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A time-delayed feedback ratchet consisting of two Brownian particles interacting through the elastic spring is consid-
ered. The model describes the directed transport of coupled Brownian particles in an asymmetric two-well ratchet potential
which can be calculated theoretically and implemented experimentally. We explore how the centre-of-mass velocity is af-
fected by the time delay, natural length of the spring, amplitude strength, angular frequency, external force, and the structure
of the potential. It is found that the enhancement of the current can be obtained by varying the coupling strength of the
delayed feedback system. When the thermal fluctuation and the harmonic potential match appropriately, directed current
evolves periodically with the natural length of the spring and can achieve a higher transport coherence. Moreover, the
external force and the amplitude strength can enhance the directed transport of coupled Brownian particles under certain
conditions. It is expected that the polymer of large biological molecules may demonstrate a variety of novel cooperative
effects in real propelling devices.

Keywords: delayed feedback ratchet, double-well ratchet potential, centre-of-mass velocity, unbiased time-
periodic force
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1. Introduction
Many microscopic systems each have noisy dynamics

governed by thermal fluctuations, making their control and
theoretical treatment complicated. The Brownian ratchet is
such a system that can take advantage of noise as it converts
random fluctuations into directed motion in the absence of
external forces.[1–3] This interesting phenomenon has been a
subject of statistical physics and the driving mechanisms of a
variety of biological motors.[1,4]

To observe directed transport the breaking of spatial
and/or time-reversal symmetries is a necessary condition. A
classical example of this mechanism is the flashing ratchet,
which consists of a particle undergoing overdamped diffusion
and also being subjected to a space-asymmetric potential.[5]

Whether the potential is switched on or off according to a ran-
dom/periodic time sequence can be indicated by the current
of particles. This current is driven by the energy injected into
the system when the potential is switched on. Another way of
breaking the time-reversal symmetry is obtained by coupling
the system with reservoirs at two different temperatures: an
asymmetric intruder in such a multi-temperature environment
displays an average drift, acting as a Brownian motor.[6] For
many-body systems this has been extensively studied.[7]

The purpose of these models is often practical, i.e., to ex-
tract the energy from a highly fluctuating environment, such
as a living cell.[8] Brownian ratchets are also valid probes for
the non-equilibrium properties of the fluctuating medium, and
the value of the current is sensitive to the time scale as well
as diffusion coefficient (temperature).[9,10] An analogous phe-
nomenon can be observed in this paper.

Inspired by the biological machines, there exist several
proposals to utilize the principles of Brownian motors to per-
fect the nanotechnology.[11] Many actual Brownian motors
are relatively large and complex systems, and therefore mod-
els with more comprehensive and controllable designs are
needed.[1,3,4] Besides, a number of artificial Brownian motors
and ratchets have been realized, such as cold atom Brownian
motors and ratchets[12] and quantum ratchets.[13]

Our aim is to demonstrate that the transport of the directed
current can be controlled by using a time-delayed feedback
control protocol. Although the delayed feedback method was
originally proposed by Pyragas[14] to stabilize unstable states
in deterministic systems, it has been utilized in various other
contexts.[15,16] Recently the effect of the time-delayed feed-
back on the rectification of thermal motion of Brownian par-
ticles has been studied in overdamped ratchet systems.[17–20]
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Such a feedback mechanism for a flashing ratchet has been
realized experimentally with an optical line trap recently.[21]

It has been observed that the use of feedback increases the
ratchet velocity up to 1 order of magnitude, which is in agree-
ment with the theory.

The best known biological motors are kinesins[22] which
are able to take nanometer steps along protein tracks in the
cytoplasm. Kinesin is a two-headed protein linked by a do-
main (neck) and a tail which attach a cargo or vesicle to be
carried. The two heads perform a processive walk over the mi-
crotubules inside cells. These motors transport a wide variety
of loads, power cell locomotion, and when acting in large en-
sembles, allow organisms to move. Motivated by experimental
results, several authors have introduced diverse models in or-
der to understand the particular walking of kinesins.[23–26] In
the present paper we will demonstrate a model inspired by the
walking of motor proteins like kinesin on microtubules, but it
is not restricted to the walking of motor proteins. The model
consists of two Brownian particles coupled through elastic
force and subjected to independent white noise. Meanwhile,
the system of two coupled particles is brought into action by
an ensemble averaged force, due to the presence of a ratchet
potential. Because the kinesin can perform one-dimensional
walk and drag effectively the load against the external force
and the viscous drag from the environment, we consider an
unbiased time-periodic force and a constant external force in
our model. In the present delayed feedback system we will
adopt the double-well ratchet potential[27] that can be imple-
mented experimentally and investigate how the time delay,
natural length of the spring, amplitude strength, angular fre-
quency, external force, and the structure of the potential affect
the current transportation of two coupled Brownian particles
in the control of delayed feedback.

2. A coupled delay-feedback ratchet
The delayed feedback ratchet considered here consists

of two overdamped Brownian particles at temperature T0 in
a one-dimensional periodic double-well potential U(x). One
can choose different periodic potentials according to different
motivations. Now, the spatially periodic double-well ratchet
potential[27]

U (x) = −U1 e−sin2(πx)/2sin2(πR)

−U2 e−sin2(π(x−d))/2sin2(πR) (1)

is used to replace the piecewise linear sawtooth potential that is
often used in the literature and its schematic diagram is shown
in Fig. 1. Here U1 and U2 determine, respectively, the depths
of the stronger and weaker wells, which are separated by a dis-
tance d and have width R. The ratio β = U1/U2 denotes the
asymmetry parameter of the potential, x is the position, and

the ratchet period L = 1. The parameters U1 and U2 have the
energy unit, and d, R, x, and L have the same length unit. The
two overdamped Brownian particles interact through an elas-
tic coupling and are subjected to an external, unbiased time-
periodic force Acosωt with angular frequency ω and ampli-
tude strength A. Additionally, a constant external force F acts
on the system.

x

U
↼x
↽

Fig. 1. (color online) Schematic diagram of coupled Brownian particles
in the double-well ratchet potential U(x).

The potential force acting on the particles is Fpot (x) =
−dU(x)/dx. By considering the free boundary condition, the
overdamped Langevin equations of the above coupled ratchets
can be written as

γ ẋ1 (t) = α (t)Fpot (x1(t))+ k (x2− x1− l)

+ Acosωt +F +ξ1 (t) , (2)

γ ẋ2 (t) = α (t)Fpot (x2(t))− k (x2− x1− l)

+ Acosωt +F +ξ2 (t) . (3)

The average force due to the potential switch being on is

f (t) =
1
2

2

∑
i=1

Fpot (xi(t)) =
1
2
[
Fpot (x1(t))+Fpot (x2(t))

]
. (4)

In Eqs. (2) and (3), γ is the friction coefficient, which is re-
lated to the diffusion coefficient D through Einstein’s rela-
tion D = kBT0/γ with kB being the Boltzmann constant, k
is the coupling constant, and l is the natural length of the
spring. Thermal fluctuations due to the coupling of the two
particles with the environment are modeled by zero-mean, and
ξi (t) is Gaussian white noise with an autocorrelation function〈
ξi (t)ξ j (t ′)

〉
= 2γkBT0δi jδ (t− t ′). We consider a controller

α (t),[17,18,20] which measures the sign of the average force
and, after a time τ , switches the potential on (α = 1) if the en-
semble average of the force is positive or switches the potential
off (α = 0) if it is negative. This delayed control protocol can
be expressed as

α (t) =
{

Θ ( f (t− τ)) , t ≥ τ,
0, otherwise, (5)

where Θ is the Heaviside function.
It is worthwhile to point out that the model adopted here

is more general. For the case of Acosωt = 0 and F = 0, the
model in the present paper may retrogress to that studied in
Ref. [28]. It is interesting to note that for the case of k = 0, al-
though there are no explicit mechanical interactions between
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the particles, the use of information in the control of the system
introduces a coupling between the particles.[17,18] For this rea-
son, for closed-loop strategies[29] the average velocity is de-
pendent on the number of particles in the ensemble, in contrast
to open-loop policies[30] which, for non-interacting particles,
output the same velocity regardless of the ensemble size.[31]

The first basic quantity of interest in the system is the
center-of-mass velocity of two Brownian particles, given by

Vcm = lim
T→∞

1
2T

2

∑
i=1

∫ T

0
ẋi (t) dt. (6)

In order to quantify the transport coherence of the coupled
Brownian particles, we introduce the Pe number,[32] i.e.,

Pe =
|Vcm|L

Deff
, (7)

where Deff is the average effective diffusion coefficient deter-
mined by

Deff = lim
T→∞

2

∑
i=1

〈
xi (t)

2
〉
−〈xi (t)〉2

2 ·2T
. (8)

The Pe number describes the competition between the direc-
tional drift and the stochastic diffusion of the particle. The
directional drift will increase with the Pe number increasing.
Thus, the larger Pe number means that the drift predominates
over the diffusion and there is high transport coherence.

Equations (2) and (3) are numerically solved by using the
stochastic Runge–Kutta algorithm. The transport processes of
two coupled particles are simulated and each trajectory con-
sists of 105 steps of integral with a small time step of h= 10−3.
In the following calculations, we restrict the discussion to a
set of driving parameters,[27,33] which are set to be L = 1,
d = 0.36, R = 0.15, U1 = 3.2kBT0, β = 1.0, γ = 1.0, D = 1.0,
A = 4.2, ω = 4.9, l = 0.01, and kBT0 = 1 where the energy is
in units of Joule, unless otherwise mentioned.

3. Results and discussion
3.1. Influence of the delay time

Figure 2(a) shows the curves of center-of-mass velocity
Vcm varying with delay time τ for different coupling strengths.
It can be found that the center-of-mass velocity of the sys-
tem is a monotonically decreasing function of delay time τ .
The correlation between the present sign of the average force
and the measured sign actually used in the controller decreases
with the increase of delay time. It can be understood that the
decrease in center-of-mass velocity is a consequence of the
loss of information about the present sign of the average force.
Thus, the action of the controller begins to be uncorrelated
to the present state of the system and it effectively begins to
act as an open-loop ratchet.[20] The result is compatible with

those obtained in Refs. [18] and [20]. On the other hand, it
can be clearly seen that the directed current is improved for the
coupled case. This indicates the effect of coupling-enhanced
transport.[34,35]
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Fig. 2. (color online) Curves of (a) center-of-mass velocity Vcm, (b)
the values of average effective diffusion coefficient Deff, and (c) the Pe
number varying with time delay τ for the different values of coupling
strength k, where F = 0.1.

In order to understand the phenomenon in depth, we cal-
culate the values of average effective diffusion coefficient Deff

as a function of delay time τ for different coupling strengths,
which are shown in Fig. 2(b). For the uncoupled case, particles
are easier to diffuse. But for the coupling case, it is difficult
for the diffusion of coupled particles and the average effective
diffusion coefficient Deff to decrease drastically, implying that
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the fluctuation of displacement of coupled particles decreases
with the increase of the coupling strength. However, while the
feedback time is larger, the effective diffusion coefficient Deff

does not vary obviously with the increase of delay time.
Figure 2(c) shows the variations of the Pe number with

delay time τ for different coupling strengths. It can be found
from Fig. 2(c) that the Pe number is directly proportional to
the value of Vcm since Deff is a nearly constant for a fixed de-
lay time. Then the Pe number of the delayed feedback sys-
tem is also a monotonically decreasing function of delay time
τ . The results show that the feedback ratchet exhibits a lower
transport efficiency for the uncoupled case, and the Pe number
increases with coupling strength increasing. It can be under-
stood that the coupling between the two particles can cause
high transport coherence.

3.2. Influence of the amplitude strength

Figure 3(a) shows the plots of the center-of-mass velocity
versus amplitude strength A for some different values of ex-
ternal force F . The results show that the velocities are always
non-monotonic functions of the amplitude strength. If A is
too small, the two coupled particles move under the action
of pulling force F . If the amplitude strength is too large, the
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Fig. 3. (color online) Curves of the center-of-mass velocity Vcm varying
with amplitude strength A for the different values of external force F ,
where τ = 0.01, k = 1.0, (a) D = 0.01 and (b) D = 1.0.

coupled particles can only feel a fixed unbiased time-periodic
external force, so it is difficult to facilitate directed transport
in the delayed feedback system. Therefore, only for an appro-
priate match between A and F , can the higher directed trans-
port appear. It is interesting to note that the maximum of the
center-of-mass velocity is shifted toward the right when the
external force F increases. With the increase of the diffu-
sion coefficient D the corresponding center-of-mass velocities
and the heights of the peaks decrease, but the peaks are still
shifted toward the right as shown in Fig. 3(b). This indicates
once more that an optimal amplitude strength may lead to the
most efficient directed transport for the different diffusion co-
efficient/temperature cases. It can be clearly obtained that di-
rected current depends also on F . This phenomenon will be
discussed in the next section.

3.3. Influence of the angular frequency

In order to investigate the effect of the time-periodic
force, the curves of center-of-mass velocity Vcm versus angu-
lar frequency ω for different values of delay time are plot-
ted in Fig. 4. In the limit ω → 0, it is easier for particles
to move forward and the center-of-mass velocity can reach
its maximum. When the external driving force changes very
quickly, i.e., ω → ∞, the time averaged periodic force A′ =∫ 2π/ω

0 Acosωt dt→ 0, and the two coupled particles move
only under the pulling force F , so the velocity Vcm approaches
to a constant. Interestingly, at some intermediate values of
ω , the center-of-mass velocity evolves “periodically” and the
“amplitude” decreases with angular frequency increasing.
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Fig. 4. (color online) Curves of the center-of-mass velocity Vcm varying
with angular frequency ω for the different values of delay time τ , where
k = 1.0 and F = 0.1.

3.4. Influence of the external force

Figure 5(a) shows the variations of center-of-mass veloc-
ity with external force F for different values of asymmetry
parameter of potential β . The larger the external force F , the
faster the particles move. Since the delay time τ is fixed, the
center-of-mass velocity of two coupled particles increases as
the external force is increased. It can be easily found that when
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the external opposite force is applied, the current will be re-
versed. In other words, there is a current reversal when the
sign of F is changed. It is interesting to find that the directed
current is roughly proportional to the external force when the
asymmetry parameter β ≥ 0.5 as shown in Figs. 5(a) and 5(b).
But the directed current is not a monotonic function of the
asymmetry parameter of the potential. We will discuss the
phenomenon in detail below.
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Fig. 5. (color online) Curves of the center-of-mass velocity Vcm varying
with external force F for the different values of asymmetry parameter
of potential β , where τ = 0.01, k = 1.0, (a) D = 0.01 and (b) D = 1.0.

3.5. Influence of the natural length of the spring

The natural length of the spring l has been set to be 0.01
in the above discussions. Now we investigate the influences
of the spring length l on directed transport for different values
of diffusion coefficient D. In Fig. 6(a), we plot the center-of-
mass velocity against the natural length of the spring. It is
interesting to find that Vcm changes periodically with l varying
and the complicated dynamics depends on the natural length
of the spring. It can be clearly observed that the Vcm is non-
zero even when l/L is an integer, where the two coupled parti-
cles trapped in the minimum of the potential can diffuse ther-
mally enough to surpass the potential barrier against the force
of spring in the presence of external force. The result is analo-
gous to the case of a time-periodic modulation ratchet obtained
in Ref. [36]. Moreover, the change of the diffusion coefficient

D (related to the temperature) may significantly influence the
current. For a higher temperature, the change of the current
is affected slightly by the natural length of the spring. In or-
der to obtain a higher transport coherence, there should be a
cooperation between the thermal fluctuation and the harmonic
potential.
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Fig. 6. (color online) Curves of (a) the centre-of-mass velocity Vcm, (b)
the average effective diffusion coefficient Deff, and (c) the Pe number
varying with the natural length of the spring l for the different values of
diffusion coefficient D, where τ = 0.01, k = 1.0, and F = 0.1.

Figure 6(b) shows that for the fixed parameters, the aver-
age effective diffusion coefficient Deff increases quickly when
the temperature is increased. While the temperature is higher,
the effective diffusion coefficient Deff does not vary obviously
with the increase of the natural length of the spring. It is in-
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teresting to find that when the diffusion coefficient is small
(D ≤ 0.05) two peaks can be observed in one period of the
natural length. The two peaks show that the natural length of
the spring can facilitate the diffusion in two different regimes.
However, with the increase of D, the two peaks turn into
one peak and the average effective diffusion coefficient does
not vary obviously for a larger value of diffusion coefficient
(D = 0.1).

To understand the transport coherence in depth, we cal-
culate the values of number Pe as a function of l for different
diffusion coefficients, which are shown in Fig. 6(c). It can be
found from Figs. 6(c) and 6(a) that the value of Pe number
is roughly proportional to the value of Vcm for a fixed delay
time. The results show that the curve of Pe number versus l
can obtain two maximal values during one period of the nat-
ural length for D < 0.05, which means that the natural length
of the spring can lead to a high transport coherence. It is also
found that the maximal value of the Pe number depends on the
maximal velocity of the coupled particles in one period of the
natural length. When the value of diffusion coefficient is in-
creased, the Pe number is decreased and affected slightly by
l because in this case Vcm is small and Deff is large. It is in-
dicated once again that the higher the temperature, the more
difficult the directed transport of particles is, the larger the ef-
fective diffusion coefficient becomes, and the more slowly the
speed of the effective diffusion coefficient decreases.

3.6. Influence of the asymmetry parameter

Figure 7 shows the dependencies of the center-of-mass
velocity on the asymmetry parameter of potential β for some
given values of the coupling strength. It is clearly seen that
Vcm is not a monotonic function of the asymmetry parameter
so that there is an optimal value of β at which the center-of-
mass velocity attains its extremum. The center-of-mass veloc-
ity decreases with the value of β increasing. It is observed that
the current enhancement may also be obtained by changing the
structure of the two-well ratchet potential.
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Fig. 7. (color online) Variations of center-of-mass velocity Vcm with
asymmetry parameter of potential β for the different values of coupling
strength k, where τ = 0.01 and F = 0.1.

4. Conclusions
In this paper, we have identified and characterized the

present mechanism to control the thermally driven transport
for two coupled Brownian particles evolving in a two-well
ratchet potential under the action of external force and time-
delayed feedback. Through analytical arguments we have cal-
culated the center-of-mass velocity of the coupled ratchet in
certain cases. It is found that the coupling can enhance the
transport and the directed current is very sensitive to the natu-
ral length of the spring and evolves periodically for small dif-
fusion coefficients. Some further issues, such as the influences
of the time delay, the external force, the diffusion effect, the
structure of the potential, etc., are still under consideration.

Our investigation of the delayed feedback ratchet trans-
port composed of two elastically coupled particles is also rele-
vant to the directed intracellular transport of molecular motors
such as kinesin. The complex motor protein can be considered
to be the polymer of large biological molecules. It has been
observed that structurally similar molecular motors can move
in opposite directions.[37,38] The current study deals with two
elastically coupled Brownian particles which are shorter than
N coupled motor proteins. However, we believe that the col-
lective behavior may demonstrate a variety of novel coopera-
tive effects in real one-, two- or three-dimensional propelling
devices.
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