 教	牧 授
专业名称:	材 料	学
论文提交日期:	2005 年 6	5 月
论文答辩日期:	2005 年 6	3 月
学位授予日期:	2005 年	月

答辩委员会主席:_____

评 阅 人:_____

2005年6月

Investigation of Fabrication, Characterization and

Performance of the TiO₂ Nanotubes on Ti Substrate

A Dissertation Submitted for the Degree of

Master of Engineering

By

Yue-Kun Lai

This work was carried out under the supervision of

Prof. Chang-Jian Lin

At

Department of Materials Science and Engineering

College of Chemistry and Chemical Engineering

Xiamen University

June, 2005

厦门大学学位论文原创性声明

兹呈交的学位论文,是本人在导师指导下独立完成的研 究成果。本人在论文协作中参考其他个人或集体的研究成 果,均已在文中明确标明。本人依法享有和承担由此论文而 产生的权利和责任。

声明人 (签名):

2005年06月16日

目	录
Π	X

摘	要	
Abstra	.ct	
第一章	绪论	1
1.1	纳米材料的概述······	1
	1.1.1 纳米材料的基本概念	1
	1.1.2 纳米材料的基本物理特性	2
	1.1.3 纳米材料发展历史与趋势	3
1.2	纳米半导体材料研究概况	5
	1.2.1 半导体纳米材料的基本性质及应用	
	1.2.3 TiO2纳米半导体薄膜的性质及应用	9
	1.2.4 一维纳米材料研究现状及发展前景	2
1.3	二氧化钛的研究进展	4
-	1.3.1 常规TiO2的主要用途	4
	1.3.2 纳米TiO2的性能和用途	5
1.4	本工作的设想和目的	7
参考	う文献	.9

第二章	实验技术与仪器····································	29
2.1	试剂	29

2.2	TiO2纳米管阵列膜的制备)
2.3	纳米管阵列膜的分析表征)
2.4	纳米管阵列膜性质的测试31	
参考	文献	L
第三章	TiO ₂ 纳米管阵列的制备与表征)
3.1	引 言	
3.2		
	3.2.1 TiO2纳米管的形貌表征	
	3.2.2 TiO2纳米管形成机理分析	
	3.2.3 XPS 能谱分析40)
	3.2.4 热处理温度对结构和形貌的影响42)
	3.2.5 电学性质的测试46)
	3.2.6 光致发光性能的测试	,
3.3	本章小结	_
参考	文献	2
第四章	TiO2纳米管阵列膜光催化性能的研究56	Í
4.1	引 言)
4.2	结果与讨论57	,
	4.2.1 光催化亚甲基蓝分析方法和实验过程	,
	4.2.2 不同制备方法光催化活性的比较)
2	4.2.3 热处理温度对光催化性能的影响	
2	4.2.4 制备电压对光催化性能的影响62)
2	4.2.5 TiO2纳米管阵列膜的改性	

4.3	本章小结······	71
参考	文献	·72

第王	5章 主要总结与创新点	•••••76
作者	皆攻读硕士学位期间发表与交流的论文··	78
致	谢	

Table of Contents

Abstract in Chinese
Abstract in English
Chapter . Introduction1
1.1 Nanomaterials
1.1 Nanomaterials
1.1.1 Basic Concept of Nanomaterials1
1.1.2 Physical Characteristic of Nanomaterials2
1.1.3 Progress and Trend of Nanomaterials
1.2 General Research Situation of Semiconductor Nanomaterials5
1.2.1 Basic Properties and Applications of Semiconductor Nanomaterials.5
1.2.2 Preparation of Semiconductor Nano-films
1.2.3 Properties and Applications of TiO ₂ Semiconductor Nanomaterials9
1.2.4 Research Situation and foreground of 1-D Nanomaterial
1.3 Progress of Titania Research14
1.3.1 TiO ₂ in Regular Scale 14
1.3.2 TiO ₂ in Nano Scale
1.4 Objective and Motivation of This Dissertation
References19
Chapter . Experimental and Instruments29
2.1 Reagents······29
2.2 Preparation of TiO ₂ Nanotube Array Films

2.3 Analysis and Characteration of Nanotube Array Films	-30
2.4 Properties Tests of Nanotube Array Films	·31
References	31

Chapter . Fabrication and Characteration of TiO₂ Nanotube

Array Films	•••••32
3.1 Introduction	
3.2 Results and Discussion	
3.2.1 Morphologies Characterization of TiO ₂ Nanotube	
3.2.2 Formation Mechanism Analysis of TiO ₂ Nanotube	
3.2.3 XPS Energy Analysis	40
3.2.4 Effect of Annealing Temperature on Structure and Mon	rphologies42
3.2.5 Electrochemical Characterization	46
3.2.6 Photoluminecene Performance	47
3.3 Summary	51
References	52
=///	

Chapter . Photocatalystic Performance of TiO ₂ Nanotube
Array Films56
4.1 Introduction56
4.2 Results and Discussion57
4.2.1 Experimental Method and Process of Methylene Blue57
4.2.2 Comparison of Photocatalytic Activities for Various Methods
4.2.3 Effect of Annealing Temperature on Photocatalytic Performance61
4.2.4 Effect of Anodization Voltages on Photocatalytic Performance62
4.2.5 Improvement of TiO ₂ Nanotube Array Films66
4.3 Summary71

References······72

Chapter	. Main Conclusions and Inr	novations76
Papers Pu	blished during the Study for	Master degree78
Acknowle	dgements······	80

Ti0₂纳米管阵列的制备、表征及性能研究

中文摘要

由于TiO₂具有良好的化学稳定性、光电特性、抗磨损性、无毒等特点, 使其在太阳能电池,光分解水,光催化降解有机污染物以及传感器等方面 被广泛研究,成为最具应用潜力的半导体材料。电化学阳极氧化法作为一 种常用表面改性处理的方法,被广泛运用于高新科技和民用工业领域。近 年来,电化学阳极氧化开始被用于纳米孔洞材料膜的制备,由于纳米材料 具有一些与体相材料完全不同的奇特的物理化学特性,使TiO₂纳米半导体 材料更是引起了科学家的极大关注,成为当前研究的重要热点。

本工作侧重发展了电化学阳极氧化法,在钛基体表面制备了一层具有 特殊纳米结构的TiO₂纳米管阵列膜。利用SEM、XRD、Raman和UV-Vis等 手段系统地研究了电化学阳极氧化化电压、温度、时间以及电解液浓度等 制备参数对纳米膜层表面形貌、组成成份和结构的影响,并对其物理化学 性能及可能的应用进行初步探讨。主要研究进展及成果如下:

- 在HF体系中,采用电化学阳极氧化法成功地实现了在钛基体表面制备高 密度、排列有序的TiO₂纳米管阵列膜层。发现阳极氧化电压是影响纳米 管形貌的最主要因素,通过调节电压可实现对TiO₂纳米管尺度和形貌的 可控制备。并初步提出TiO₂纳米管阵列生长的机理。
- 对TiO₂纳米管阵列膜的I-V特性和光致发光特性进行了表征,首次发现 TiO₂纳米管阵列膜具有强烈的I-V不对称整流特性和特殊的光致发光现 象,并初步解释了这些特异现象,为TiO₂纳米管阵列膜在光电化学领域 的应用提供理论依据。

I

- 3. 研究了负载在钛基体表面高比表面积的TiO₂纳米管阵列膜的光催化性能,并以亚甲基蓝和甲基橙等常见污染物水溶液为研究对象,侧重考察TiO₂纳米管阵列的结构特征对光催化降解性能的影响。发现热处理温度对TiO₂纳米管阵列的结晶度和表面形貌结构有很大的影响,450°C热处理具有最好的锐钛矿相结晶度,并能够很好地保持纳米管阵列结构。光催化降解亚甲基蓝符合一级反应动力学方程,20V电压制备的TiO₂纳米管阵列膜,经450°C热处理后具有较高的光催化活性,其光催化反应动力学常数为3.181×10⁻²min⁻¹。
- 发现了光化学还原沉积贵金属Ag 和改变溶液pH值对光催化降解甲基 橙有显著的影响,在酸性条件下或沉积时间为5min均可明显提高TiO₂纳 米管阵列膜光催化降解甲基橙的效率。

关键词:TiO₂纳米管阵列;阳极氧化;光催化性能;光电性能

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.