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Abstract
The signal reconstruction methods based on inverse modeling for the signal reconstruction of
multifunctional sensors have been widely studied in recent years. To improve the accuracy, the
reconstruction methods have become more and more complicated because of the increase in
the model parameters and sample points. However, there is another factor that affects the
reconstruction accuracy, the position of the sample points, which has not been studied. A
reasonable selection of the sample points could improve the signal reconstruction quality in at
least two ways: improved accuracy with the same number of sample points or the same
accuracy obtained with a smaller number of sample points. Both ways are valuable for
improving the accuracy and decreasing the workload, especially for large batches of
multifunctional sensors. In this paper, we propose a sample selection method based on
kernel-subclustering distill groupings of the sample data and produce the representation of the
data set for inverse modeling. The method calculates the distance between two data points
based on the kernel-induced distance instead of the conventional distance. The kernel function
is a generalization of the distance metric by mapping the data that are non-separable in the
original space into homogeneous groups in the high-dimensional space. The method obtained
the best results compared with the other three methods in the simulation.

Keywords: sample selection, signal reconstruction, kernel-subclustering, multifunctional
sensors

1. Introduction

The multifunctional sensor is a type of sensor that integrates
two or more sensitive components, so it can detect several
different environment quantities simultaneously with size
smaller than multi-sensors. Nowadays, the research work on
multifunctional sensors is mainly focused on three aspects:
new structures of multifunctional sensors [1–4], new materials
for multifunctional sensing [5–8] and signal reconstruction
methods [9–11].

3 Author to whom any correspondence should be addressed.

Figure 1 shows the principle of the multifunctional sensor
and its signal reconstruction process. As a multi-input multi-
output (MIMO) function, the input–output function of the
multifunctional sensor is complex and nonlinear as shown in
(1) because of the crossing sensitivity of sensitive components.
Each output signal (y j, j = 1, . . . , m) is a function of all the
inputs (xi, i = 1, . . . n). The aim of the signal reconstruction
methods, such as artificial neural network (ANN), support
vector regression (SVR) and B-spline [9–11], is to construct
the inverse functions gi, i = 1, . . . n, and give the estimation
of the input measurands (x̂i, i = 1, . . . , n).

In the past, there were two ways to improve the accuracy
of signal processing: increase the inverse system parameters
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Figure 1. Principle of the multifunctional sensor and signal reconstruction process.

Figure 2. Signal reconstruction optimization for large batches of multifunctional sensors based on sample selection.

or increase the number of sample points. But more parameters
meant higher complexity of the algorithms, and more sample
points meant more workload for sampling, especially for a
large number of sensors. So in this paper, we consider another
factor that influences the accuracy, the position of the sample
points (y∗

1k, . . . , y∗
mk, x∗

1k, . . . , x∗
nk, k = 1, . . . , p), as shown in

figure 1. In the past, the sample points for signal processing
were given by uniform sampling. It can be improved by
a sample-point selection method due to the nonlinearity of
the input–output functions of most multifunction sensors. A
group of well-selected, representative sample-point positions
could help to obtain higher accuracy with fewer sample points
effectively; ⎧⎪⎨

⎪⎩
y1 = f1(x1, . . . , xn)

...
ym = fm(x1, . . . , xn)

(1)

⎧⎪⎨
⎪⎩

x̂1 = g1(y1, . . . , ym)
...

x̂n = gn(y1, . . . , ym)

. (2)

This sample selection method was very valuable for
the signal reconstruction of large batches of multifunctional
sensors. It was the key step of the signal reconstruction
optimization for large batches of multifunctional sensors
(assuming N sensors) we designed, as shown in figure 2. The
steps of the optimization were as follows.

(1) Find one multifunctional sensor from the batch of sensors,
and give the sample points with a high sampling density
by uniform sampling (sampling 1);

(2) use the sample selection method to find the sample points
suitable for the signal reconstruction;

(3) give the sample points of all the multifunctional sensors
only in the sample position found in step 2 with a low
sampling density (sampling 2);

(4) perform the signal reconstruction for all the multifunc-
tional sensors.

Here we assumed that all the multifunctional sensors were
qualified and noise was avoided as far as possible during the
sampling process. And in step 1, to make sure that the selected
multifunctional sensor was qualified, more sensors would be
selected as candidates (for example, 4 or 5). Only if there
was little difference between their input–output characteristics
(no mutation and little random error) could one of them be
selected. It was very unlikely that all these sensors had the
same problem.

The signal reconstruction optimization provided another
way to improve accuracy with a low workload increase for a
large number of sensors. In this process, the high sampling
density was only performed in one multifunctional sensor.
Obviously, in the signal reconstruction optimization, the most
important step is the second one. So the sample selection
method will be described in detail in the next section.

2. Method

The purpose of the sample selection method is to find the
typical points from the sample data; an easy way is to separate
the sample data into several groups and use the centroids of
each group as the typical points. Therefore, this purpose can
be accomplished by a clustering analysis method, because the
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purpose of clustering is to identify the natural grouping of data
from a large data set to produce a concise representation of a
system’s behavior [12].

To find an effective clustering method, we used a group of
simulation data and tried many popular clustering algorithms
(k-means clustering, fuzzy c-means (FCMs) clustering,
subtractive clustering, etc) to group them, and then used the
cluster centroids to model the inverse system by the signal
reconstruction method in [11]. The results showed that the
subtractive clustering algorithm can find the most appropriate
sample points for inverse modeling.

2.1. Subtractive clustering

Unlike other clustering algorithms, such as FCMs clustering,
mountain method, etc, the cluster centroid candidates of
subtractive clustering are the sample data themselves. This
algorithm can have a large reduction on the number of training
samples, based on the density of surrounding data points.
Namely, all data points in a small dense zone of one point
centroid will be replaced by this typical one. On the other
hand, the sparse points in the input space will remain as cluster
centroids themselves. So this algorithm is very suitable to
select the sample data of multifunctional sensors.

Consider a group of N data points, Y = {Y1,Y2, . . . .,YN},
where Yi = (y1,i, y2,i, . . . , yn,i), i = 1, . . . , N, is an
n-dimensional vector. First normalize each point into a unit
hyper box range [0 1] to make each dimension identical. Then
the subtractive clustering goes as follows.

Step 1: consider each data point as a potential cluster
centroid and define a measure of the potential data point Yi to
serve as a cluster centroid:

Di =
N∑

j=1

exp

(
− 4

r2
a

‖Yi − Yj‖2

)
, i = 1, . . . , N (3)

where ‖.‖ denotes the Euclidean distance, and 0 < ra � 1 is
the clustering radii parameter which defines the neighborhood
radius of each point. The constant ra is a normalized radius
defining a neighborhood; the value of Di is dependent on the
number of data points inside this radius. The data outside the
radius of Yi have little influence on its potential. So the point
having more data within the radius will get higher potential.

Step 2: select the data point Yi with the highest Di, i =
1, . . . , N, as the first cluster centroid Y ∗

1 and Di as its potential
value D∗

1.
Step 3: reduce the potential value of the remaining data

points using (4):

Di = Di − D∗
1 exp

(
− 4

r2
b

∥∥Yi − Y ∗
1

∥∥2
)

, (4)

where rb > 0 defines the neighborhood of a cluster
centroid with which the existence of other cluster centroids
is discouraged. The potential value Di of the points close to
the selected cluster centroid will reduce significantly. When
Di < 0, the point Yi is rejected as a cluster centroid forever. So
the sample data close to the cluster centroid are replaced by
their cluster centroid. Usually, rb = 1.25ra or rb = 1.5ra.

Step 4: select the highest potential value D∗
k from the

reduced potential value Di, and Y ∗
k as the next candidate cluster

centroid.

Step 5: define the accept ratio εup above and reject ratio
εdown below which the candidate centroid will be rejected.
If the data were normalized before, the two parameters can
use these typical values, εup = 0.5 and εdown = 0.15. Then
determine the next cluster centroid by the following criterion.

If D∗
k

D∗
1

> εup, accept the candidate centroid Y ∗
k as the next

cluster centroid and go to the next step;

If D∗
k

D∗
1

< εdown, reject Y ∗
k and finish the algorithm;

If εdown <
D∗

k
D∗

1
< εup, compute the minimum distance dmin

between the candidate Y ∗
k and all the cluster centroids

already selected;

If dmin
ra

+ D∗
k

D∗
1

� 1, accept the candidate centroid Y ∗
k as the

next cluster centroid and go to the next step;

else reject Y ∗
k , set D∗

k = 0 and go to step 4 to find the new
candidate cluster centroid.

Step 6: compute the potential value for the remaining data
points:

Di = Di − D∗
1 exp

(
− 4

r2
b

∥∥Yi − Y ∗
k

∥∥2
)

(5)

then go to step 4.
From the steps of subtractive clustering, we can find

that the number of the cluster centroid cannot be determined
beforehand. A smaller cluster radius will yield more centroids
and a larger one will lead to less centroids. So in practice, it is
necessary to test the value of the clustering radii and select an
adequate one according to the results obtained.

2.2. Kernel function

The kernel function provides a way of increasing the accuracy
of the subtractive method by mapping the data points from
input space to a high-dimensional space in which distance is
measured using a kernel function. The distances calculated
in a high-dimensional space are much more informative than
those of the conventional subtractive method calculated in the
original space, leading to more accurate selection of the cluster
centroids [13, 14].

Considering the data set Y = {Y1,Y2, . . . .,YN} in
section 2.1, let φ be a nonlinear mapping function from input
space to a high-dimensional feature space H:

φ: Rn → H Y �→ φ(Y ). (6)

By applying the nonlinear mapping function φ, the dot
product (Yi ·Yj) in the input space is mapped to (φ(Yi) ·φ(Yj))

in the feature space. The key notion of the kernel function
is that the dot product in the feature space can be calculated
without the explicit specification of the mapping function φ

by the kernel function:

φ(Yi) · φ(Yj) = K(Yi,Yj). (7)

3
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Three commonly used kernel functions are the polynomial
kernel function, the Gaussian kernel function and the sigmoidal
kernel function, as shown below:

K(Yi,Yj) = (Yi · Yj + c)d (8)

K(Yi,Yj) = exp

(
−‖Yi − Yj‖2

2σ 2

)
(9)

K(Yi,Yj) = tanh(κ(Yi · Yj) + ϑ), (10)

where c � 0, d ∈ N, σ > 0, κ > 0 and ϑ < 0.

2.3. Kernel-subclustering for sample selection

If the data set Y = {Y1,Y2, . . . .,YN} in sections 2.1 and 2.2
is mapped to the feature space by some mapping function φ,
the Euclidean distance in the feature space can be expressed
as follows:

‖φ(Yi) − φ(Yj)‖2 = (φ(Yi) − φ(Yj)) · (φ(Yi) − φ(Yj))

= φ(Yi) · φ(Yi) − 2φ(Yi) · φ(Yj)

+ φ(Yj) · φ(Yj)

= K(Yi,Yi) − 2K(Yi,Yj) + K(Yj,Yj). (11)

The cluster centroid selection procedure of the kernel-
subclustering is similar to that of the subtractive method. The
Euclidean distance calculation is modified by equation (11),
and the other parts of the procedure in section 2.1 are
unchanged. So the new equations for the potential value
calculation of data points are

Di =
N∑

j=1

exp

(
− 4

r2
a

(K(Yi,Yi) − 2K(Yi,Yj) + K(Yj,Yj))

)
,

i = 1, . . . , N (12)

Di = Di − D∗
1 exp

(
− 4

r2
b

(
K(Yi,Yi) − 2K

(
Yi,Y ∗

1

)

+ K
(
Y ∗

1 ,Y ∗
1

)))
(13)

Di = Di − D∗
1 exp

(
− 4

r2
b

(
K(Yi,Yi) − 2K

(
Yi,Y ∗

k

)

+ K
(
Y ∗

k ,Y ∗
k

)))
. (14)

Therefore, replace equations (3)–(5) by equations (12)–
(14); the subtractive clustering method is changed into the
kernel-subclustering method. In this paper, the Gaussian
function is used as the kernel function in the simulation.

3. Results and discussion

To demonstrate the effectiveness of the proposed method, we
applied the kernel-subclustering method, two conventional
methods (subtractive clustering and FCM) and uniform
sampling to a common circuit model of multifunctional
sensors. In the simulation, a fourth-order B-spline method [11]
was applied to model the inverse system of the circuit model

Overall
samples

Sample
selection

B-spline based
Inverse Modeling

Circuit
model

Comparison & Evaluation

Signal Reconstruction
Results

Figure 3. Procedure of the simulation.

1R 2R

3R

1x
2x

ccV

1RP 2RP

2y
1y

 

Figure 4. Circuit model of the two-input two-output multifunctional
sensor.

and reconstruct the measurands using the selected sample
points, and then the errors between the signal reconstruction
results and the overall samples were compared to evaluate the
effectiveness of the four sample selection methods, as shown
in figure 3.

3.1. Circuit model of the multifunctional sensor

The circuit model is used as the equivalent of the
multifunctional sensor (figure 4). The structure of the circuit
model is simple and its input–output characteristic is similar
to those of many multifunctional sensors [15]. In the circuit
model, Vcc = 5 V, R1 = R2 = R3 = 1 k� are the known
parameters and RP1 = RP2. The inputs are the ratios of the
lower resistance in the slide rheostats RP1 and RP2 to their total
resistance. The outputs are the voltages of y1 and y2.

Therefore, the transfer function (15) for y1 of the circuit
model can be derived from the Kirchhoff law. The ratio
l = RP1/R1 = RP2/R2 indicates the nonlinearity of the circuit
model. Then the resistances and voltage are substituted by their
values and equations (16) and (17) can be obtained. From these
two equations, we can find that the greater the value of l, the
higher is the nonlinearity of the model. In this simulation, l is

4
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 l=10

Figure 5. Relationship between input x1 and output y1 of the circuit
model.
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Figure 6. Inputs of the inverse system for the circuit model.

set to 10 which is a relatively large value. Figure 5 shows the
relationship between x1 and y1 in the case of l = 10;

y1 = Vcc [2x1 + x2 + lx1x2(2 − x1 − x2)]

R1 + R2 + R3 + l [x2(1 − x2) + x1(1 − x1)]
(15)

y1 = 5 [2x1 + x2 + lx1x2(2 − x1 − x2)]

3 + l [x2(1 − x2) + x1(1 − x1)]
(16)

y2 = 5 [2x2 + x1 + lx1x2(2 − x1 − x2)]

3 + l [x2(1 − x2) + x1(1 − x1)]
. (17)

To perform the sample selection methods, the number of
overall samples must be sufficient. So the values of x1 and x2

were given in the range of [0.1 0.9] at the interval of 0.025
(1089 samples), and the values of y1 and y2 can be given using
(16) and (17). Therefore, the inputs of the inverse system
are y1 and y2, and the outputs are x1 and x2. Figure 6 shows
the inputs of the inverse system for the circuit model, and

the sample selection methods are performed on the data set
Y = (y1,i,y2,i), i = 1, . . . , 1089.

In the simulation, the FCM method ran 500 times with
the initial centroids randomly selected from the data set. The
parameters of the FCM method were set to a termination
criterion ε = 1 × 10−5 and weight exponent m = 2.0.
To evaluate the effectiveness of the subtractive clustering
and kernel-subclustering methods, we changed the values of
the clustering radii parameter ra to give different numbers
of selected samples (120–300 points). Another important
parameter rb was set to 1.25ra. Figures 7(a)–(d) show the
select points of the four methods when the number of the
samples was 169. From figure 7(a), we can see that although
x1 and x2 were uniformly sampled, the distribution of y1 and
y2 was non-uniform because of the nonlinearity of the circuit
system. So the uniform sampling was not an optimal sample
selection method for the inverse modeling.

To further evaluate the performance of samples selected
by the four methods, we used the samples to model the inverse
systems of the circuit model by a fourth-order B-spline [11]
(figure 1) and compute the error between x1, x2 and x̂1, x̂2 in
the range [0.2 0.8]. The expressions of the inverse systems for
x̂1 and x̂2 are

x̂1,i =
L∑

j=−K+1

M∑
p=−K+1

[c j,pB j,K (y1,i)Bp,K (y2,i)],

i = 1, . . . ,N (18)

x̂2,i =
L′∑

j=−K+1

M′∑
p=−K+1

[c′
j,pB j,K (y1,i)Bp,K (y2,i)],

i = 1, . . . , N, (19)

where Bj,K () and Bp,K () are the B-spline basis functions for
y1,i and y2,i, {c j,p} and {c′

j,p} are the B-spline coefficients,
K = 4 is the order of the B-spline, and L, M and L′, M′ are
the numbers of the internal B-spline knots for y1,i and y2,i

in (18) and (19), respectively. Herein, in the simulation, all
the B-spline-based inverse models used the same number of
knots (L = M = 18, L′ = M′ = 18) and the same coefficient
training method (extend Kalman filter, EKF). Obviously, the
results for x1 and x2 were the same, so we only gave the results
for x1.

The signal reconstruction results are shown in figures 8
and 9 in detail. These two figures show the local and
global characteristics, respectively, by maximum relative error
(MRE) and mean square error (MSE). Herein, the MSE can
be calculated by

MSE =
√√√√ 1

N

N∑
i=1

(x j,i − x̂ j,i)2, j = 1, 2. (20)

Obviously, no matter the local or global characteristics,
the reconstruction results of the uniform sampling were the
worst of the four methods. The MRE increased to greater than
1.5% and the MSE increased to 6.72 × 10−4 when the number
of selected samples was decreased to 196. Moreover, the MRE
of the uniform sampling increased to 2.52% when the number
of selected points was 256, whereas the MRE was 0.77% when
the number of selected points was 225. This was an obvious
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(c) (d ) 

Figure 7. Sample selection results of four methods: (a) results of uniform sampling, 169 points; (b) results of FCM, 169 points; (c) results of
subtractive clustering, 169 points; (d) results of kernel-subclustering, 169 points.

disadvantage of uniform sampling: key points with important
information may be lost by uniform sampling even when the
density of the sample rate was increased. Therefore, it was
very necessary and meaningful to develop a powerful sample
selection method.

In general, the global characteristics of the other three
methods were similar, as shown in figure 9, although the
kernel-subclustering was a little better than the other two
methods when the number of selected points was less than
140. And the local characteristics of the FCM and subtractive
clustering were also very close. To ensure that the MRE was
less than 1%, the number of selected points must be greater
than 160. However, the FCM-based method had a disadvantage
that the selected points were different each time we ran the
program because of the random initial centroids. So the results
of the FCM cannot be guaranteed in a certain run, and figures 8
and 9 only show the best of several runs. Moreover, to improve
the signal reconstruction results, we also tried the kernel-based
FCM [16], but its results did not improve compared with
the FCM.
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Figure 8. MRE using different numbers of selected samples by the
four methods.
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Figure 9. MSE using different numbers of selected samples by the
four methods.

The local characteristics of the kernel-subclustering were
the best of the four methods. The MRE of the kernel-
subclustering was the lowest of the four methods (<1%)
when the number of selected points was less than 165 and the
MRE was still less than 1% (0.88%) when the number of the
selected points was 124. Therefore, considering the global and
local characteristics simultaneously, the kernel-subclustering
method can be a very good candidate for the sample selection
of multifunctional sensors.

4. Conclusion

In this paper, we have presented a signal reconstruction
optimization method, as well as its sample selection algorithm
kernel-subclustering, to decrease the workload of signal
reconstruction for large batches of multifunctional sensors.
The simulation was performed to reconstruct the signal of a
circuit model whose input–output characteristics were very
similar to those of real multifunctional sensors. Four methods
(uniform sampling, FCM, subtractive clustering and kernel-
subclustering) were applied in the simulation. The simulation
results showed that the proposed kernel-subclustering can
obtain higher accuracy with fewer selected points than the
other three methods. Moreover, the proposed optimization
method and its sample selected algorithm can also be a good
candidate for the signal reconstruction of traditional sensors.
Further work can be focused on applying the proposed method
to the signal reconstruction for real multifunctional sensors.
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