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ABSTRACT

Neutrino-dominated accretion flows (NDAFs) around rotating stellar-mass black holes are plausible candidates
for the central engines of gamma-ray bursts (GRBs). We investigate one-dimensional global solutions of NDAFs,
taking into account general relativity in the Kerr metric, neutrino physics, and nucleosynthesis more precisely
than previous works. We calculate 16 solutions with different characterized accretion rates and black hole spins to
exhibit the radial distributions of various physical properties in NDAFs. We confirm that the electron degeneracy
has important effects in NDAFs and we find that the electron fraction is about 0.46 in the outer region for all 16
solutions. From the perspective of the mass fraction, free nucleons, 4He, and 56Fe dominate in the inner, middle, and
outer regions, respectively. The influence of neutrino trapping on the annihilation is of importance for the superhigh
accretion (Ṁ = 10 M� s−1) and most of the 16 solutions have an adequate annihilation luminosity for GRBs.

Key words: accretion, accretion disks – black hole physics – gamma-ray burst: general – nuclear reactions,
nucleosynthesis, abundances
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1. INTRODUCTION

The observations of gamma-ray bursts (GRBs) are well
explained by the relativistic fireball shock model to some
extent. However, the central engine powering the fireball is
always hidden inside due to the extremely thick optical depth
of the fireball. A popular model of the central engine, neutrino-
dominated accretion flows (NDAFs), involves a hyperaccreting
stellar-mass black hole with accretion rates in the range of
0.01–10 M� s−1. This model has been widely applied to explain
the variable light curves, extended emission, X-ray flares,
associated supernovae, gravitational radiation, and others in
GRBs in the past decade (e.g., Popham et al. 1999; Narayan
et al. 2001; Di Matteo et al. 2002; Kohri & Mineshige 2002;
Kohri et al. 2005; Lee et al. 2005; Gu et al. 2006; Chen &
Beloborodov 2007; Janiuk et al. 2007; Kawanaka & Mineshige
2007; Liu et al. 2007, 2008, 2010a, 2010b, 2012a, 2012b, 2013;
Lei et al. 2009; Romero et al. 2010; Sun et al. 2012; Kawanaka &
Kohri 2012; Li & Liu 2013). In this developing route of NDAF
theory, much more detailed and precise microphysics has been
widely introduced to improve the theory (see, e.g., Kato et al.
2008).

The relativistic global solutions of NDAFs were first worked
out by Popham et al. (1999). They found that the inner
region of NDAFs is in an extremely hot and dense state and
the free electrons are in a degenerated state in which the
photons are totally trapped and only neutrinos can escape
to carry away the viscously dissipated gravitational energy.
Those neutrinos collide with each other and neutrino pairs
annihilate in a funnel space above the inner disk of NDAFs
to produce a relativistic fireball of a GRB event. In their
solutions, they assumed that NDAFs are always optically thin
everywhere for neutrinos, even for the case with extremely
high accretion rate, and they oversimplified the treatment of
neutrino production and electron degeneracy. These result in an
overstated annihilation luminosity, especially for high accretion
rate, and lose a lot of microphysics information. Therefore, many

subsequent research works have been dedicated to improving
the microphysics of NDAFs (e.g., Di Matteo et al. 2002; Kohri
& Mineshige 2002; Kohri et al. 2005; Lee et al. 2005; Janiuk
et al. 2007). Some elaborate physical considerations, such as
defining the neutrino optical depth, precise treatment of electron
degeneracy, and electron fraction, were introduced to improve
the NDAF theory step by step. Gu et al. (2006) showed that
general relativistic effects should be considered and that the
contribution from the region optically thick to neutrinos should
also be included. Under such consideration, they found that
NDAFs can still work as the central engine of the GRB from
the viewpoint of energy. Liu et al. (2007) studied the radial
structure and neutrino annihilation luminosity of NDAFs. They
introduced a bridging formula to treat the radial distribution of
the electron fraction between neutrino optically thin and thick
limits, but they ignored the existence of heavy-metal elements
and assumed that the heaviest nucleus is 4He, which implies
that the numerical value of the electron fraction at the radial
outer boundary is 0.5. Chen & Beloborodov (2007) presented
calculations of the structure of NDAFs around Kerr black holes
and proved that both the electron degeneracy and the electron
fraction dramatically affect the structure. They also considered
that 4He abounded in the outer region of the disk. The ignition
radius and other characteristic radii are defined in their work.
Kawanaka & Mineshige (2007) investigated NDAFs around
Schwarzschild black hole with pseudo-Newtonian potential
(Paczyński & Wiita 1980). They assumed that the inflowing
nucleon gas is composed primarily of nuclei of a neutron-
rich iron group and that the electron fraction is 0.42 at the
outer boundary. They studied the radial structure and stability
of the disk for different mass accretion rates, using a realistic
equation of state (Lattimer & Swesty 1991), in order to properly
treat the dissociation of nuclei. Kawanaka & Kohri (2012)
studied the effects of convection in NDAFs. They proposed
that this process can be used to explain the origin of the highly
variable light curves in the prompt emissions of GRBs. Liu
et al. (2013) investigated the vertical structure and element
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distribution of NDAFs in spherical coordinates with reasonable
nuclear statistical equilibrium (NSE; Seitenzahl et al. 2008).
According to their calculations, heavy nuclei tend to be produced
in a thin region near the disk surface, whose mass fractions
are primarily determined by the accretion rate and the vertical
distribution of temperature and density. In this thin region, they
found that 56Ni is dominant for flow with low accretion rate (e.g.,
0.05 M� s−1) but 56Fe is dominant for the high accretion rate
counterpart (e.g., 1 M� s−1). The dominant 56Ni in the special
region may provide a clue to understand the bumps in the optical
light curve of core-collapse supernovae.

In this paper, we return to investigate the relativistic global
solutions of NDAF in the Kerr metric, but we fully upgrade
the microphysical treatment with detailed neutrino physics and
precise NSE based on the improvement of the NDAF theory in
the past decade. In Section 2, we establish our physical model
for NDAF by introducing the fundamental hydrodynamic and
thermodynamic equations, the detailed neutrino processes, and
the proton-rich NSE (Seitenzahl et al. 2008; Liu et al. 2013). In
Section 3, we describe in detail the numerical methods for the
calculations. In Section 4, we show some typical solutions and
discuss the results they reveal. We investigate the solutions with
different characterized accretion rates and black hole spins. For
each case, we calculate the neutrino luminosity and neutrino
annihilation luminosity, and show their dependence on these
parameters. Conclusions and discussion are made in Section 5.

2. PHYSICAL MODEL

2.1. Relativistic Hydrodynamics

In this paper, we solve for the disk structure in the Kerr metric,
because the inner regions of disks may contribute most of the
luminosity and it is affected deeply by the spin of the black hole.
Our hydrodynamical model of disks is based on the advection-
dominated accretion flow model of Abramowicz et al. (1996),
the NDAF model of Popham et al. (1999), and the slim disk
model of S

↪
adowski (2009), which are all research works on

the one-dimensional global solutions of accretion disks in the
Kerr metric. For convenience, we describe our hydrodynamical
model in units of G = c = M = 1 (where M is the mass of
black hole), but we use cgs units when we describe the neutrino
physics and thermodynamics, and present our results later.

The continuity equation is

Ṁ = −4πρHΔ1/2 Vr√
1 − Vr

2
, (1)

where Ṁ is the rest-mass accretion rate, ρ is the rest-mass
density, H is the half-thickness of disk, Vr is the radial velocity
measured in the corotating frame, Δ ≡ r2 −2r +a2 is a function
of the Boyer–Lindquist radial coordinate r, and a is the total
specific angular momentum of the black hole.

The gas energy equation is

− Ṁ

2πr2

(
u

ρ

d ln u

d ln r
− p

ρ

d ln ρ

d ln r

)
= −2αpHAγ 2

r3

dΩ
dr

− Q−,

(2)

where u is the specific internal energy, p is the pressure, α is
the viscosity parameter, A ≡ r4 + r2a2 + 2ra2, γ is the Lorentz
factor, Ω ≡ uφ/ut is the angular velocity with respect to the
stationary observer, and Q− is the total cooling rate as described
in Section 2.4.

The radial momentum equation is

Vr

1 − Vr
2

dVr

dr
= A

r
− (1 − Vr

2)
1

λρ

dp

dr
, (3)

where

A ≡ − A

r3ΔΩ+
KΩ−

K

(Ω − Ω+
K )(Ω − Ω−

K )

1 − Ω̃2R̃2
. (4)

The A term combines the effects of gravity and rotation, where
λ ≡ (ρ + p + u)/ρ is the relativistic enthalpy, Ω̃ ≡ Ω − 2ar/A
is the angular velocity with respect to the local inertial observer,
Ω±

K ≡ ±(r3/2 ± a)−1 are the angular frequencies of the
corotating and counterrotating Keplerian orbits, and R̃ ≡
A/(r2Δ1/2) is the radius of gyration.

The equation of angular momentum conservation is

Ṁ(L − Lin) = 4πpHA1/2Δ1/2γ

r
, (5)

whereL ≡ uφ is the specific angular momentum of the accreting
gas and Lin is the specific angular momentum at the inner edge
of the disk.

The equation of vertical mechanical equilibrium (Abramow-
icz et al. 1997) is

p

λρH 2
= L2 − a2(ε2 − 1)

r4
, (6)

where ε ≡ ut is the energy at infinity, which is conserved along
geodesics. In a practical calculation, the detailed evaluating
formulae of ε and γ are necessary,

ε = −γ
rΔ1/2

A1/2
− 2ar

A
L, (7)

and

γ =
√

1

1 − Vr
2 +

L2r2

A
. (8)

2.2. Neutrino Physics

The main difference between NDAF and a typical accretion
disk is the cooling mechanism. Neutrino radiation becomes
dominant in NDAF, so the microphysics, especially the neutrino
physics, must be included in the calculations.

2.2.1. Neutrino Optical Depth

The total optical depth for neutrinos is

τνi
= τs,νi

+ τa,νi
, (9)

where τs,νi
and τa,νi

are the neutrino optical depth from scattering
and absorption, and the subscript i is for the three species of
neutrinos νe, νμ, and ντ .

The optical depth for neutrinos through scattering off elec-
trons and nucleons τs,νi

is given by

τs,νi
≈ H

⎛
⎝σe,νi

ne +
∑

j

σj,νi
nj

⎞
⎠ , (10)
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where H is the half-thickness of the disk, and σe,νi
, σj,νi

and
ne, and nj (j = 1, 2, ...) are the cross sections of electrons
and nucleons (n1 and n2 are the number density of free protons
and free neutrons) and the number density of electrons and
nucleons (j � 3), respectively (e.g., Kohri et al. 2005; Chen &
Beloborodov 2007; Kawanaka & Mineshige 2007; Liu et al.
2007, 2012a). The major cross sections are from scattering
off electrons, free protons, free neutrons, and other elements’
particles, which are given by (Burrows & Thompson 2004; Chen
& Beloborodov 2007)

σe,νi
≈ 3kBT σ0eνi

8mec2

(
1 +

ηe

4

) [
(CV,νi

+ CA,νi
)2

+
1

3
(CV,νi

− CA,νi
)2

]
, (11)

σn1,νi
≈ σ0e

2
νi

4
[(CV,νi

− 1)2 + 3g2
A(CA,νi

− 1)2], (12)

σn2,νi
≈ σ0e

2
νi

4

1 + 3g2
A

4
, (13)

σnj ,νi
≈ σ0

16
e2
νi

(Zj + Nj )

[
1 − 2Zj

Zj + Nj

(1 − 2 sin2 θW )

]2

,

(14)

where kB and ηe are the Boltzmann constant and electron
degeneracy, σ0 = 4G2

F (mec
2)2/π (h̄c)4 ≈ 1.71 × 10−44 cm2,

GF ≈ 1.436 × 10−49 erg cm3, eνi
is the mean energy of

neutrinos in units of (mec
2), gA ≈ 1.26, sin2 θW ≈ 0.23, Zj

and Nj are defined as the number of the protons and neutrons
of a nucleus Xj, CV,νe

= 1/2 + 2 sin2 θW , CV,νμ
= CV,ντ

=
−1/2 + 2 sin2 θW , CA,νe

= CA,νμ
= CA,ντ

= 1/2, and CA,νe
=

CA,νμ
= CA,ντ

= −1/2.
The number density of electrons and positrons is given by the

Fermi–Dirac integral (see, e.g., Kohri et al. 2005; Kawanaka &
Mineshige 2007; Liu et al. 2007),

ne∓ = 1

h̄3π2

∫ ∞

0
dpp2 1

e(
√

p2c2+me
2c4∓μe)/kBT + 1

, (15)

where μe = ηekBT is the chemical potential of electrons.
The absorption depth for neutrinos τa,νi

is given by

τa,νi
= qνi

H

4(7/8)σT 4
, (16)

where qνi
is the total neutrino cooling rate (per unit volume) and

is the sum of four terms,

qνi
= qUrca + qe−+e+→νi+νi

+ qn+n→n+n+νi+νi
+ qγ̃→νi+νi

. (17)

Urca processes have been included in the proton-rich NSE
(Seitenzahl et al. 2008; Liu et al. 2013). The neutrino cooling
rate due to the Urca processes qUrca relates only to νe and,
for simplicity, we considered that there are four major terms
related to electrons, positrons, free protons, and free neutrons
and nucleons (Liu et al. 2007; Kawanaka & Mineshige 2007).

In other words, the energy emission rate for electron capture
by heavy nuclei is important for the outer region of the disk
(Kawanaka & Mineshige 2007). The main energy emission
rate is

qUrca = qp+e−→n+νe
+ qn+e+→p+νe

+ qn→p+e−+νe
+ qXj +e−→X′

j +νe
,

(18)

with

qp+e−→n+νe
= G2

F cos2 θc

2π2h̄3c2

(
1 + 3g2

A

)
n1

×
∫ ∞

Q

dEeEe

√
Ee

2 − me
2c4(Ee − Q)3fe− ,

(19)

qn+e+→p+νe
= G2

F cos2 θc

2π2h̄3c2

(
1 + 3g2

A

)
n2∫ ∞

mec2
dEeEe

√
Ee

2 − me
2c4(Ee + Q)3fe+ ,

(20)

qn→p+e−+νe
= G2

F cos2 θc

2π2h̄3c2

(
1 + 3g2

A

)
n2∫ Q

mec2
dEeEe

√
Ee

2 − me
2c4(Q − Ee)3(1 − fe− ),

(21)

qXj +e−→X′
j +νe

= G2
F cos2 θc

2π2h̄3c2
g2

A

2

7
Np(Zj )Nh(Nj )nj∫ ∞

Q′
dEeEe

√
Ee

2 − me
2c4(Ee − Q′)3fe− ,

(22)

where cos2 θc ≈ 0.947, Q = (mn−mp)c2, Q′ ≈ μ′
n−μ′

p+Δ, μ′
n

and μ′
p are the chemical potential of protons and neutrons in their

own nuclei, Δ ≈ 3MeV, and fe∓ = {exp[(Ee ∓μe)/kBT ]+1}−1

is the Fermi–Dirac function:

Np(Zj ) =
{

0, Zj < 20,
Zj − 20, 20 < Zj < 28,
8, Zj > 28,

(23)

Nh(Nj ) =
{

6, Nj < 34,
40 − Nj, 34 < Nj < 40,
0, Nj > 40.

(24)

The third term (also named β decay) is small in comparison with
the first two terms, and is usually not included in the literature.

The electron–positron pair annihilation rate into neutrinos
qe−+e+→νi+νi

is (e.g., Itoh et al. 1989; Yakovlev et al. 2001; Janiuk
et al. 2007)

qe−+e+→νi+νi
=

Qc

36π

{(
C2

V,νi
+ C2

A,νi

)2
[8(Φ1U2 + Φ2U1) − 2(Φ−1U2 + Φ2U−1)

+ 7(Φ0U1 + Φ1U0)]} + {[5(Φ0U−1 + Φ−1U0)]

+ 9
(
C2

V,νi
− C2

A,νi

)2
[Φ0(U1 + U−1) + (Φ−1 + Φ1)U0]

}
, (25)
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where Qc = (mec/h̄)9G2
F /h̄ ≈ 1.023 × 1023 erg cm−3 s−1, and

the dimensionless functions Uk and Φk (k = −1, 0, 1, 2) in the
above equation can be expressed in terms of the Fermi–Dirac
functions (Kawanaka & Mineshige 2007). As we know, when
electrons are degenerate, qe−+e+→νi+νi

becomes negligible.
The nucleon–nucleon bremsstrahlung rate qn+n→n+n+νi+νi

is
the same for the three species of neutrinos (e.g., Itoh et al. 1996;
Di Matteo et al. 2002; Liu et al. 2007),

qn+n→n+n+νi+νi
≈ 1.5 × 1027ρ2

10T
5.5

11 erg cm−3 s−1. (26)

We considered the plasmon decay rate qγ̃ →νi+νi
, where plasmons

γ̃ are photons interacting with electrons (e.g., Kawanaka &
Mineshige 2007),

qγ̃→νe+νe
= π4

6α∗ CV,νe

σ0c

(mec2)2

(kBT )9

(2πh̄c)6
γ 6

× (γ 2 + 2γ + 2)exp(−γ ), (27)

qγ̃→νμ+νμ
= qγ̃→ντ +ντ

= 4π4

6α∗ CV,νμ

σ0c

(mec2)2

(kBT )9

(2πh̄c)6
γ 6

× (γ 2 + 2γ + 2)exp(−γ ). (28)

α∗ ≈ 1/137 is the fine-structure constant and γ ≈ 5.565 ×
10−2[(π2 + 3η2

e )/3]
1/2

. Here qn+n→n+n+νi+νi
and qγ̃→νi+νi

may
become important only for very high electron degeneracy states.

2.2.2. Electron Fraction

The electron fraction can be written as (e.g., Liu et al. 2013)

Ye =

∑
j

njZj∑
j

nj (Zj + Nj )
. (29)

Liu et al. (2007) calculated the electron fraction according to the
simple NSE equation, the condition of electrical neutrality, and
a bridging formula of electron fraction that is valid in both the
optically thin (μn = μp+2μe, where μn and μp are the chemical
potential of free neutrons and protons) and thick (μn = μp +μe)
regimes. Here we use the strict NSE equations (see Section 2.3)
to replace the simple one which assumed that the heaviest nuclei
is 4He. Meanwhile, the condition of electrical neutrality still
holds, which is given by (Liu et al. 2007, 2013)

∑
j

njZj = ρYe

mu

= ne− − ne+ , (30)

where mu is the mean mass of the nucleus, and we assumed that
the mass fraction approximately equals the number density.

Furthermore, in order to allow for a transition from the
optically thin to optically thick regimes, the bridging formula of
free protons and neutrons can be established from the relations
of the reaction rates in the above β processes, which can be
written as (Yuan 2005; Liu et al. 2007)

lg
n2

n1
= f (τν)

2μe − Q

kBT
+ [1 − f (τν)]

μe − Q

kBT
, (31)

where f (τν) = exp(−τνe ) is a weight factor, and μe is the
chemical potential of electrons. In addition, the bridging formula
can also be used even when taking nucleosynthesis into account
because the outer region of the disk is optically thin to neutrinos.

2.3. Nucleosynthesis

NSEs established by all nuclear reactions are in chemical
equilibrium. Seitenzahl et al. (2008) studied proton-rich material
in a state of NSE, which applies to almost the entire range of
electron fraction. The complicated and detailed balance has been
included under the condition of chemical potential equilibrium.
The number density of nuclei j can be considered as

nj = gj

(
mjkBT

h̄2

)3/2

× exp

[
Zj

(
μkin

p + μC
p

)
+ Njμ

kin
n − μC

j + Qj

kBT

]
, (32)

where μkin
p and μkin

n are the kinetic chemical potentials of protons
and neutrons, μC

p and μC
j are the Coulomb chemical potentials of

protons and nucleons, and gj are the nuclear partition functions.
Seitenzahl et al. showed that 56Ni is favored in NSE under
proton-rich conditions (Ye � 0.5) which is different from the
case of domination by the Fe-peak nuclei with the largest
binding energy per nucleon that has a proton to nucleon ratio
close to the prescribed electron fraction. In particular, the lower
limit of the temperature in the NSE calculation is identified
to be about 2 × 109 K. If the temperature is lower than this
limit, the NSE solutions will not be reliable. Therefore, in our
calculations we assume that all nuclear reactions would cease
when the temperature is lower than this limit.

Thus NSE originates from the study of the proton-rich
state of matter, but it can be used in describing all states
of matter. The limit of the electron fraction, Ye � 0.5,
has been canceled, and the more real state of matter
can be described through these NSE equations. The NSE
code in proton-rich environments can be downloaded from
http://cococubed.asu.edu/code_pages/nse.shtml.

2.4. Thermodynamics

The contributions to pressure from degenerate electrons and
from neutrinos should be included in the equation of state. It
can be written as

p = pgas + prad + pe + pν. (33)

The gas pressure from free nucleons pgas is

pgas =
∑

j

nj kBT . (34)

The disk is definitely optically thick to photons, so the photon
radiation pressure prad is

prad = aT 4/3. (35)

The electron pressure pe is from both electrons and positrons
and should be calculated using the exact Fermi–Dirac distri-
bution (e.g., Chen & Beloborodov 2007; Liu et al. 2007). No
asymptotic expansions are valid because electrons are neither
nondegenerate nor strongly degenerate, and they are not ultra-
relativistic at all radii. It reads

pe = pe− + pe+ , (36)
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with

pe∓ = 1

3π2h̄3c3

∫ ∞

0
dp

p4√
p2c2 + me

2c4

× 1

e(
√

p2c2+me
2c4∓μe)/kBT + 1

. (37)

Pan & Yuan (2012a, 2012b) calculated the one-dimensional
Boltzmann equation of neutrino and anti-neutrino transport in
accretion disks. From the solutions of NDAFs, the bridging
formula valid in the regimes optically thin and thick to neutrinos
can also be used as a good approximation. We adopt the formula
for the energy density of neutrinos uν (e.g., Di Matteo et al. 2002;
Kohri et al. 2005; Liu et al. 2007),

uν =
∑

i

(7/8)aT 4(τνi
/2 + 1/

√
3)

τνi
/2 + 1/

√
3 + 1/(3τa,νi

)
. (38)

The neutrino pressure pν is

pν = uν

3
. (39)

The cooling rate appearing in Equation (2) is composed of
the cooling rates of photodisintegration, neutrino emitting, and
photon radiation:

Q− = Qph + Qν + Qrad. (40)

However, the cooling due to photon radiation is always much
smaller than the other two and so we ignore Qrad in this paper.

The cooling rate due to photodisintegration Qph, which is
mainly related to α particles, can be written as

Qph = 6.8 × 1028ρ10VrH
dXnuc

dr
cgs units, (41)

where ρ10 ≡ ρ/1010 g cm−3 and Xnuc is the mass fraction of free
nucleons (e.g., Kohri et al. 2005; Liu et al. 2007). Here we ignore
the cooling rate due to the disintegration of other heavy nuclei
because of the lower number density of these nuclei and the
absolutely dominant advective cooling rate in the outer region.

The cooling rate due to neutrino loss Qν is expressed
in accordance with the above equation of energy density of
neutrinos (e.g., Di Matteo et al. 2002; Kohri et al. 2005; Liu
et al. 2007),

Qν =
∑

i

(7/8)σT 4

(3/4)[τνi
/2 + 1/

√
3 + 1/(3τa,νi

)]
. (42)

2.5. Neutrino Luminosity and Neutrino Annihilation
Luminosity

The neutrino radiation luminosity can be calculated by
integrating the neutrino cooling rate Qν along the disk, which
is obtained to be

Lν = 4π

∫ rout

max(rms,rtr)
Qνrdr, (43)

where rout is the outer edge of the disk, which is fixed to 500
Schwarzschild radius in our calculations. The lower bound is
defined to be the larger of the neutrino trapping radius rtr and

the marginally stable radius of the black hole rms, in order to
take into account the effect of neutrino trapping.

In classic accretion theory, the radiation energy generated
near the equatorial plane diffuses toward the disk surface at the
speed of ∼c/3τ (Mihalas & Weibel Mihalas 1984), where τ is
the total optical depth. Thus, the timescale of radiative diffusion
is tdiff = H/(c/3τ ) (e.g., Ohsuga et al. 2002). We use Vn for
neutrinos and c for photons, which is related to the energy of
neutrinos ∼3.7kBT (e.g., Di Matteo et al. 2002; Liu et al. 2007,
2012a). Vn can be estimated as ∼(3.7kBT c2/0.07 eV)1/2, where
0.07 eV roughly equals the low limit of the neutrino rest-mass
energy. Since the accretion timescale tacc is given by −r/Vr , the
condition in which the neutrino radiation energy is trapped in the
flow and falls onto black hole is tdiff > tacc. If only the electron
neutrino optical depth is considered, we can approximatively
define the trapping radius:

rtr � −3τνe
HVr

Vn

. (44)

Obviously, the effect of neutrino trapping will greatly affect the
annihilation luminosity.

To calculate the neutrino annihilation luminosity, we follow
the approach in Ruffert et al. (1999), Popham et al. (1999),
Rosswog et al. (2003), Liu et al. (2007), and Kawanaka et al.
(2012). The disk is modeled as a grid of cells in the equatorial
plane. A cell k has its mean neutrino energy εk

νi
, neutrino

radiation luminosity lkνi
, and distance to a space point above

(or below) the disk dk. lkνi
can be calculated using the surface

integral of the cooling rate of each flavor of neutrino in cell k
according to the form of Equation (42) before summation. The
angle at which neutrinos from cell k encounter antineutrinos
from another cell k′ at that point is denoted as θkk′ . Then the
neutrino annihilation luminosity at that point is given by the
summation over all pairs of cells,

lνν =
∑

i

A1,i

∑
k

lkνi

d2
k

∑
k′

lk
′

νi

d2
k′

(
εk
νi

+ εk′
νi

)
(1 − cos θkk′)2

+
∑

i

A2,i

∑
k

lkνi

d2
k

∑
k′

lk
′

νi

d2
k′

εk
νi

+ εk′
νi

εk
νi
εk′
νi

(1 − cos θkk′), (45)

where A1,i = (1/12π2)[σ0/c(mec
2)

2
][(CV,νi

− CA,νi
)2 +

(CV,νi
+ CA,νi

)2], A2,i = (1/6π2)(σ0/c) (2C2
V,νi

− C2
A,νi

). The
total neutrino annihilation luminosity is obtained by integrating
over the whole space outside the black hole and the disk:

Lνν = 4π

∫ ∞

max(rms,rtr)

∫ ∞

H

lννrdrdz, (46)

where the inner edge is dependent on the status of neutrino
trapping (e.g., Di Matteo et al. 2002; Liu et al. 2012a).

3. NUMERICAL METHODS

To obtain the disk solutions, we have to solve the fundamental
equations (1), (2), (3), (5), (6), and (31) for the independent
variables ρ, T, Vr, L, H, and μe. In this paper, we follow
Matsumoto et al. (1984) in using the shooting method for solving
these equations, which is one of the popular methods for solving
the boundary value problem of differential equations. However,
there are two obstacles for solving these equations using the
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shooting method. One is the instability of numerical integration
and the other is the sonic point.

The first obstacle is due to the stiffness of these equations. It
is numerically unstable to integrate the equations inward with
a certain explicit method (e.g., Runge–Kutta method). Fortu-
nately, this integration instability can be overcome by implicit
integration. In this paper, we follow Matsumoto et al. (1984) in
using the first-order backward Euler method in shooting inte-
gration. In this method, for example, the differential equation
df/dr = g is approximated by the backward difference as
(fi+1 − fi)/(ri+1 − ri) = gi+1, where g is an algebraic ex-
pression of f, and the value of f is known on the grid point
ri but unknown on ri+1. With this kind of approximation,
Equations (1), (2), (3), (5), (6), and (31) are reduced to six non-
linear algebraic equations for the independent variables ρi+1,
Ti+1, Vr,i+1, Li+1, Hi+1, and μe,i+1. In each integration step,
we solve these equations using to Newton–Raphson method.
The initial guesses for the independent variables on ri+1 are set
to be the determined values on ri, which are either the results
of the last step or the boundary values in the first step. Even
though the first-order backward Euler scheme is less accurate
than other alternative high-order difference schemes (e.g., the
central difference scheme), we found, in practice, that it is a good
method for overcoming the stiffness in our equations and has
a faster converging speed in integration than other high-order
implicit difference schemes.

The other obstacle is due to the sonic point. As mentioned in
many previous works (e.g., S

↪
adowski 2009; Matsumoto et al.

1984), the derivative d ln Vr/d ln r would tend to a 0/0 form
limit when the radial velocity tends to the local sound speed
of the accreted gas. In fact, the numerical computations are
performed in a computer with a finite machine accuracy, so
the sonic point cannot be really reached but only approached
and spanned from the subsonic region to the supersonic region.
Matsumoto et al. (1984) presented a detailed and completed
research on the mathematical and physical properties of the
sonic points in viscous transonic flows. Benefiting from their
research, we use their adaptive grid scheme to perform the
shooting integration (see the details in Appendix 2 of Matsumoto
et al. 1984), which showed a robust ability for transonic
integration in our work.

After overcoming the above two obstacles, using the shooting
integration to solve our equations becomes possible. The angular
momentum at the inner edge of the disk, Lin, becomes the
eigenvalue of the shooting integration. At the beginning of the
first shooting, we set the guessed value of Lin to be the Keplerian
angular momentum at the marginally stable orbit. If the guessed
value is larger than the proper value Lin,0, the integration will be
unable to converge near the sonic point. However, if the guessed
value is less thanLin,0, a fully subsonic solution will be obtained.
If the former case is met, the failed value will be used to update
the upper limit ofLin; on the contrary, if the latter case occurs, the
lower limit will be updated. After updating the upper and lower
limits, a new shooting will begin with a different guessed Lin,
the value of which is set to be the midpoint of those limits. This
kind of shooting integration is repeated until a self-consistent
transonic solution is obtained.

4. NUMERICAL RESULTS

In our NDAF model, there are four parameters, the viscous pa-
rameter α, black hole mass M, dimensionless black hole spin a∗
(≡a/M), and dimensionless accretion rate ṁ [≡Ṁ/(M� s−1)].
In order to concentrate on the more important effects of the

different black hole spins and accretion rates, we fix the vis-
cous parameter and black hole mass with the typical values of
NDAF, α = 0.1 and M = 3 M�, and investigate 16 solutions
with different black hole spins a∗ = 0, 0.5, 0.9, 0.99 and accre-
tion rates ṁ = 0.03, 0.1, 1, 10 M� s−1. The selected values of
a∗ cover the cases with no, moderate, high, and extreme spins of
the black holes, which is an essential qualification for the emer-
gence of jet breakout in collapsars, the plausible progenitor of
long GRBs (e.g., Nagakura et al. 2011; Nagakura 2012). Mean-
while, the selected values of ṁ correspond to the cases with
low, moderate, high, and superhigh accretion rates. These solu-
tions can be obtained by numerically solving the fundamental
equations (1), (2), (3), (5), (6), and (31) using the numerical
method described in Section 3.

4.1. Structure

In Figure 1, we show the structures of the 16 solutions in order
to compare them with each other. There are six panels and they
correspond to the profiles of density ρ, temperature T, radial
velocity Vr, electron degeneracy ηe, optical depth of electron
neutrino τνe

, and electron fraction Ye. They reveal different
variations: ρ increases by about six orders of magnitude, T
increases by about one order of magnitude, and τνe

increases
by about five orders of magnitude from the outer to the inner
region, and, in the innermost region, which is extremely dense,
hot, and optically thick to neutrinos (see, e.g., Li & Liu 2013),
ρ reaches ∼1013 g cm−3, T reaches ∼1012 K, and τνe

reaches
∼1000. The difference between the effects of the accretion rate
and the black hole spin is obvious. One can find that the profiles
can be collected into four groups with the same color (i.e.,
the same accretion rate). It implies that the effect of accretion
rate is global. Meanwhile, the profiles with different line styles
(different black hole spins) in a colored group become more and
more dispersed from to outer to the inner region. It implies that
the effect of black hole spin becomes remarkable only close to
the black hole.

There is a remarkable feature in the profiles of the radial
velocity. They all tend toward the speed of light c in the inner
region and the radii satisfy Vr/c = 1 (the locations of the black
hole horizon), which are only determined by the black hole spin.
It proves that our model and the calculations are all consistent
with general relativity.

Electron degeneracy is an important physical parameter that
affects electron fraction, degeneracy pressure, and neutrino
cooling (Chen & Beloborodov 2007). The profiles of ηe, which
represents the degree of electron degeneracy, in Figure 1
are similar to the ones of Chen & Beloborodov (2007) and
Kawanaka & Mineshige (2007). However, there is a slight
difference between the profiles of Ye in Figure 1 and previous
works (e.g., Liu et al. 2007; Chen & Beloborodov 2007;
Kawanaka & Mineshige 2007). While our Ye can become larger
than 0.5 because of the different description of NSE we used,
they cannot become larger in those previous works. Our Ye all
tend to ∼0.46 at the outer boundary of the disk, which have
a slightly different value, ∼0.42, in Kawanaka & Mineshige
(2007).

In Figure 2, we show the contributions to the total pressure
p from the gas pressure of nucleons pgas, radiation pressure of
photons prad, degeneracy pressure of electrons pe, and radiation
pressure of neutrinos pν . Similar to what is seen in Figure 1,
the effect of black hole spin is revealed by the dispersion of
the profiles with different line styles in a colored group. More
dispersion implies more remarkable effects. One can see that the

6



The Astrophysical Journal Supplement Series, 207:23 (12pp), 2013 August Xue et al.

10
0

10
1

10
2

10
5

10
6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

r/rg

ρ
[g

/
cm

3
]

1 10 100
10

9

10
10

10
11

r/rg

T
[K

]

1 10 100
0.1

1

r/rg

η e

1 10 100
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

r/rg

τ ν
e

 

 

1 10 100

0.2

0.4

0.6

Y
e

0.01

0.1

V
r
/
c

Figure 1. Profiles for the 16 solutions. The colors green, blue, purple, and red denote the different accretion rates ṁ = 0.03, 0.1, 1, and 10, respectively. The line
styles, dotted, dashed, dot-dashed, and solid, denote the different black hole spins a∗ = 0, 0.5, 0.9, and 0.99, respectively. The six panels show the profiles for density
ρ, temperature T, radial velocity Vr , electron degeneracy ηe , optical depth of electron neutrino τνe , and electron fraction Ye from left to right and from top to bottom,
respectively.

(A color version of this figure is available in the online journal.)

effects of black hole spins are still constrained in the inner region
as seen in Figure 1. However, a small detail revealed in Figure 2
should be mentioned here. The effects of black hole spins on the
solutions with moderate (ṁ = 0.1) and high (ṁ = 1) accretion
rates are more remarkable (more dispersive) than the solutions
with low (ṁ = 0.03) and superhigh (ṁ = 10) accretion rates.
The reasons are that the cooling due to neutrino radiation in the
low accretion case is too weak to be sensitive to black hole spins
only, except for the solution with an extreme black hole spin,
whereas the effect of black hole spin is damped by the superhigh
accretion rate so that it is also insensitive to black hole spins in
the case with superhigh accretion rate.

Focusing on the profiles of pe/p and pgas/p in Figure 2, one
can see that the contributions of pgas exceed pe in some certain

radii. This only happens in cases with high or extreme black
hole spins in the solutions with low and moderate accretion
rates, while they always happen in solutions with high and
superhigh accretion rates and their locations shift outward for
larger accretion rates. These are also due to the competition
between the effects of black hole spin and accretion rate on
neutrino cooling.

For the contributions of the radiation pressure of neutrinos
pν , one can see that they are fully ignorable in the outer region,
which is always optically thin to neutrinos, while they become
notable and even exceed the photon radiation pressure in the
inner region, which is optically thick to neutrino.

In Figure 3, we show the cooling rates normalized by the
viscous heating rate Qvis. The photon coolings in our solutions
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are always much lower than the other coolings, so we ignore
it in this figure. The profiles of our Qadv/Qvis are very similar
to the ones in Popham et al. (1999). Qadv/Qvis ∼ 1 in the
outer region implies that the flow is advection-dominated.
Photodisintegration cooling causes the decrease of Qadv/Qvis,
even becoming negative in the outer and middle regions.
Neutrino cooling causes Qadv/Qvis to decrease to negative again
in the inner region. All of these behaviors are consistent with the
relevant results of previous works (e.g., Popham et al. 1999; Liu
et al. 2007; Chen & Beloborodov 2007). The special behavior
of Qadv/Qvis and Qν/Qvis wherein their values rapidly increase
to much larger than unity near the inner edge of disks is due to
the rapid decrease of viscous heating Qvis in the fast inflowing
flows.

Since we have considered detailed nucleosynthesis in our
model, we can obtain and trace the radial variation of more
than 40 nucleons with our calculation. Figure 4 shows the ra-
dial distributions of the mass fractions of seven major nucleons,
1n, 1H, 4He, 52Cr, 54Cr, 56Fe, and 58Fe, which cover almost
99% of the mass of the flow. The mass fraction of 56Fe dom-
inates in the outer region for all accretion rates. In the middle
region, 4He dominates for all accretion rates. Free neutrons and
protons dominate via photodisintegration in the inner region,
which is in the hot and dense state. The size of the region dom-
inated by free nucleons is determined by the accretion rate.

The spin of the black hole is also affected by the proportion
of free protons and neutrons in the inner region. Most of the
free protons turn into free neutrons via the Urca process (e.g.,
Liu et al. 2007; Kawanaka & Mineshige 2007), which causes
the free neutrons to dominate and the electron fraction to de-
crease. Compared to Chen & Beloborodov (2007) and Liu et al.
(2007), wherein heavier nuclei appeared in the outer region
of the disk, we have described a more possible structure and
component distribution. It implies that heavy nuclei originate in
GRBs, which accounts for the detection of Fe Kα X-ray lines
and other emission lines (e.g., Lazzati et al. 1999), which can
play an important role in understanding the nature of GRBs,
especially its central engine. The neutron-rich NSE has been
used in Kawanaka & Mineshige (2007; unfortunately, they did
not show the distribution of heavy nuclei in the outer disk),
wherein the electron fraction Ye has been limited to less than
0.5. The reasonable NSE we chose requires that the range for
Ye be [0, 1], which can certify that the solutions naturally and
reasonably. Compared with Liu et al. (2013), the kinds
and distributions of elements are not different in the radial
and vertical coordinates. 56Ni dominates at the disk surface
for lower accretion rate (e.g., 0.05 M� s−1), and 56Fe dominates
for larger accretion rate (e.g., 1 M� s−1), corresponding to Ye
around 0.49 and 0.47, respectively. In addition, according to
Equation (29), the profiles of Ye in Figure 1 can be obtained
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from Figure 4 if we consider that the mass fraction approxi-
mately equals the number density.

4.2. Luminosity

In this paper, we are concerned with the energetic estimation
for boosting GRB through neutrino annihilation outside NDAF.
Therefore, we are only concerned with the total annihilation
luminosity but not the exact distribution of the annihilation
energy and we calculate the neutrino trapping radius and the
annihilation luminosity without taking into account the general
relativistic effects on the neutrino trajectory to avoid complexity
in this calculation. In Table 1, we list the neutrino radiation
luminosity Lν , neutrino annihilation luminosity Lνν̄ , efficiency
of energy deposition Lνν̄/Lν , neutrino trapping radius rtr,
and the radius of the marginally stable orbit rms of our 16
solutions. The upper limit of neutrino luminosity reaches about
1055 erg s−1, which is near the limit of the power of the Kerr
black hole, for the solution with ṁ = 10 and a∗ = 0.99. We
note that most of the results on neutrino annihilation luminosity
are higher than 1049 erg s−1 and thus are likely to be adequate for
GRBs (Zhang 2011) even when taking into account the effect
of neutrino trapping, especially for the high accretion rate and
rapidly spinning black hole.

Compared with the work of Popham et al. (1999), our Lνν̄

is much smaller than theirs for the solutions with superhigh

accretion rate (ṁ = 10) since we consider the effects of
neutrino trapping. In particular, they had Lνν̄ = 2×1053 erg s−1

for a∗ = 0, ṁ = 10, and Lνν̄ = 8.2 × 1053 erg s−1 for
a∗ = 0.5, ṁ = 10, while we obtain more reasonable values
Lνν̄ = 2.94 × 1052 erg s−1 and Lνν̄ = 3.17 × 1052 erg s−1,
respectively. This implies that the influence of neutrino trapping
cannot be ignored especially for the superhigh accretion cases.

Zalamea & Beloborodov (2011) fully considered the general
relativistic effects on the neutrino trajectory in their annihilation
calculation. They compared their results with Popham et al.
(1999). They stated that Lνν̄ would be overestimated 10 times
by the calculation that does not take general relativistic effects
into account. Thus, taking a conservative estimate, the 10 times
lower Lνν̄ listed in Table 1 can be regarded to be reasonable
approximate values. Based on the results in Table 1, we
approximate the neutrino radiation luminosity, annihilation
luminosity, and neutrino trapping radius with three analytic
formulae as functions of black hole spin and accretion rate:

log Lν( erg s−1) ≈ 52.5 + 1.17a∗ + 1.17 log ṁ, (47)

log Lνν̄( erg s−1) ≈ 49.5 + 2.45a∗ + 2.17 log ṁ, (48)

rtr/rg ≈ − 0.92 + 2.42a∗ + 5.95 log ṁ, (49)
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ṁ = 0.03

Qν/Qvis
Qph/Qvis
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Table 1
Power of NDAFs

a∗ Ṁ Lν Lνν̄ Lνν̄/Lν rtr(rg)a rms(rg)b

(M� s−1) (erg s−1) (erg s−1)

0.00 0.03 2.04 × 1050 1.72 × 1044 8.43 × 10−7 <rms 3.000
0.00 0.10 4.58 × 1051 9.11 × 1047 1.99 × 10−4 <rms 3.000
0.00 1.00 1.00 × 1053 8.82 × 1050 8.82 × 10−3 <rms 3.000
0.00 10.00 7.60 × 1053 2.94 × 1052 3.87 × 10−2 5.102 3.000
0.50 0.03 6.09 × 1050 4.91 × 1045 8.06 × 10−6 <rms 2.117
0.50 0.10 1.15 × 1052 9.47 × 1048 8.23 × 10−4 <rms 2.117
0.50 1.00 1.52 × 1053 2.61 × 1051 1.72 × 10−2 <rms 2.117
0.50 10.00 1.20 × 1054 3.17 × 1052 2.64 × 10−2 6.095 2.117
0.90 0.03 3.29 × 1051 3.08 × 1047 9.36 × 10−5 <rms 1.160
0.90 0.10 3.45 × 1052 1.79 × 1050 5.19 × 10−3 <rms 1.160
0.90 1.00 3.04 × 1053 1.76 × 1052 5.79 × 10−2 <rms 1.160
0.90 10.00 3.10 × 1054 3.73 × 1052 1.20 × 10−2 7.078 1.160
0.99 0.03 3.11 × 1052 8.74 × 1049 2.81 × 10−3 <rms 0.727
0.99 0.10 7.18 × 1052 9.30 × 1050 1.30 × 10−2 <rms 0.727
0.99 1.00 6.92 × 1053 5.08 × 1052 7.34 × 10−2 1.473 0.727
0.99 10.00 6.38 × 1054 4.19 × 1052 6.57 × 10−3 7.600 0.727

Notes.
a rtr is the neutrino trapping radius. rg = 2M is the Schwarzschild radius.
b rms is the radius of the marginally stable orbit.
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where the negative value of rtr predicted by Equation (49) means
that there is no trapping in the whole disk.

5. CONCLUSIONS AND DISCUSSION

In this paper, we calculated one-dimensional global solutions
of NDAFs, taking into account strict Kerr metric, particular
neutrino physics, and precise nucleosynthesis processes, and
discussed the structure and luminosity of NDAFs. The electron
degeneracy has significant effects in NDAFs, and the electron
fraction is about 0.46 in the outer region. From the perspective of
the mass fraction, free nucleons, 4He, and 56Fe dominate in the
inner, middle, and outer regions, respectively. The influence of
neutrino trapping on annihilation is important for the superhigh
accretion (Ṁ = 10 M� s−1) and most of the 16 solutions have
an adequate annihilation luminosity for GRBs.

The inner region of NDAFs may be dynamically unsta-
ble (e.g., Janiuk et al. 2007; Kawanaka & Kohri 2012).
Time-dependent NDAFs should be calculated, replacing
the steady solutions to verify the instability of the disk.
Time-dependent accretion disks around Kerr black holes have
been investigated by Xue et al. (2011), which can act as the basis
for the study of a time-dependent NDAF model.

Jet emission is an essential characteristic of GRB events.
Some jet emission mechanisms have been discussed in the
literature. Using the magnetic extraction of the rotational energy
of a spinning black hole (Blandford & Znajek 1977), Di
Matteo et al. (2002) and Kawanaka et al. (2012) estimated the

Blandford–Znajek luminosity from NDAFs to budget the energy
for jets and relevant GRBs. Recently, Yuan & Zhang (2012)
presented an alternative magnetohydrodynamic mechanism for
the emission of episodic jets, which can also be used to power
GRBs. Without a magnetic field, pair creation by neutrino
annihilation outside NDAFs (Eichler et al. 1989), in fact, also
has the ability to emit jets and it may possess the additional
advantage of low baryonic contamination at the jet ejection
point. Our work in this paper belongs to this type of pair
creation, but we do not explore this problem deeply in order
to avoid unnecessary complexity in the calculation of neutrino
annihilation. Thus, our further work is to fully relativistically
calculate the neutrino annihilation and the neutrino trapping
radius, and to obtain the spatial distribution of energy deposition
for our disk model as was done in the works of Zalamea &
Beloborodov (2011), and, e.g., Birkl et al. (2007), Kovács et al.
(2011), and Kovács & Harko (2011). It may also be attractive
if we can combine the pair creation with other magnetic
mechanisms (e.g., Blandford & Znajek 1977; Yuan & Zhang
2012), which do not seem to be in conflict with each other.

We thank the anonymous referee for instructive comments
and helpful suggestions. This work was supported by the Na-
tional Basic Research Program (973 Program) of China under
Grant 2009CB824800, the National Natural Science Founda-
tion of China under grants 11003016, 11073015, 11103015,

11



The Astrophysical Journal Supplement Series, 207:23 (12pp), 2013 August Xue et al.

11222328, and 11233006, and the Natural Science Foundation
of Fujian Province of China under grant 2010J01017.

REFERENCES

Abramowicz, M. A., Chen, X.-M., Granath, M., & Lasota, J.-P. 1996, ApJ,
471, 762

Abramowicz, M. A., Lanza, A., & Percival, M. J. 1997, ApJ, 479, 179
Birkl, R., Aloy, M. A., Janka, H.-T., & Müller, E. 2007, A&A, 463, 51
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Burrows, A., & Thompson, T. A. 2004, in Stellar Collapse, ed. C. L. Fryer

(Dordrecht: Kluwer), 133
Chen, W.-X., & Beloborodov, A. M. 2007, ApJ, 657, 383
Di Matteo, T., Perna, R., & Narayan, R. 2002, ApJ, 579, 706
Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Natur, 340, 126
Gu, W.-M., Liu, T., & Lu, J.-F. 2006, ApJL, 643, L87
Itoh, N., Adachi, T., Nakagawa, M., Kohyama, Y., & Munakata, H. 1989, ApJ,

339, 354 (erratum 360, 741 [1990])
Itoh, N., Hayashi, H., Nishikawa, A., & Kohyama, Y. 1996, ApJS, 102, 411
Janiuk, A., Yuan, Y., Perna, R., & Di Matteo, T. 2007, ApJ, 664, 1011
Kato, S., Fukue, J., & Mineshige, S. 2008, Black-Hole Accretion Disks: Towards

a New Paradigm (Kyoto: Kyoto Univ. Press)
Kawanaka, N., & Kohri, K. 2012, MNRAS, 419, 713
Kawanaka, N., & Mineshige, S. 2007, ApJ, 662, 1156
Kawanaka, N., Piran, T., & Krolik, J. H. 2013, ApJ, 766, 31
Kohri, K., & Mineshige, S. 2002, ApJ, 577, 311
Kohri, K., Narayan, R., & Piran, T. 2005, ApJ, 629, 341
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