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Abstract
High-resolution knee joint vibroarthrographic (VAG) signals can help
physicians accurately evaluate the pathological condition of a degenerative knee
joint, in order to prevent unnecessary exploratory surgery. Artifact cancellation
is vital to preserve the quality of VAG signals prior to further computer-
aided analysis. This paper describes a novel method that effectively utilizes
ensemble empirical mode decomposition (EEMD) and detrended fluctuation
analysis (DFA) algorithms for the removal of baseline wander and white noise
in VAG signal processing. The EEMD method first successively decomposes
the raw VAG signal into a set of intrinsic mode functions (IMFs) with fast
and low oscillations, until the monotonic baseline wander remains in the last
residue. Then, the DFA algorithm is applied to compute the fractal scaling
index parameter for each IMF, in order to identify the anti-correlation and the
long-range correlation components. Next, the DFA algorithm can be used to
identify the anti-correlated and the long-range correlated IMFs, which assists
in reconstructing the artifact-reduced VAG signals. Our experimental results
showed that the combination of EEMD and DFA algorithms was able to
provide averaged signal-to-noise ratio (SNR) values of 20.52 dB (standard
deviation: 1.14 dB) and 20.87 dB (standard deviation: 1.89 dB) for 45 normal
signals in healthy subjects and 20 pathological signals in symptomatic patients,
respectively. The combination of EEMD and DFA algorithms can ameliorate
the quality of VAG signals with great SNR improvements over the raw signal,
and the results were also superior to those achieved by wavelet matching pursuit
decomposition and time-delay neural filter.
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1. Introduction

The knee joint is a type of synovial joint, and also the largest and most complex joint in
the human body (Wu et al 2010). The articular surface of the knee joint is surrounded by a
synovial capsule. The synovial membrane located in the inner layer of the capsule produces
the synovial fluid that helps lubricate the joint without any friction. Articular cartilage that
pads the ends of the articulation bones can cushion the impact of the knee during locomotion
and bounce activities (Wu et al 2010). Although the knee joint is able to tolerate moderate
stress, it is still often injured in strenuous exercise, especially in sports activities.

Magnetic resonance imaging (MRI), computed tomography (CT), x-ray and arthroscopy
are the most frequently used medical techniques for the detection of knee joint pathologies.
The imaging-based tools can provide anatomical images of the articular cartilage with
relatively good resolution, but they fail to characterize the functional integrity of the cartilage.
Arthroscopy is a semi-invasive surgical procedure that may be used to inspect the interior of
a knee joint through a small incision (Frank et al 1990). However, a knee joint cannot afford
repeated examinations or follow-up studies with arthroscopic surgery, because the frequently
inspected incision is susceptible to bacterial infection (Rangayyan and Wu 2008).

Vibration arthrometry can be used as an alternative noninvasive technology for the
screening of knee joint pathology in clinical practice (Krishnan and Rangayyan 2000, Tanaka
and Hoshiyama 2012). The knee joint vibroarthrographic (VAG) signal emitted from a
knee joint during flexion (bending) or extension (straightening) movements provides useful
information about the functional integrity of the articular cartilage (McCoy et al 1987,
Rangayyan and Wu 2009). The analysis of VAG signals can extract dominant features
associated with degeneration conditions of the degenerative articular cartilage (Rangayyan
and Wu 2008, 2009, 2010, Wu and Krishnan 2011, Rangayyan et al 2013, Cai et al 2013). The
removal of artifacts in VAG signals is an essential procedure prior to further quantitative study
of pathological features. Baseline wander and random noise are two types of common artifacts
in inherent nonstationary VAG signals (Wu et al 2013a). Baseline wander usually occurs
when the subject performs flexion or extension movements during the VAG signal recording.
Random noise can be caused due to the thermal effect in the instrumentation amplifiers and
the recording system. The aim of the present study is to combine the ensemble empirical mode
decomposition (EEMD) and detrended fluctuation analysis (DFA) methods to eliminate the
artifacts in terms of baseline wander and random noise in VAG signals. The DFA algorithm
measures the fluctuations in the intrinsic mode functions (IMFs) produced by the EEMD. The
baseline wander and random noise can be effectively identified in the IMFs according to the
fractal scaling index parameter, and then removed in the reconstructed signals.

2. Signal acquisition

The VAG signals were recorded from 45 healthy adults (age: 30.6 ± 7.1 yr; body mass index:
20.64 ± 2.34 kg m−2) and 20 symptomatic patients (age: 35.3 ± 12.1 yr; body mass index:
21.96 ± 2.33 kg m−2) with different pathological conditions in their knees. The results of
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Figure 1. Illustration of the knee joint vibroarthrographic (VAG) signal processing
procedure. EEMD: ensemble empirical mode decomposition; IMFs: intrinsic mode
functions; DFA: detrended fluctuation analysis.

the two-sample Kolmogorov–Smirnov (KS) test suggested that neither age (p = 0.4) nor
body mass index (p = 0.06) were statistically different between the healthy subjects and
symptomatic patients. The healthy subjects were free of muscular or movement disorders, and
identified as normal by physical examinations. The patients who had symptoms of patellar
and tibial chondromalacia, ligament injury and meniscal tearing were scheduled to undergo
arthroscopy examinations or MRI scanning independent of the VAG signal acquisition. The
VAG signal data analyzed in the present work were selected from a data set that has been
used in our previous related studies (Rangayyan and Wu 2008, 2009, 2010, Rangayyan et al
2013, Wu and Krishnan 2011). The other 24 signals of the original 89 VAG data set were
not considered in the current work due to the lack of sufficient details about the knee joint
pathological conditions. The experimental protocol was approved by the Conjoint Health
Research Ethics Board of the University of Calgary (Rangayyan and Wu 2008).

In the signal acquisition procedure, the subjects were asked to sit on a rigid table with the
legs freely suspended in the air. Each VAG signal was measured with a miniature accelerometer
(Model 3115A, Dytran Instruments, Inc., Chatsworth, CA, USA) placed at the middle-patella
position using two-sided adhesive tape when the subject voluntarily swung the leg over an
angle range from 135◦ to 0◦ (extension movement), and back to 135◦ (flexion movement)
within 4 s (Rangayyan et al 1997). The raw signals sampled at 2 kHz were amplified using
a universal amplifier (Model 13-4615-18, Gould Instrument Systems, Inc., Cleveland, OH,
USA) with a bandwidth of 10 Hz–1 kHz, and then digitized using the LabVIEW software
(National Instruments, Austin, TX, USA) with a 12-bit resolution per sample. Auscultation
of the knee joint was also performed using an electro-stethoscope. A qualitative description
of sound intensity was recorded, together with the relationship to the joint angle. The signal
processing experiments and the statistical analysis of the present study were performed with
Matlab R2011b (The MathWorks, Inc.).

3. Methods

The work flow of the VAG signal processing procedure implemented in the present work
is shown in figure 1. Each raw VAG record is first processed by the EEMD into several
IMFs. The DFA algorithm is then applied to identify the inherent correlation property of each
IMF. Finally, the IMFs that contain dominant artifacts of baseline wander and random noise
are removed to produce the reconstructed artifact-reduced signal. The details of the signal
processing procedure are described in the following section.
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3.1. Ensemble empirical mode decomposition

Empirical mode decomposition (EMD) was introduced by Huang et al (1998) as an effective
approach for the analysis of nonlinear and nonstationary signals. The EMD method works by
sifting a given signal into a set of IMFs that represent the fast and slow oscillations in the signal
(Huang et al 1999). For each IMF, the local maxima are all positive and the local minima are
all negative (Wu et al 2012). The mean values of the upper and lower envelopes of each IMF
should be zero. For a signal that is composed of two or more spectral components, the EMD
method has the capability to separate these components with different amplitude levels in the
decomposed IMFs, as confirmed in the work of Rilling and Flandrin (Rilling and Flandrin
2008). However, the effectiveness of the EMD method is limited by the mode mixing effect
(Huang et al 2003). Mode mixing is a phenomenon whereby the oscillations with disparate
time scales are preserved in one IMF, or where the oscillations with the same time scale are
sifted into different IMFs.

Recently, Wu and Huang (2009) proposed a noise-assisted EMD algorithm, named EEMD,
to overcome the mode mixing obstacle. The EEMD adds different series of white noise into the
signal in several trials. The added white noise plays a crucial role in the decomposition process,
because it provides uniformly distributed references of different scales (Wu and Huang 2004).
In each trial, the added noise is different, so that the decomposed IMFs have no correlation
with the corresponding IMFs from one trial to another. If the number of trials is sufficient, the
added noise can be canceled out by ensemble averaging of the corresponding IMFs obtained in
the different trials. The details of the EEMD process are described as follows (Wu and Huang
2009).

(i) In the nth trial, a white noise time series un(t) is added to a given signal x(t), to attain a
new time series yn(t) = x(t) + un(t), for n = 1, 2, . . . , N, where N denotes the ensemble
number.

(ii) The noise-contaminated signal yn(t) is decomposed into a set of IMFs using the original
EMD method (Huang et al 1998), that is

yn(t) =
i∑

j=1

cn
j + rn

i , (1)

where i is the total number of the IMFs in each decomposition, cn
j is the jth IMF, and rn

i
represents the residue of yn(t) in the nth trial. To ensure that the number of IMFs in each
decomposition is equal, we set a fixed sifting number of 10, to produce each IMF in the
present VAG signal decomposition experiments.

(iii) The above two steps are repeated for N trials, with different white noise series un(t) added
each time.

(iv) The corresponding jth IMFs obtained in the total N trials are averaged, that is

cave
j = 1

N

N∑
n=1

cn
j , (2)

where cave
j is the final IMF of the EEMD.

The effectiveness of the EEMD method depends on the appropriate setting of the ensemble
number and the amplitude of added noise. According to Wu and Huang (2009), the ensemble
number, N, and the amplitude of added noise, A, should satisfy the following rule:

ε = A√
N

, (3)
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where ε represents the final standard deviation of error, which indicates the difference between
the original data and the sum of the IMFs obtained with the EEMD.

In our experiments, the standard deviation of the added noise was set to be 0.2 times the
standard deviation of the raw VAG signal. The ensemble number was fixed at N = 100 to
average the corresponding IMFs obtained in the total 100 trials of the EEMD.

3.2. Fractal scaling index

With the IMFs obtained by the EEMD method, we utilized the DFA algorithm to analyze
the correlation properties (for example, anti-correlated or long-range correlated) of each
decomposed IMF, in terms of the fractal scaling index, in order to identify whether an IMF
contained the dominant artifacts in the knee joint VAG signal tested. The fractal scaling index
is a parameter that measures the subtle fluctuations associated with intrinsic correlations of the
dynamics in a time series. The fractal scaling index can be computed with the DFA algorithm,
which is commonly used to determine the statistical self-affinity of the signal tested (Peng
et al 1992, 1995). The DFA algorithm is popular for the detection of nonstationary time series
that exhibit long-range correlation properties (Bak et al 1987).

Given an L-length decomposed IMF cave
j (l) with the mean value of w j, the integrated IMF

time series s(m) is defined by

s(m) =
m∑

l=1

[
cave

j (l) − w j
]
. (4)

Next, the integrated time series s(m) is divided into several window segments of equal size
k, and a least-squares line (i.e., the local linear trend), denoted as sk(m), that fits the window
samples. The local detrended fluctuation is then computed by subtracting the local linear trend
sk(m) from the integrated time series s(m) in each window segment. The averaged fluctuation
F(k) is computed with the root-mean-square of the local detrended fluctuations as

F(k) =
[

1

L

L∑
m=1

[s(m) − sk(m)]2

] 1
2

. (5)

In the present work, the averaged fluctuation computation is repeated over the time scales
defined by the window sizes in the range from 10 to 250, with an increment of 20, for each
decomposed IMF of 8000 samples in length. The function relating the averaged fluctuation
F(k) to the window size k is then represented on a double logarithmic graph. The fractal scaling
index, represented as α, denotes the slope of the linear relationship between log10 F(k) and
log10 k, which is expressed by a power law as F(k) ∼ kα (Peng et al 1995). For 0.5 < α < 1,
the integrated and detrended time series possess persistent long-range power-law correlations,
whereas 0 < α < 0.5 indicates an anti-correlated property of the time series (Kantelhardt
et al 2001). Typically, the integrated and detrended time series correspond to white noise when
α = 0.5, pink noise (1/ f noise) when α = 1 or brown noise when α = 1.5 (Peng et al 1992).

4. Results and discussion

Figure 2 displays the IMFs decomposed from the VAG signal of a patient who suffers from
anterior cruciate ligament (ACL) and chondromalacia. The EEMD successively produced the
11 IMFs in the decomposition iterations, leaving the residue component as the monotonic
trend. It can be observed that different IMFs reveal different degrees of dynamics involved in
the raw VAG signal. The IMFs decomposed at the low levels (C1–C3) contained fast (high-
frequency) oscillations, and the IMFs decomposed at the higher levels (C4–C11) included
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Figure 2. Plots of the IMFs decomposed by the EEMD from the VAG signal of a subject
with ACL and chondromalacia. From top to bottom: the raw signal, the corresponding
IMFs and the monotonic trend (residue).

more slow (low-frequency) oscillations. The envelopes of the C1 and C2 IMFs were very flat,
and did not present the distinct morphological characteristics associated with the pathological
conditions of ACL (0.9–1.1 s and 3.7–4 s) and chondromalacia (1.4–1.9 s).

As described in the previous section, we implemented the DFA algorithm to compute
the fractal scaling index parameter for each IMF, in order to identify the artifact components
in the VAG signal. Figure 3 shows the double-logarithmic relationship between the averaged
fluctuation and the window size for the C1, C6 and C8 IMFs displayed in figure 2. It is clear
that the three IMFs possess different fractal scaling index values (the slope of the linear fitting
in the root-mean-square sense). The fractal scaling index α of the C1 IMF is equal to 0.14,
which indicates that this IMF has a large number of anti-correlated components. The C6 and C8
IMFs are both long-range correlated time series (α > 1.5). The C8 IMF (α = 1.86) contains
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Figure 3. Double logarithmic plots of the linear relationship between averaged
fluctuation F(k) and the window size k, for the IMFs C1, C6 and C8, decomposed
from the VAG signal shown in figure 2.

more long-range power-law correlated components than the C6 IMF (α = 1.6), because the
C8 IMF has slower oscillations.

In the present study, we removed the IMFs with anti-correlations (0 < α < 0.5) and
monotonic residue (baseline wander), and reconstructed each VAG signal with the long-
range correlated IMFs (α > 0.5). Figure 4 shows the reconstructed artifact-reduced signal,
in comparison with the artifacts and the raw VAG signal. It can be observed that the high-
frequency noise and baseline wander have been reduced, and the morphological patterns in the
VAG signal were not distorted. It is also worth noting that some rapidly varying components
still exist in the reconstructed VAG signal in figure 4. The components are identified to
be long-range correlated, which implies that such components are not random noise but
generated by some type of physiological process. We assume that these components are the
mechanomyographic and vibromyographic responses of the superficial muscles contracted
during the leg swing in the signal acquisition procedure.

Table 1 gives the SNR results obtained by the wavelet matching pursuit (MP)
decomposition (Krishnan and Rangayyan 2000), the time-delay neural filter (Wu et al 2013a)
and the combination of EEMD and DFA algorithms. The statistical values demonstrate that all
three methods have good averaged performance for artifact removal in VAG signals, because
the three methods made SNR improvements larger than 9 dB for both normal and pathological
signals. Both the time-delay neural filter and the combination of EEMD and DFA algorithms
provided SNR values reaching over 20 dB, much better than the wavelet MP decomposition.
For the best signal case, the combination of EEMD and DFA algorithms produced an SNR
value of 24.93 dB, slightly lower than that of the time-delay neural filter. However, for both
normal and pathological signals, the SNR standard deviation values of the combination of
EEMD and DFA algorithms were much smaller than those of the time-delay neural filter.
We also applied the two-sample KS test to evaluate whether the combination of EEMD and
DFA algorithms outperformed the time-delay neural filter in a statistical sense. For both the
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Figure 4. Illustration of the artifact reduction effect for the VAG signal of the patient
with ACL and chondromalacia shown in figure 2: (a) the raw signal, (b) the artifacts
removed, and (c) the reconstructed artifact-reduced signal.

Table 1. Signal-to-noise ratio (SNR) results in dB of the processed knee joint
vibroarthrographic (VAG) signals obtained by the combination of the EEMD and DFA
methods, in comparison with the wavelet matching pursuit (MP) decomposition and the
time-delay neural filter presented in previous studies (Krishnan and Rangayyan 2000,
Wu et al 2013a). Statistical values are mean ± standard deviation.

SNR

Normal signals Pathological signals
(n = 45) (n = 20) Worse case Best case

Raw VAG signals 5.49 ± 2.59 5.5 ± 3.1 0.53 14.63
Wavelet MP decomposition 14.97 ± 6.4 16.42 ± 5.76 7.92 22.19
(Krishnan and Rangayyan 2000)
Time-delay neural 20.4 ± 6.18 20.64 ± 4.96 14.13 25.35
filter (Wu et al 2013a)
EEMD+DFA 20.52 ± 1.14a 20.87 ± 1.89a 16.71 24.93
a The results of the two-sample Kolmogorov–Smirnov test indicated that the SNR values obtained by the EEMD and
DFA methods were significantly different (p < 0.001) from those of the time-delay neural filter for both normal and
pathological VAG signals.

normal and pathological VAG signal groups, the p values (p < 0.001) given by the KS test
showed that the SNR values obtained by the combination of EEMD and DFA methods were
significantly different from those of the time-delay neural filter. Such results indicated that the
combination of EEMD and DFA algorithms achieved a more stable performance for most of
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the VAG signals than the time-delay neural filter, indicating that the combination of EEMD and
DFA algorithms described in the present work could be better suited for the artifact removal
task in VAG signal processing.

5. Conclusion remarks

Imaging modalities such as Magnetic resonance imaging (MRI), computed tomography (CT)
and x-ray are currently prevailing in knee joint disorder detection. X-ray and CT are better for
joint space narrowing, osteophytes and subchondral bone sclerosis because articular cartilage
does not have a high density in contrast to bone. MRI is more sensitive to defects of articular
cartilage surfaces, but it is not very well suited to characterizing the softening, stiffness or
fissuring conditions of cartilage (Wu et al 2010). Ultrasound imaging is extremely sensitive
in the detection of soft tissue changes in osteoarthritic joints, and it helps rheumatologists to
establish guidelines for the assessment of abnormalities in articular cartilage, bony cortex and
synovial tissue (Möller et al 2008). However, the ultrasonic visualization of articular cartilage
is restricted by the acoustic windows, whose width is determined by the anatomy of the joint
tested, because the ultrasound beam is not able to penetrate bony cortex (Möller et al 2008).
As a recently developed infrared-based imaging technique, optical coherence tomography also
demonstrated some merits in osteoarthritis detection, by providing in vivo cartilage images
at a resolution of micrometers (Li et al 2005, Rashidifard et al 2013). Standardized scanning
guidelines based on more clinical trials are necessary to explore the potential of optical
coherence tomography in monitoring osteoarthritis progression. On the other hand, recent
studies (Li and Herzog 2006, Kiviranta et al 2008) have shown that the early onset of cartilage
degeneration may occur prior to any visible change on the articular surface. Quantitative
mechanical evaluation using a handheld indentation probe during knee arthroscopy has been
introduced to detect irreversible early degenerative changes in articular cartilage tissue (Li
and Herzog 2006, Kiviranta et al 2008). Recent related work suggested that the indenter
geometry and its porosity would produce different deformation properties in cartilage, and may
affect the precise evaluation of cartilage degeneration (Li and Herzog 2006). In addition, the
arthroscopic incision is more susceptible to infection, which limits the use of knee arthroscopy
for repeated examinations after surgery. As a noninvasive method, knee joint vibroarthrography
is also useful for point-of-care monitoring of articular cartilage disorders by using miniature
accelerometers and a portable signal acquisition board (Rangayyan and Wu 2009, 2010, Wu
and Krishnan 2011, Rangayyan et al 2013, Cai et al 2013). However, the vibroarthrographic
(VAG) signals are often contaminated with white noise and baseline wander during signal
acquisition experiments, which affect the signal quality and pathological assessment. Digital
signal processing plays an important role in VAG signal analysis, because artifact-free signals
with high resolutions could help physicians better diagnose knee joint pathologies (Cai et al
2012). In addition, with the distinct features extracted from the VAG signals, computational
algorithms can be effectively used for screening the pathological abnormalities from the
normal signals (Wu and Krishnan 2009a, 2009b, Wu et al 2013b). This paper presents a novel
approach that combines ensemble empirical mode decomposition (EEMD) and detrended
fluctuation analysis (DFA) algorithms for artifact removal in VAG signals. The EEMD method
is able to decompose different intrinsic mode functions (IMFs) with fast and low oscillations in
the raw VAG signal. Next, the DFA algorithm can be used to identify the anti-correlated and
the long-range correlated IMFs, which helps reconstruct the artifact-reduced VAG signals. The
signal-to-noise ratio results in the statistical sense demonstrated that the combination of EEMD
and DFA algorithms outperformed either the wavelet matching pursuit decomposition or the
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time-delay neural filter. Future work will emphasize the quantitative study of the morphological
features of VAG signals related to pathological conditions in degenerative knee joints.
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