学校编码: 10384
 分类号____密级____

 学号: 20520101151609
 UDC_____

唇の大う

硕士学位论文

二氧化铈纳米棒负载氧化钯及氧化锰

催化剂上甲烷氯氧化反应

Oxidative Clorination of Methane over CeO₂ Nanorod Supported Palladium Oxide And Manganese Oxide Catalysts

孙 振 玲

- 指导教师姓名:王 野 教授
- 专业名称:物理化学
- 论文提交日期: 2013 年 6 月
- 论文答辩时间: 2013 年 月
- 学位授予日期: 2013 年 月

答辩委员会主席: _____

评 阅 人:_____

2013年6月

A thesis submitted to Xiamen University for M. S. Degree

Oxidative Clorination of Methane over CeO₂ Nanorod Supported Palladium Oxide And Manganese Oxide Catalysts

By Zhenling Sun

Supervisor: Prof. Ye Wang

State Key Laboratory of Physical Chemistry of Solid Surfaces

College of Chemistry and Chemical Engineering

Xiamen University

June, 2013

厦门大学学位论文原创性声明

本人呈交的学位论文是本人在导师指导下,独立完成的研究成果。 本人在论文写作中参考其他个人或集体已经发表的研究成果,均在文 中以适当方式明确标明,并符合法律规范和《厦门大学研究生学术活 动规范(试行)》。

 另外,该学位论文为(
)课题(组)

 的研究成果,获得(
)课题(组)经费或实验室的资

 助,在(
)实验室完成。(请在以上括号内填写课题

 或课题组负责人或实验室名称,未有此项声明内容的,可以不作特别

 声明。)

声明人 (签名):

年 月 Η

厦门大学学位论文著作权使用声明

本人同意厦门大学根据《中华人民共和国学位条例暂行实施办法》 等规定保留和使用此学位论文,并向主管部门或其指定机构送交学位 论文(包括纸质版和电子版),允许学位论文进入厦门大学图书馆及其 数据库被查阅、借阅。本人同意厦门大学将学位论文加入全国博士、 硕士学位论文共建单位数据库进行检索,将学位论文的标题和摘要汇 编出版,采用影印、缩印或者其它方式合理复制学位论文。

本学位论文属于:

()1.经厦门大学保密委员会审查核定的保密学位论文,于

年 月 日解密,解密后适用上述授权。

()2.不保密,适用上述授权。

(请在以上相应括号内打"√"或填上相应内容。保密学位论文应是
 已经厦门大学保密委员会审定过的学位论文,未经厦门大学保密委员
 会审定的学位论文均为公开学位论文。此声明栏不填写的,默认为公
 开学位论文,均适用上述授权。)

声明人(签名):

年 月 日

目 录

摘 要	I
Abstract	III
第一章 绪论	1
1.1 引言	1
1.2 甲烷转化的主要途径	•• 1
1.2.1 甲烷的直接转化	···2
1.2.1.1 液相催化氧化甲烷制甲醇及衍生物	2
1.2.1.2 甲烷直接转化制甲醇和甲醛等含氧化合物	3
1.2.1.3 甲烷氧化偶联制乙烯 (Oxidative coupling of methane, 简称 OC	CM)
	5
1.2.1.4 甲烷羰基化反应	7
1.2.1.5 甲烷芳构化反应	8
1.2.1.6 甲烷光催化反应	9
1.2.2 甲烷的间接转化	· 10
1.2.3 甲烷卤氧化制卤代甲烷	· 13
1.2.3.1 以卤素为介质的甲烷卤氧化制卤代甲烷	• 14
1.2.3.2 以卤化氢为介质的甲烷卤氧化制卤代甲烷	· 16
1.3 论文的构思与目的	·18
1.4 论文组成与概要	·18
参考文献 ······	·19
第二章 实验部分	.35
2.1 原料与试剂	·35

2.2 催化剂的制备	36
2.2.1 不同形貌 CeO2 催化剂的制备	36
2.2.1.1 二氧化铈纳米棒的制备 ^[1]	36
2.2.1.2 二氧化铈纳米立方体的制备 ^[1]	36
2.2.2 二氧化铈纳米棒负载贵金属或者氧化物催化剂的制备	37
2.2.2.1 氯化钯溶液的配制	··· 37
2.2.2.2 二氧化铈纳米棒负载贵金属催化剂的制备	37
2.2.2.3 二氧化铈纳米棒负载双金属催化剂的制备	37
2.3 催化剂反应性能评价	37
2.4 催化剂的表征	39
2.4.1 X 射线粉末衍射 (XRD)	40
2.4.2 高分辨透射电镜 (HR-TEM)	40
2.4.3 电子能谱测试 (EDS)	40
2.4.4 低温 N ₂ 物理吸附	40
2.4.5 电感耦合等离子体发射光谱 (ICP)	40
2.4.6 H ₂ 程序升温还原 (H ₂ -TPR)	41
2.4.7 低能电子散射 (LEIS)	41
2.4.8 X 射线光电子能谱 (XPS)	41
2.4.9 O ₂ 程序升温脱附 (O ₂ -TPD)	41
2.5 产物氯气的测定	41
参考文献	42
第三章 CeO_2 纳米棒负载氧化钯及氧化锰催化剂上甲烷氯氧化反	应
催化性能研究	43
3.1 引言	43
3.2 结果与讨论	43

3.2.1 CeO2纳米棒负载不同贵金属催化剂上甲烷氯氧化反应性能研究	44
3.2.2 不同 Pd 负载量的 Pd/CeO2 纳米棒上甲烷氯氧化性能考察	45
3.2.3 不同 Pd 负载量的 Pd/CeO2 纳米立方体上甲烷氯氧化性能考察	45
3.2.4 Pd/CeO2纳米晶上甲烷氯氧化反应性能比较	47
3.2.5 1.5 wt% Pd/CeO2 纳米棒稳定性考察	48
3.2.6 CeO2纳米棒负载双金属催化剂上甲烷氯氧化反应性能研究	48
3.2.6.1 双贵金属负载型 CeO2 纳米棒上甲烷氯氧化反应性能	49
3.2.6.2 不同 Au/Pd 比的 Au-Pd/CeO2 纳米棒上甲烷氯氧化催化性能 …	50
3.2.6.3 非贵金属-贵金属负载型 CeO2 纳米棒上甲烷氯氧化催化性能…	51
3.2.6.4 不同 MnOx 负载量的 Mn-Pd/CeO2 纳米棒上甲烷氯氧化催化性能	Ч Ч
	52
3.2.7 不同 CeO2 纳米棒上甲烷氯氧化催化性能比较	54
3.2.8 10Mn-1Pd/CeO2 纳米棒稳定性考察	55
3.3 本章小结	56
参考文献	56
第四章 催化剂表征与构效关联	59
4.1 引言	59
4.2 表征结果与讨论	60
4.2.1 XRD 表征	60
4.2.1.1 不同 Pd 负载量的 Pd/CeO ₂ 纳米棒 XRD	60
4.2.1.2 不同 Pd 负载量的 Pd/CeO ₂ 纳米立方体 XRD	60
4.2.1.3 不同 MnO _x 负载量的 Mn-Pd/CeO ₂ 纳米棒 XRD	61
4.2.1.4 Pd/CeO2纳米棒反应前后 XRD	62
4.2.1.5 Mn-Pd/CeO2纳米棒反应前后 XRD	63
4.2.2 TEM 表征	63
4.2.2.1 Pd/CeO。纳米晶反应前后形貌	63

4.2.2.2 10Mn-1Pd/CeO2纳米棒反应前后形貌	65
4.2.3 CeO2 纳米棒上线能谱(EDS)结果	67
4.2.3.1 1.5 wt% Pd/CeO2 纳米棒上线能谱(EDS)结果	67
4.2.3.2 10Mn-1Pd/CeO2纳米棒上线能谱(EDS)结果	67
4.2.4 催化剂比表面积测定	68
4.2.5 ICP 测定实际负载金属含量	• • • • 68
4.2.5.1 Pd/CeO2纳米棒上实际 Pd 含量	69
4.2.5.2 Mn-Pd/CeO2纳米棒上实际 Pd 含量和 MnOx含量	70
4.2.6 催化剂还原性能的研究	70
4.2.6.1 Pd/CeO2纳米棒上 H2程序升温还原	70
4.2.6.2 Mn-Pd/CeO2纳米棒上 H2程序升温还原	72
4.2.7 LEIS 结果	75
4.2.8 XPS 光谱表征结果	77
4.2.8.1 Pd/CeO2纳米棒 XPS 表征结果	77
4.2.8.2 Mn-Pd/CeO2纳米棒 XPS 表征结果	82
4.2.9 O ₂ -TPD 表征结果	88
4.3 本章小结	89
参考文献	89
第五章 CeO_2 纳米棒催化剂上甲烷氯氧化反应机理的初步探索.	93
51 리국	02
5.1 分音	93
5.2 结果与讨论	93
5.2.1 不同反应温度时 CeO2纳米棒上甲烷氯氧化反应性能	93
5.2.2 表观活化能	95
5.2.3 产物氯气的定量分析	96
5.2.4 CeO2纳米棒上甲烷氯氧化反应动力学行为	98
5.2.5 CeO2 纳米棒上可能反应机理	103

5.3 本章小结	
参考文献	
第六章 结论	
硕士期间发表论文目录	
致谢	
	X.
	6
X	

CONTENTS

Abstract in Chinese错误! 未定义书签。
Abstract in English错误! 未定义书签。
Charpter 1 General introduction错误! 未定义书签。
1.1 Introduction ·····························错误!未定义书签。
1.2 Main conversion routes of methane错误!未定义书签。
1.2.1 Direct conversion routes of methane错误!未定义书签。
1.2.1.1 Oxidation of methane to methanol and derivant by liquid phase
catalytic ·······错误! 未定义书签。
1.2.1.2 Direct conversion methane to methanol and methanal by molecular
oxygen ······ 错误! 未定义书签。
1.2.1.3 Oxidative coupling of methane to ethylene (OCM in brief) 错误! 未
定义书签。
1.2.1.4 Carbonylation of methane错误!未定义书签。
1.2.1.5 Methane dehydroaromatization错误!未定义书签。
1.2.1.6 Photocatalysis of methane ····································
1.2.2 Indirect conversion routes of methane 错误! 未定义书签。
1.2.3 Oxidative halogenation of methane to methyl halide 错误! 未定义书签。
1.2.3.1 Oxidative halogenation of methane to methyl halide by halogen 错误!
未定义书签。
1.2.3.2 Oxidative halogenation of methane to methyl halide by hydrogen
halide ······错误! 未定义书签。
1.3 Objective of this thesis 错误!未定义书签。

1.4 Outline of this thesis	错误!未定义书签。
References	错误!未定义书签。
Charpter 2 Experimental	错误!未定义书签。
2.1 Materials and reagents	错误!未定义书签。
2.2 Preparation of catalysts	······· 错误!未定义书签。
2.2.1 Preparation of the CeO ₂ catalyst with diffe	erent morphologies错误!未定义
书签。	121
2.2.1.1 Preparation of CeO ₂ nanorod	错误!未定义书签。
2.2.1.2 Preparation of CeO ₂ nanocube	错误!未定义书签。
2.2.2 Preparation of catalysts of CeO ₂ nanorods	support noble metal or their
oxides ·····	错误!未定义书签。
2.2.2.1 Preparation of palladium chloride solu	ution错误!未定义书签。
2.2.2.2 Preparation of CeO2 nanorods modified	ed with noble metals 错误! 未定
义书签。	
2.2.2.3 Preparation of CeO2 nanorods modified	ed with bimetals错误!未定义书
签。	
2.3 Evaluation of catalytic performances	错误!未定义书签。
2.4 characterizations of catalysts	错误!未定义书签。
2.4.1 XRD characterizations	错误!未定义书签。
2.4.2 HR-TEM characterizations	错误!未定义书签。
2.4.3 EDS characterizations	错误!未定义书签。
2.4.4 N ₂ physical adsorption measurements	错误!未定义书签。
2.4.5 ICP characterizations	错误!未定义书签。
2.4.6 H ₂ -TPR characterizations	错误!未定义书签。
2.4.7 LEIS characterizations	错误!未定义书签。
2.4.8 XPS characterizations	错误!未定义书签。

2.4.9 O ₂ -TPD characterizations	错误!未定义书签。
2.5 Determination of chlorine in the produ	tcts·错误!未定义书签。
References	错误!未定义书签。
Charpter 3 Catalytic performances for oxida	ative chlorination of
methane over CeO ₂ nanorod modified with PdO and MnO _x 错误! 未定	
义书签。	
3.1 Introduction	错误!未定义书签。
3.2 Results and discussion	错误!未定义书签。
3.2.1 Catalytic performances for oxidative chlorin	ation of methane over CeO ₂
nanorod catalysts supported with diferent noble m	netal错误!未定义书签。
3.2.2 Catalytic performances for oxidative chlorin	nation of methane over Pd/CeO ₂
nanorod catalysts with diferent Pd contents	错误!未定义书签。
3.2.3 Catalytic performances for oxidative chlorin	nation of methane over Pd/CeO ₂
nanocube catalysts with diferent Pd contents	错误!未定义书签。
3.2.4 Catalytic performances for oxidative chlorination of methane over Pd/CeO_2	
nanocrystals catalysts	错误!未定义书签。
3.2.5 Stability of 1.5 wt% Pd/CeO2 nanorod cataly	ysts错误!未定义书签。
3.2.6 Catalytic performances for oxidative chlorin	ation of methane over CeO ₂
nanorod supported with bimetal catalysts	错误!未定义书签。
3.2.6.1 Catalytic performances for oxidative ch	lorination of methane over
CeO ₂ nanorod supported with bi-noble metal ca	atalysts · 错误! 未定义书签。
3.2.6.2 Catalytic performances for oxidative ch	lorination of methane over
Au-Pd/CeO ₂ nanorod catalysts with diferent Au	a contents错误!未定义书签。
3.2.6.3 Catalytic performances for oxidative ch	lorination of methane over
CeO ₂ nanorod supported with noble metal and	nonoble metal catalysts 错误!
未定义书签。	

Degree papers are in the "Xiamen University Electronic Theses and Dissertations Database". Full texts are available in the following ways:

1. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library.

2. For users of non-CALIS member libraries, please mail to etd@xmu.edu.cn for delivery details.