
of CmACS-7 as well as the development of the
carpel through expression of CmACS11. This is
likely due to a tight control of the kinetics of
the production of this hormone during sex deter-
mination. Because ethylene seems to be a major
hormone in sex determination in angiosperms
(18), it is likely that ourmodel of sex determination
in a monoecious plant can be used as a frame-
work for investigations of sex determination in
other plant families. Furthermore, this workmay
allow easier breeding and optimization of the
synchronization of male and female flower devel-
opment on the same plant so as to improve fruit
yields innonmodel, cultivatedCucurbitaceae species.
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NONHUMAN GENOMICS

The Symbiodinium kawagutii genome
illuminates dinoflagellate gene
expression and coral symbiosis
Senjie Lin,1,2*† Shifeng Cheng,3,4,5† Bo Song,3† Xiao Zhong,3† Xin Lin,1† Wujiao Li,3

Ling Li,1 Yaqun Zhang,1 Huan Zhang,2 Zhiliang Ji,6 Meichun Cai,6 Yunyun Zhuang,2‡
Xinguo Shi,1 Lingxiao Lin,1 Lu Wang,1 Zhaobao Wang,3 Xin Liu,3 Sheng Yu,3

Peng Zeng,3 Han Hao,7 Quan Zou,6 Chengxuan Chen,3 Yanjun Li,3 Ying Wang,3

Chunyan Xu,3 Shanshan Meng,1 Xun Xu,3 Jun Wang,3,8,9 Huanming Yang,3,9,10

David A. Campbell,11 Nancy R. Sturm,11 Steve Dagenais-Bellefeuille,12 David Morse12

Dinoflagellates are important components of marine ecosystems and essential coral
symbionts, yet little is known about their genomes. We report here on the analysis of a
high-quality assembly from the 1180-megabase genome of Symbiodinium kawagutii.
We annotated protein-coding genes and identified Symbiodinium-specific gene families.
No whole-genome duplication was observed, but instead we found active (retro)
transposition and gene family expansion, especially in processes important for
successful symbiosis with corals. We also documented genes potentially governing sexual
reproduction and cyst formation, novel promoter elements, and a microRNA system
potentially regulating gene expression in both symbiont and coral. We found biochemical
complementarity between genomes of S. kawagutii and the anthozoan Acropora, indicative
of host-symbiont coevolution, providing a resource for studying the molecular basis
and evolution of coral symbiosis.

D
inoflagellates are alveolates, with the most-
ly parasitic apicomplexans as their closest
relatives (fig. S1A). Members of the genus
Symbiodinium are essential photosynthe-
tic endosymbionts in coral reefs (1). Dino-

flagellates show enigmatic genetic and cytological
characteristics, including permanently condensed
chromosomes and a high proportion of diverse
methylated nucleotides, and often feature large
nuclear genomes (up to 250 Gb) (2). We report a
0.935-Gbp assembly of the 1.18-Gbp genome of

Symbiodinium kawagutii (figs. S1B and S2), a
Clade F strain originally isolated from aHawaiian
reef ecosystem (3). A high-quality S. kawagutii
genome assembly corresponding to ~80% of the
genomewas achieved from~151-Gbp Illumina ge-
nome shotgun sequence (~130x genome coverage)
(tables S1 to S4 and fig. S3). Genome annotation
revealed 36,850 nuclear genes, with 68% occur-
ring in families (1.69 genes per family) (table S5).
Only ~9% (3280) of S. kawagutii genes were in
tandem arrays (1279 clusters) (table S6), with 2 to
10 repeats (76% being ≤4 repeats) per array. The
genome encodes the common metabolic path-
ways expected for typical photosynthetic eukary-
otes (fig. S4 and table S7), and we found genes
involved in sexual reproduction, cyst formation
and germination, and telomere synthesis (table S8).
The telomeric motif (TTTAGGG)n was identified
at the ends of scaffolds and was also detected by
fluorescence in situ hybridization (fig. S1B).
Globally, our analysis revealed extensive ge-

nomic innovation in dinoflagellates. A total of
25,112 gene families were clustered from the ge-
nomes of S. kawagutii and eight other species rep-
resenting higher plants, chlorophytes, rhodophytes,
diatoms, phaeophytes, alveolates, and cnidarians.
S. kawagutii has 12,516 gene families, of which
7663were gained in the ancestor of Symbiodinium
(Fig. 1A and table S9). These geneswere enriched
in 62metabolic gene ontologies (table S10). When
the gene families were normalized to z scores to
balance the effect of different total gene num-
bers, 96 gene families had shrunk (table S11) and
265 gene families had expanded inSymbiodinium
(table S12). The LINE-1 reverse transcriptase (a
retroelement) is themost highly expanded family.
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Our synteny and homology analysis showed
no evidence ofwhole-genomeduplication, because
little collinearity within S. kawagutii genomewas
observed (table S13). Instead, the S. kawagutii
genome shows evidence of transposon propaga-
tion, in particular long terminal repeat (LTR) retro-
transposons and DNA transposons (table S14),
whichcontributes todifferencesbetweenS.kawagutii
and S. minutum (Fig. 1B). Furthermore, protein
domains linked to transposons (table S15) may
lead to proliferation of these protein domains in
the genome; in the case of cytosine methyltrans-
ferase, the resulting expansion of the gene family
may help explain the extensive DNAmethylation
seen in dinoflagellates; in the case of retroelements
such as reverse transcriptase and integrase, the
expanded families may increase the frequency of
transcript retrotranspostion into the genome. In
keepingwith this latter, we foundnumerous genes
with a full (62 genes) or partial (5506 genes) dino-
flagellate spliced leader (DinoSL) (4) in their 5′
untranslated region (table S16). The 22-nucleotide
(nt) dinoSL is trans-spliced to the 5′ end of all
mRNAs, and its presence in the genome is a sig-
nature of retrotranscript insertion (5); this thus
represents an efficient mechanism for gene fam-
ily expansion. Last, horizontal gene transfer (HGT)
may also contribute to S. kawagutii genome in-
novation. Conservatively, we found 56 potential
HGT genes, 41 of which had best Basic Local Align-
ment Search Tool (BLAST) hits to marine bacteria
(table S17 and fig. S5).
The partial genome (~41%) of S. minutum

(6) allowed some comparative genomic studies.
S.minutum and S. kawagutii have similar genome
sizes and gene numbers (table S5) and show some
genomic collinearity (Fig. 1B and table S18) and
gene ontology profiles (table S19 and fig. S6A).
MUMmer (Maximal UniqueMatches) alignment
data showed that2.17%(20.4Mb)of theS.kawagutii
genomematched to S. minutum, and only 5.92%
(36.5 Mb) of the S. minutum genome matched to
S. kawagutii. This divergence was confirmed by
the reciprocal mapping of their raw reads (fig. S6B
and tables S5 and S20), implying that these two
species are more diverged than usually assumed.
Yet both genomes showed expansion of gene
families involving cargo transport and stress re-
sponses (fig. S6C and tables S21 and S22), which
may reflect the shared symbiotic lifestyles.
The transcriptional machinery of dinoflagel-

lates does not contain the typical eukaryotic TATA
box promoter element (2). Instead of a TATA-box
binding protein (TBP), dinoflagellates express
a TBP-like factor that has a stronger affinity to
TTTT than to TATA (7). A global search of the S.
kawagutii genome 1000-bp (base pair) region
upstream of putative start codons revealed 564
conserved motifs, which were grouped into 108
clusters on the basis of sequence similarities (table
S23). About 92% of these were located within
100 bp upstream of the start codon. The motifs
with the most conserved positions are remnants
of SL (Fig. 1C). Motifs TTTT and TTTG were
found in the upstream regions of 34,524 and
35,348 genes, respectively (94% and 96% of the
gene repertoire). Curiously, although both are part

of the SL, the TTTG motif has a position consist-
ent with that of the SL, whereas TTTT tends to be
further upstream (Fig. 1D). This suggests that the
TTTTmay serve as a core promoter motif replac-
ing the TATA box used by other eukaryotes. The
TTTT is typically 30 bp upstream from a poten-
tial transcriptional start site (fig. S7). The next
most highly enriched motif, (TATG)2, was asso-
ciated with only 257 promoters and is thus more
likely to be a binding target of specific regulators.
Sequences from the genome and purified small

RNAs predicted 367 and 354 mature microRNAs
(miRNAs), respectively (3), with 102 of the latter
(table S24) retained after stringent filtering and
structural analysis (fig. S8A). We matched 255 of
the genome-predictedmiRNAs to 99 of the small
RNA-based miRNAs. The mature miRNA candi-

dates varied in length from 21 to 24 nt, withmost
(91.5%) containing 22 nt. Northern blot analysis
revealed a decreased expression level for some
miRNA in cultures grown at 35°C instead of 25°C
(Fig. 2A); of these, scaffold270_6017 is predicted
to target heat shock proteins 90 and 70 (table
S25), consistent with an expected up-regulation
in translation of these thermal stress proteins. A
bias toward uridine (U) (47.9%) and against gua-
nine (G) (5.0%)was observed at the 5′-end ultimate
nucleotide, as was in Arabidopsis thaliana (8).
Interestingly, of the 102maturemiRNA sequences,
49 were similar to animal miRNAs, 11 to plant
miRNAs, and 1 to viral miRNAs (3). S. kawagutii
thushas amiRNAreservoir dominatedbymiRNAs
with considerable sequence identity to those found
in animals (fig. S8B).
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Fig. 1. Comparative genomic analysis between S. kawagutii and other eukaryotes. (A) (Left) Pre-
dicted pattern of gain or loss of gene families across eukaryotes shown on a phylogenetic tree inferred
from genome data. Numbers on branches indicate the number of gene families gained (+) or lost (–);
those at the left of the nodes are bootstrapvalues supporting the tree topology. (Right)K-means clustering
of gene families based on number of members. Columns represent gene families, and rows are species of
eukaryote. (B) Synteny between regions of the genomes of S. kawagutii and S. minutum. (C) TTTG,TTTT,
and (TATG)2 are the top threemotifs enriched in theS. kawagutii upstream regions and are potential novel
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We identified 1 perfect (plant-type) and 6026
partial (animal-type) complementaritymiRNAtar-
gets in the S. kawagutii genome. Among the genes
with partial complementarity, 381 were poten-
tially targets of miRNAs with higher expression
levels (read counts > 1000), suggesting that these
genes aremore likely to be regulated bymiRNAs.
In total, 2557 of all the potential target genes
were annotated with known functions (table S25)
with enrichments in biological processes of carbo-
hydrate metabolism, transcription regulation, and
biosynthesis of amino acids and antibiotics (tables
S26 and S27). miRNA targets are often clustered
in networks of interacting proteins (3), in which
some genes are targeted by many miRNAs and
some miRNAs target multiple genes (Fig. 2B, fig.
S9, and table S28). In addition, the S. kawagutii
genome harbors small RNA-degrading nucleases
1 and 3, one of which is itself a miRNA target
(table S25). Thus, the evidence for miRNA-based
gene regulatory machinery is robust and exten-
sive, complementary to the limited transcriptional
regulation documented in dinoflagellates (2).
We identified a double-strandedRNA (dsRNA)–

gated channel protein Systemic RNA Interference
Deficiency–1 (SID-1) (9) required for systemic RNA
interference in animals (10). SID-1 sequences in
Symbiodinium and Cnidaria are similar, sug-
gestive of horizontal gene transfer (fig. S10) (3).
Pathogen-to-host miRNA transfer has been shown
to silence host immunity genes in plants (11). We
identified 1514 coral genes (table S29) (6.4% of the
total number) as potential targets of S. kawagutii
miRNAs; these had similar molecular functions
[Gene Ontology (GO) slim category] as targets in

S. kawagutii (Fig. 2C), whichwere enriched inGO
categories related to protein modification and
regulation of transcription and cell growth (table
S30). This suggests that transferredmiRNAsmight
regulate similar processes in symbiont and host.
Recognition of Symbiodinium by the host

cells is mediated primarily through binding of
Symbiodinium high-mannose glycans by lectins
on the coral cell surface (12, 13) (Fig. 3).We found
a glycan biosynthesis pathway in S. kawagutii
lacking several enzymes catalyzing the final steps
of the common glycan biosynthesis pathway (fig.
S11). This altered pathway is predicted to produce
a (GlcNAc)5(Man)5(Asn)1 glycan that carries
abundant free mannose branches and terminal
mannose-mannose units available for lectin bind-
ing, consistent with previous findings (14). How-
ever, the enzymes involved inmannose-rich glycan
biosynthesis differ between S. kawagutii and
S. minutum (table S31), suggesting that varia-
tions in the glycoprotein structure may tune the
host recognition specificity.
Other Symbiodinium genesmay also be related

to symbiosis (table S32). These include homologs
of nodulation factors involved in establishing
the symbiosis between legume and the nitrogen-
fixing bacteria rhizobia, as well as cell surface
proteins with a role in pathogen infection or host
recognition. Furthermore, some S. kawagutii
and S. minutum proteins share homology with
Plasmodium falciparum proteins involved in the
interaction between the parasite and its host (15).
To assess their role in symbiosis, we compared

genes encoding transporters in S. kawagutii with
those in Acropora digitifera, the only sequenced

coral species (16) (Fig. 3 and table S33). Remark-
ably, nearly half of the numerous transporters
(>300) in S. kawagutii are shared by this coral
(table S34). Both dinoflagellate and coral genomes
encode transporters of C (bicarbonate), N, P, and
trace metals, as well as carbon-concentrating
mechanism enzymes, and many of these are lack-
ing in the two nonsymbiotic cnidarians Hydra
magnipapillata andNematostella vectensis (table
S35). Most of the 49 carbonic anhydrases (CA)
genes in the S. kawagutii genome are cytoplasmic,
suggesting that cytoplasmic CA is critical for CO2

acquisition; only two d-CAs are predicted to be
localized at the plasma membrane and one ß-CA
in the thylakoids.
The S. kawagutii genome also contains the

complete biosynthesis pathways of all the stan-
dard amino acids except lysine and histidine and
could potentially supply nine of the amino acids
that A. digitifera cannot produce (fig. S12 and
table S35). Interestingly, the majority of the S.
kawagutii transporters, as well as some of their
coral cognates, are potential miRNA targets (red
circles, Fig. 3).
Symbiodinium-to-coral translocation of pho-

tosynthates is critical for reef growth, with either
glycerol (17) or glucose (18) translocated. The
S. kawagutii genome contains 12 genes encoding
glycerol-3-phosphate dehydrogenase, an enzyme
essential for glycerol production in yeast (19), as
well as a plasma membrane aquaporin with gly-
cerol transport ability and low- and high-affinity
glucose transporters (Fig. 3 and table S35). How-
ever, the A. digitifera genome (16) contains only
the transporter for glucose and not for glycerol.
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This suggests that glucose can be exported to the
coral cells, whereas glycerol is exported only to
the symbiosome, possibly as an osmolyte (20).
S. kawagutii possesses a large ensemble of

genes potentially conferring tolerance to thermal
stress and ultraviolet irradiation, including ex-
panded gene families encoding heat shock pro-
teins and DNA repair/recombination proteins
(table S22). There is also a large set of antioxi-
dant genes, including the large thioredoxin gene
family, a diverse set of genes for (Cu/Zn-, Mn/Fe-,
Ni-dependent) superoxide dismutases (SOD), and
ascorbate peroxidases (APx). We found a Ni-
dependent SOD, rarely reported for marine algae,
consistent with the abundant high-affinity nickel
transporter genes in this species (fig. S6C), as well
as six genes encoding xanthine dehydrogenase/
oxidase, which catalyzes the oxidation of xanthine
to uric acid in purine metabolism (table S35). Uric
acid forms crystalline deposits in Symbiodinium
that function as anN reserve (21), and it is a potent
antioxidant.
Unexpectedly, the S. kawagutii genome

lacks the genes of the four major photoprotector
mycosporine-like amino acids (MAA) biosynthe-
sis enzymes: dehydroquinate synthase (DHQS),
O-methyltransferase (O-MT), ATP-grasp, and non-
ribosomal peptide synthetase (NRPS). Their loss
may thus represent a coevolution of S. kawagutii
with its host, because all four genes are found in
A. digitifera, one of which shows a close relation-
ship with that in other dinoflagellates (fig. S13).

This study provides a portrait of a symbiotic
dinoflagellate genome, with insights into genome
evolution and regulation of gene expression
in dinoflagellates and the molecular basis of
coral-Symbiodinium symbiosis. Our results are
a stepping-stone to understanding how the ge-
netic complementarity between anthozoans and
Symbiodinium can explain host specificity (1, 22)
and to determining the molecular mechanisms
responsible for coral bleaching.
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Fig. 3. Schematic summary of
host recognition mechanisms and
cargo transport. Small circles
represent the genes from coral
(sky blue fill) and from S. kawagutii
(pale pink fill), with predicted miRNA
target genes marked with red
outlines. Only genes considered
directly related to symbiosis
are shown. All the S. kawagutii
transporter families shown have
members that are computationally
predicted to be plasma membrane
proteins (see table S35).
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