学校编码: 10384	分类号 <u></u>	密级
学号: 19320051301949		UDC

唇の大学

士学位论文 硕

白光 LED 用荧光粉的制备及性能研究

Preparation and Characterization of Phosphors for LED

李明利

指导教师姓名: 曾人杰 教授 专业 名称:材料物理化学 论文提交日期: 2008年6月 论文答辩时间: 2008年7月 学位授予日期:

答辩委员会主席:

教授

评阅人:_____

2008年07月

厦门大学学位论文原创性声明

兹呈交的学位论文,是本人在导师指导下独立完成的研究成 果。本人在论文写作中参考的其他个人或集体的研究成果,均在 文中以明确方式标明。本人依法享有和承担由此论文产生的权利 和责任。

声明人 (签名):

2008年6月15日

厦门大学学位论文著作权使用声明

本人完全了解厦门大学有关保留、使用学位论文的规定。厦门 大学有权保留并向国家主管部门或其指定机构送交论文的纸质版和 电子版,有权将学位论文用于非赢利目的的少量复制并允许论文进 入学校图书馆被查阅,有权将学位论文的内容编入有关数据库进行 检索,有权将学位论文的标题和摘要汇编出版。保密的学位论文在 解密后适用本规定。

本学位论文属于

1. 保 密 (), 在 年解密后适用本授权书。
2. 不保密 (√)

(请在以上相应括号内打"√")

作者签名:	日期:	2008 年	6 月	15	日
导师签名:	日期:	2008 年	6 月	15	日

目 录

中文摘要	I
Abstract	II
	Ker
汝 	
弗一早 珀 陀	1
1.1 稀土掺杂荧光粉的基本概念	1
1.1.1 白光 LED 简介	1
1.1.2 YAG 和 TAG 基本概念和特性	3
1.1.3 发光的定义和分类	
1.1.4 荧光粉的发光中心和稀土离子的光谱特性.	
1.2 稀土掺杂荧光粉的应用	
1.2.1 稀土掺杂荧光粉在白光 LED 中的应用	
1.2.2 稀土掺杂荧光粉在照明中的应用	
1.3 荧光粉的合成方法	
1.3.1 高温固相合成法	
1.3.2 溶胶-凝胶法	
1.3.3 水热合成法	
1.3.4 共沉淀法	
1.3.5 均匀沉淀法	
1.3.6 燃烧合成法	
1.3.7 喷雾热解法	
1.4 本课题提出的意义和研究内容	
1.4.1 背景和意义	
1.4.2 研究内容	
1.4.3 本研究的创新点	
参老文献	<i>ე</i> ე
	•••••••••••••••••••••

第二章 实验	27
2.1 主要化学试剂及仪器设备	27
2.1.1 实验原料	27
2.1.2 实验仪器设备	27
2.2 荧光粉的制备	28
2.2.1 稀土掺杂 YAG 荧光粉的制备	28
2.2.2 TAG: Ce, Eu 荧光粉的制备	30
2.3 表征方法	31
2.3.1 粉体 XRD 晶相分析	31
2.3.2 粉体的形貌分析	32
2.3.3 粒度分析	32
2.3.4 激发光谱和发射光谱分析	32
2.3.5 相对亮度	33
参考文献	34

第三章 稀土掺杂 YAG 系列荧光粉 35
3.1 晶相形成过程及机理分析
3.2 粉体的形貌观察及粒度分析
3.3 激发光谱和发射光谱分析 41
3.3.1 YAG: Ce 荧光粉
3.3.2 YAG: Ce, Gd 荧光粉 46
3.3.3 YAGG: Ce 荧光粉 49
3.4 本章小结
参考文献

J.

第四章 TAG: Ce, Eu 荧光粉		55
---------------------	--	----

4.1 晶相形成过程及机理分析 55
4.2 粉体 SEM 观察及粒度分析 57
4.3 TAG: Ce, Eu 激发光谱和发射光谱分析 59
4.4 本章小结 63
参考文献

		, KH
第五章	结论	

7	硕士期间发表的学术论文与研究成果	
3	致谢	

Contents

Abstract in Chinese	۰I
Abstract in English	III
Chapter 1 Introduction	• 1
1.1 Bisic conception of rare-earth material	·· 1
1.1.1 Instroduction to LED •••••••	••1
1.1.2 Bisic conception of YAG and TAG phosphors	3
1.1.3 Definition and classification of luminescence	5
1.1.4 Luminescence centers and characteristic of phosphors	7
1.2 The application of rare-earth material	10
1.2.1 The application of rare-earth material in white LED	11
1.2.2 The application of rare-earth material in illumination	12
1.3 The main synthesizing methods of phosphor	13
1.3.1 High temperature solid-state reaction method	15
1.3.2 Sol-gel method	15
1.3.3 Hydrothermal method	16
1.3.4 Coprecipitation method ·····	16
1.3.5 Symmetrical precipitation method	16
1.3.6 Combustion method	17
1.3.7 Spray pyrolysis method ·····	18
1.3.8 Main methods of this study	19
1.4 Meaning and contents of this study	19
1.4.1 Background and purpose	19
1.4.2 Contents of this study	20
1.4.3 Innovations of this study	20
References	22

Chapter II Experiments27
2.1 Apparatus and materials 27
2.1.1 Experimental materials ······27
2.1.2 Experimental apparatus ······27
2.2 Synthesis of phosphors 28
2.2.1 Synthesis of YAG phosphors28
2.2.2 Synthesis of TAG phosphors
2.3 Characterization methods 31
2.3.1 Crystal structure analysis
2.3.2 SEM analysis ···································
2.3.3 Grain size distribution analysis
2.3.4 Excitated and emission spectrum
2.3.5 Relative brightness analysis
References ····································

Chapter III YAG phosphors 35
3.1 XRD analysis 35
3.2 SEM and Grain size distribution analysis
3.3 Analysis of excitated and emission spectrum41
3.3.1 YAG: Ce phosphor 41
3.3.2 YAG: Ce, Gd phosphor 46
3.3.3 YAGG: Ce phosphor 49
3.4 Summary
References

Chapter IV TAG phosphor	· 55
4. 1 XRD analysis	· 55

4.2 SEM and grain size distribution analysis	57
4.3 Analysis of excitated and emission spectrum	59
4.4 Summary	63
References	64

Chapter 5 Conclusions	
-----------------------	--

Published papers and achievements 67

Acknowledgements 68

中文摘要

LED (light-emitting diode,发光二极管)照明的提倡不仅有利于社会和环境 的可持续性发展,还可以带动相关产业,提升我国照明产业的竞争力。而开发 具有良好发光特性的荧光粉是得到高亮度、高发光效率、高显色性白光 LED 的 关键所在。目前国内外都在研究优化固相法生产工艺或开发新制备工艺,以解 决荧光粉存在的主要问题——亮度和显色指数偏低。

本文对高温固相法制备稀土掺杂YAG (yttrium aluminum garnet, Y₃Al₅O₁₂, 钇铝石榴石)荧光粉这种方法进行了深入研究:通过对YAG荧光粉的温度、时 间、掺杂离子种类、掺杂方式等制备工艺的优化,确定了稀土掺杂荧光粉的制 备条件;通过XRD、SEM、激光粒度仪、分光光度计和相对亮度仪等仪器,对 所制得的三种荧光粉荧光粉进行表征。优化了高温固相法的制备工艺。

以优化后高温固相法制备工艺的为基础,采用微波辅助合成—高温热处理两步法, 司制步法, 制备了TAG: Ce, Eu 荧光粉。用微波辅助合成—高温热处理两步法, 可制备出晶粒清晰、表面形状完整, 一次粒径在2 μm以下, 团聚程度较低的TAG: Ce, Eu 荧光粉; 与传统固相法所制备的荧光粉光谱谱峰位置一致。与传统高温固相反应法相比,采用微波法可以在较短的时间内得到传统固相法需较长时间、较高温度才能形成的TAP中间相; 体现了该方法的高效、节能和环保。高温热处理时间控制在2—3 h左右, 荧光粉综合性能较好。通过分析反应历程, 侧面证明了Tb₂O₃—Al₂O₃系统中Al离子的分扩散系数可能大于Tb离子。

Ι

关键词: YAG:Ce; TAG: Ce, Eu; 稀土荧光粉; 共掺杂

Abstract

Green lighting style was put forward at the background of global warming and energy saving. White LED (light-emitting diode) is recognized as the green lighting product and will substitute the traditional bulbs. In present, the way employing an InGaN/GaN LED chip coated by YAG (yttrium aluminum garnet, $Y_3Al_5O_{12}$) yellow phosphors is the main way to get w-LED. As a result, YAG yellow phosphor becomes critical for green lighting. In this paper, the YAG: Ce³⁺ phosphors were synthesized by traditional solid-state reaction, and the possible ingredients which may affect the luminescence property were investigated in detail.

Ingredients including sintering temperature, Ce^{3+} concentration, as well as the doping of Ga^{3+} , and Gd^{3+} are investigated in detail, in order to make the property of the experimental product consistent with the application.

Using solid-state reaction method synthesized the YAG: Ce^{3+} yellow phosphor powders at 1500°C with the assistance of flux. The samples were characterized by XRD, SEM and fluorescence spectrometer. The classic absorption and emission of Ce^{3+} are cleanly observed, and the luminescence principle of Ce^{3+} in the host of YAG was testified.

Microwave assisted synthesis together with heat-treatment at a high temperature are employed to prepare the phosphor of terbium-aluminium garnet co-doped by Ce^{3+} and Eu^{3+} (TAG: Ce, Eu). The particles of the prepared samples are clear and smooth. Most particles have the size of less than 2 µm. The powder has slightly agglomeration. The classic absorption and emission of TAG: Ce, Eu are cleanly observed. Compared with the traditional high-temperature solid-state synthesis, this route employed in this investigation has the advantages of easier synthesizing, energy saving and environmental protecting. The time of heat-treatment should be 2-3 h. The reaction pathway has been analyzed, implying that the diffusion coefficient of aluminum is bigger than that of terbium, in Tb₂O₃—Al₂O₃ system.

Π

Key Words: YAG:Ce; TAG: Ce, Eu; rare-earth phosphors; codoped

第一章 绪论

1.1 稀土掺杂荧光粉的基本概念

1.1.1 白光 LED 简介

世界性的能源危机^[1,2]使得白光 LED (light-emitting diode,发光二极管)照 明成为国家发展的战略计划^[3],随着国家半导体照明工程的启动,"十一五"计 划予以的大量经费资助,加上我国白光LED 用稀土荧光粉资源丰富,相关知识 产权的建立,我国将迅速进入白光LED 照明市场。

近年来由于荧光粉及其制备技术发展进步,以半导体发光二极管为基础的白 光 LED 灯,尤其受到人们的关注^[4,5]。白光 LED 具有省电(白炽灯泡的 1/8, 荧光灯泡的 1/2)、体积小、发热量低、可低压或低电流启动、寿命长(12 万小 时以上)、响应快、抗震耐冲、可回收,无污染、可平面封装、易开发成轻薄短 小产品等优点,经济与环境效益明显^[6]。图 1.1 表明了白光 LED 灯照明发光效 率与传统照明方式相比较的发展趋势。

图 1.1 白光 LED 照明发光效率

LED 照明的提倡不仅有利于社会和环境的可持续性发展,还可以带动相关 产业,提升我国照明产业的竞争力^[7],并将发展一批具有自主知识产权的有国际 竞争力的新兴产业,增加就业机会,是未来能够代替传统照明最具潜力的竞争者。 总之,发展半导体照明产业对节约能源,保护环境,建设节约型社会;对带动传 统照明产业升级,促进新型制造业发展,以及走新型工业化道路都有非常重要的 意义。

目前商品化的白光 LED 多属蓝光 LED 芯片配合黄色YAG (yttrium aluminum garnet, Y₃Al₅O₁₂, 钇铝石榴石)荧光粉的单芯片型, 图 1.1 是白光 LED 的结构示意图^[8], 其中 E 是由 LED 电致发光得到的蓝光, 照射到芯片之上的 YAG黄色荧光粉后激发使之发出黄色光F, E一部分蓝光 E 透过荧光粉层后与 F 混合后便发出白色光。

半导体照明的关键技术包括^[9]: (1) LED 外延片技术; (2) LED 芯片技术; (3) LED荧光粉及封装技术; (4) LED 分选技术; (5) 半导体照明灯具及光学 系统技术; (6) 半导体照明电源及控制技术。其中荧光粉是一个非常关键的材料, 它的性能直接影响白光 LED 的亮度、色坐标、色温及显色性等。开发具有良好 发光特性的荧光粉是得到高亮度、高发光效率、高显色性白光 LED 的关键所在 ^[10]。

1.1.2 YAG 和 TAG 基本概念和特性

钇铝石榴石空间群为O_h(10)-Ia3d,属立方晶系,其晶格常数为1.2002 nm, 其分子式结构又可写为[A]₃{B}₂(C)₃O₁₂通式来表示,其中{B}和(C)离子分别位 于八面体和四面体的中心,氧与之配位。这些八面体和四面体占据的空间形成十 二面体,中心位置上为A离子占据,由氧配位。在单位晶胞中,共有 8 个Y₃Al₅O₁₂ 分子,一共有 24 个钇离子,40 个铝离子,96 个氧离子。每个钇离子处于由 8 个氧离子配位的十二面体的A格位上,16 个铝离子各处于由 6 个氧离子配位的B 格位,另外 24 个铝离子各处于由 4 个氧离子配位的四面体的C格位。八面体的 铝离子形成体心立方结构,四面体的铝离子和十二面体的钇离子处于立方体的面 等分线上,其结构模型见图 1.2^[11]。石榴石的晶胞可看作是十二面体、八面体和 四面体的连接网。

图 1.2 石榴石晶体单胞的八分之一结构模型^[11]

YAG晶体的热膨胀性能具有各向同性的特点,其热膨胀系数与温度有关,在 100 ℃时为 4.25×10⁻⁶ K^[12]。YAG的基本性质见表 1.2。

分子式	性质
	Y ₃ Al ₅ O ₁₂
分子量	593.7
晶体结构	立方晶系, 空间群la3d, a ₀ =1.2005nm
莫氏硬度	8—8.5
熔点	1 950 °C
密度	4.55g/cm ³
色泽	无色
化学性质	不溶于 H2SO4, HCl, HNO3, HF;
	溶于 H3PO4(>250 °C)

表 1.2 YAG的基本性质^[13]

YAG具有优良的物理和化学稳定性,具有高的发光强度、量子产率和稳定的 色坐标,光学各向同性,无双折射效应,耐高强度辐照和电子轰击,被广泛用作 激光和发光材料的基质^[14]。稀土元素因其特殊的电子层结构,即具有未充满的、 受到外界屏蔽的 4*f*5*d*电子组态,因而具有丰富的电子能级和长寿命激发态,能级 跃迁通道多达 20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发 光和激发材料^[15]。

YAG: Ce黄色荧光粉,早期主要用于阴极射线发光,而随着InGaN / GaN芯片的研制成功以及光效的提高,采用InGaN / GaN芯片涂敷黄色荧光粉所形成的白光LED,目前在技术上最成熟。这种氧化物发光材料具有较高的热稳定性,特别是在高能激发的应用条件下,其性能优于其他传统荧光材料^[16]。

稀土掺杂铽铝石榴石(TAG: Ce, Eu) 与钇铝石榴石同属立方晶系,结构具有相似性。一般地,稀土Tb 元素通常是作为绿色发光材料的激活剂,如Y₂O₂S:

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.