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Accurate and efficient approaches to predict the optical properties of organic semiconducting
compounds could accelerate the search for efficient organic photovoltaic materials. Nevertheless,
predicting the optical properties of organic semiconductors has been plagued by the inaccuracy or
computational cost of conventional first-principles calculations. In this work, we demonstrate that
orbital-dependent density-functional theory based upon Koopmans’ condition [Phys. Rev. B 82,
115121 (2010)] is apt at describing donor and acceptor levels for a wide variety of organic molecules,
clusters, and oligomers within a few tenths of an electron-volt relative to experiment, which is
comparable to the predictive performance of many-body perturbation theory methods at a fraction
of the computational cost.

I. INTRODUCTION

Despite the positive attributes of organic materials for
next-generation photovoltaics, the effective deployment
of organic photovoltaic (OPV) cells poses fundamental
problems at the molecular scale. Besides enhancing the
durability of organic compounds, the central requisite to
the mass-market viability of OPV modules is to raise
their power conversion efficiency (PCE) beyond 10-15%.1

Comparatively, the efficiency of current OPV architec-
tures (Fig. 1) barely exceeds 9-10% PCE under standard
test conditions.2 Nevertheless, the margin for improve-
ment is vast due to the exceptional chemical versatility
of organic materials,3 and accurate approaches to predict
the charge-transfer and optical properties of new com-
pounds could allow for extensive screening of promising
semiconducting organics.4

However, conventional density-functional theory ap-
proximations in their static (DFT) and time-dependent
(TDDFT) formulations5–7 suffer from severe limitations
in predicting the electronic structure of semiconduct-
ing materials,8 precluding the quantitative and even
qualitative elucidation of relevant photovoltaic mecha-
nisms. Notably, conventional DFT and TDDFT ap-
proximations tend to systematically destabilize occupied
states and overstabilize unoccupied states in organic and
organometallic complexes, leading in particular to the in-
correct description of the electronic properties (charged
excitations) and optical properties (neutral excitations)
of donor-acceptor dyads, extended polymer molecules,
and heavy-metal sensitizing dyes.9–12 To overcome DFT
limitations, one privileged route has been to resort to
many-body approaches, namely, to many-body pertur-
bation theory approximations such as GW.13,14 The GW
method, while accurate in predicting electronic spectra,
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FIG. 1: Schematics of an organic solar cell showing a bilayered
donor-acceptor heterojunction (top). Bilayered, nanopat-
terned, and mixed-phase heterojunctions with typical power
conversion efficiencies (bottom).

is much more expensive than DFT although considerable
progress has been achieved in reducing the cost of GW
calculations.11,15–19

In parallel to many-body perturbation theory, less
expensive orbital-dependent density-functional theo-
ries (OD-DFTs) represent promising alternatives.20 At
present, the most widely used OD-DFT methods are hy-
brid density-functional theory approximations.21 Hybrid
functionals in their linear-admixture or range-separated
forms have been shown to improve upon conventional
DFT in predicting electronic properties.20,22–24 Alterna-
tively, self-interaction corrections to density-functional
theory approximations25 represent a second category of
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OD-DFT methods that are now rapidly growing in recog-
nition due to their improved accuracy and lower compu-
tational cost. In self-interaction-corrected approaches,
the total energy of the system is expressed explicitly in
terms of individual orbital densities to rectify nonphysi-
cal errors inherent in orbital-independent DFT. Success-
ful applications of advanced self-interaction corrections
have appeared with an accuracy potentially approach-
ing that of many-body methods in predicting electronic
levels and electrical responses.26–29

In this work, we highlight the predictive accuracy of
the recently developed self-interaction correction based
upon Koopmans’ theorem (Koopmans-compliant OD-
DFT)28,29 in capturing the electronic levels of OPV
compounds. Electronic levels represent reliable PCE
indicators3 and have successfully served as fundamen-
tal inputs for first-principles combinatorial screening
of organic semiconductors.1,4 We demonstrate that
Koopmans-compliant OD-DFT is apt at describing donor
levels within 0.1-0.4 eV and acceptor levels within 0.2-
0.6 eV relative to experiment, which is comparable to
the precision of the GW method. In its simplest formu-
lation, the method can be trivially implemented in con-
ventional electronic-structure codes with an algorithmic
cost potentially lower than that of hybrid-DFT function-
als as it does not require evaluating exchange terms. Fur-
thermore, the method holds promise for accurate time-
dependent extensions based upon the improved descrip-
tion of the underlying electronic spectrum.
This work is organized as follows. First, we underscore

the significance of Koopmans’ theorem in understand-
ing the charge-transfer behavior of donor-acceptor com-
plexes. Second, we outline existing electronic-structure
approaches that aim at enforcing Koopmans’ theorem.
Third, we present the Koopmans-compliant OD-DFT
method to correct the nonphysical tendency of conven-
tional DFT approximations to destabilize occupied states
and overstabilize unoccupied states. Last, we demon-
strate the efficiency and accuracy of the method for fam-
ilies of organic compounds of interest to photovoltaics.

II. METHOD

A. Koopmans’ theorem

Koopmans-compliant functionals aim at imposing
Koopmans’ theorem in DFT approximations. Koop-
mans’ theorem enables one to equate orbital energies
(that is, the expectation values of the effective Hamil-
tonian) with total energy differences, which correspond
to withdrawing an electron from a stationary electron
state.
The relevance of Koopmans’ theorem on the accu-

racy of effective-potential theories in predicting elec-
tronic spectra has been recognized in several theoretical
and computational studies.1,24,30–35 In addition, Koop-
mans’ theorem is the central condition to correctly de-

0 0.5 1

charge q

0 0.5 1

charge q

−10

−8

−6

−4

−2

0

en
er
g
y
E

(e
V
)

0 0.5 1

charge q

0 0.5 1

charge q

qmin

qmin

P
q
+C

1−q

60P
q C

1−q

60

(a) LSDA (b) Koopmans

FIG. 2: Energy of a positively charged pentacene-fullerene
dyad in the infinite separation limit (black) and energies of
the isolated fractionally charged pentacene Pq (light blue)
and fullerene C1−q

60 molecules (dark blue) as a function of
the transferred charge q within the LSDA and Koopmans-
compliant descriptions. (Energies are given relative to the
fully ionized individual molecules.)

scribe electron transfer within donor-acceptor pairs. To
illustrate this fact, we consider a positively charged
pentacene-fullerene dyad in the limit of infinite inter-
molecular separation where electronic interactions be-
tween the two molecules can be neglected.
Figure 2 depicts the energies of the isolated pentacene

oligomer and fullerene cluster. The total energy of the
infinitely separated molecular pair as a function of the
transferred charge q is also reported. Within the local
spin-density approximation (LSDA) [Fig. 2(a)], the three
curves exhibit a marked nonlinear dependence on q, re-
flecting the fact that LSDA violates Koopmans’ theorem.
In other words, the derivative of the energy dE(Xq)/dq
of an individual fractionally charged cation Xq, which
corresponds to the opposite energy of its highest occu-
pied orbital, departs significantly from the finite energy
difference E(X+)− E(X), which corresponds to the ion-
ization potential of the neutral molecule X. More pre-
cisely, the dependence of the energies is found to be con-
vex, causing the dyad to be most stable at a fractional
charge qmin close to 2

3
. This observation is in quali-

tative contradiction to the expectation that the charge
should fully localize onto the strongest electron accep-
tor (namely, fullerene). In contrast to this nonphys-
ical behavior, Koopmans-compliant energy curves are
linear [Fig. 2(b)] as a result of Koopmans’ condition
dE(Xq)/dq = E(X+) − E(X), leading to the expected
stabilization of the fully transferred charge (qmin = 1).
Similar observations would be made for other donor-

acceptor complexes. Moreover, at finite separation where
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electronic coupling between the two molecules must be
taken into account, LSDA would also significantly under-
estimate the transferred charge. These results highlight
the central importance of imposing Koopmans’ theorem
on the individual subsystems to correctly describe charge
transfer in donor-acceptor pairs.

B. Existing methods

At present, there exist different DFT-based methods
that aim at imposing Koopmans’ theorem.24,30,36–40 The
self-interaction correction of Perdew and Zunger25 can be
regarded as one of the earliest approaches to restore the
physical interpretation of orbital energies as ionization
energies. In this approach, the Kohn-Sham density func-
tional EKS is augmented with corrections that remove
the self-interaction of the electronic wave functions in the
one-electron limit. In explicit terms, the Perdew-Zunger
(PZ) correction to the Kohn-Sham DFT functional reads
EPZ = EKS −

∑
iσ E

KS
Hxc[ρiσ], where ρiσ stands for the

density of the one-electron state ψiσ and EKS
Hxc denotes

the Hartree plus exchange-correlation component of the
Kohn-Sham functional. The PZ approach is more ex-
pensive than local and semilocal DFT approximations
but appreciably less costly than hybrid-DFT approxima-
tions. It rectifies the tendency of local and semilocal DFT
to destabilize occupied orbitals in atoms but overcorrects
the error for molecules, leading to an overestimation of
ionization energies of up to 1-2 eV. Also, the PZ correc-
tion leaves the energies of empty levels unchanged, mean-
ing that acceptor levels remain largely underestimated
(that is, excessively negative). Furthermore, the lack of
balance in the PZ correction of occupied and unoccupied
orbitals leads to the underestimation of the total ener-
gies of molecules and the underestimation of interatomic
distances.
A solution to the lack of balance in the PZ correc-

tion has been proposed by Baer et al. in the form of a
range-separated hybrid functional [the Baer-Neuhauser-
Livshits (BNL) functional] in which long-range interac-
tions are treated at the explicit-exchange level, whereas
short-range interactions are described at the semilocal
density-functional level.26,41 In order to impose Koop-
mans’ theorem within BNL, the original empirical pa-
rameter γ that determines the range of the electrostatic
separation (1/r = erf(γr)/r + erfc(γr)/r) is optimally
tuned to impose the agreement between orbital energies
and ionization energies for the frontier orbitals of the
system,30,37 leading to considerable improvement in pre-
dicting electronic and optical spectra.24,40 In terms of
computational cost, BNL calculations are as expensive
as hybrid-DFT calculations.
A recently proposed approach that targets mini-

mal computational cost is the method of Lany and
Zunger,38,39 which consists of rectifying deviations from
Koopmans’ theorem through on-site projection terms
that shift the electronic levels in order to impose the

correspondence between orbital energies and ionization
energies. Because it only relies on the calculation of on-
site occupations, the Lany-Zunger method does not cause
any noticeable increase in computational cost relative to
the underlying DFT approximation. However, it requires
to preselect atomic orbitals to construct the on-site pro-
jectors, making its application less systematic than the
PZ correction and optimally tuned BNL method.

C. Present method

The Koopmans-compliant method that we have intro-
duced in Ref. 28 provides a promising alternative to ex-
isting approaches. The method is systematic and allies
conceptual simplicity, computational performance, and
predictive accuracy, thereby permitting the precise and
efficient electronic-structure description of a wide variety
of compounds.
The motivation for introducing the Koopmans-

compliant method originates from the practical obser-
vation that determining ionization potentials (IPs) of
molecules as differences of ground-state energies IN =
EN−1 − EN (where IN and EN denote the IP and to-
tal energy of the system of N electrons) yields predic-
tions in very good agreement with experiment within
conventional DFT approximations, namely, the LSDA
approach and semilocal generalized-gradient approxima-
tions (GGAs) — in the literature, the procedure that
consists in evaluating ionization energies from differences
of DFT total energies is commonly known as the ∆SCF
method.42 For electron affinities (EAs), ∆SCF predic-
tions AN = EN−EN+1 are also found to be in agreement
with experiment with the central caveat that ∆SCF pre-
dictions for EAs are only possible insofar as the system
can accommodate the added electron within the approx-
imation used; this condition on the stability of anionic
states is necessary to calculate the ground-state energy
of negatively charged systems. In practical terms, fail-
ure to stabilize anions is frequent within approximate
DFT43 and arises from spurious self-interaction whereby
an electron can interact with itself through the nonphys-
ical contribution from its own charge density to the ef-
fective Kohn-Sham Hamiltonian.25

Therefore, in order to obtain reliable predictions for
orbital levels (especially, for frontier donor and accep-
tor levels that determine the charge-transfer properties
of the system), it is crucial to satisfy the following con-
ditions: (a) the correspondence between the effective or-
bital levels and ∆SCF total-energy differences must be
imposed; (b) the established accuracy of ∆SCF energies
must be preserved; and (c) the calculations must circum-
vent the inability of approximate functionals to stabilize
negatively charged systems. Fulfilling these requirements
is the object of the non-Koopmans OD-DFT correction
that is described below.
In presenting the non-Koopmans correction, it is im-

portant to distinguish between electronically adiabatic
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FIG. 3: Diagram of the non-Koopmans energy Πu
2p, which

quantifies departure from linearity for the adiabatic ionization
curve of the 2p state of carbon within LSDA.

(i.e., unrelaxed) ionization processes, whereby orbitals
are kept frozen upon ionizing the system, and diabatic
(i.e., relaxed) ionization processes, whereby orbitals are
allowed to rearrange self-consistently. For adiabatic ion-
ization, the correspondence between orbital energies and
total energies is referred to as the restricted Koopmans’
theorem, whereas for diabatic ionization, it is termed the
generalized Koopmans’ theorem.44 In what follows, we
consider the adiabatic case before addressing the diabatic
case.

Bearing in mind this distinction, the starting point of
the method consists in defining an adiabatic measure of
the deviation from Koopmans’ theorem in terms of an
orbital-dependent energy functional. We thus consider
for the moment an unrelaxed process that corresponds
to depleting the stationary state ψiσ. For this process,
the energy measure that monitors deviations from the
restricted Koopmans’ theorem can be written as the non-
Koopmans energy

Πu
iσ(f) =

∫ fiσ

0

df ′[ǫuiσ(f)− ǫuiσ(f
′)], (1)

first introduced by Perdew and Zunger in discussing
the nonlinear behavior of the DFT total energy upon
ionization.25 In Eq. (1), the superscript notation {·}u in-
dicates that the orbitals are kept unrelaxed along the
ionization path, fiσ denotes the initial occupation of the
ionized orbital, and ǫuiσ stands for the expectation value
of the effective Kohn-Sham Hamiltonian for the ionized
state ψiσ along the unrelaxed curve. In other words, ǫuiσ
equals the derivative of the unrelaxed total energy Eu

iσ

as a function of the occupation of the ionized state (the
restricted Janak theorem). Alternatively, the unrelaxed
non-Koopmans energy can be written in explicit terms

as

Πu
iσ(f) = fiσ(2f − fiσ)EH[niσ] + Exc[ρ− ρiσ]− Exc[ρ]

+

∫
drvxc,σ (r; [ρ+ (f − fiσ)niσ ]) ρiσ(r), (2)

where ρiσ(r) stands for the orbital density, niσ(r) =
ρiσ(r)/

∫
dr′ρiσ(r

′) denotes the normalized density, Exc

and EH represent the exchange-correlation and Hartree
energy functionals, and vxc,σ is the exchange-correlation
potential.
The pictorial interpretation of the non-Koopmans

energy is simple. Graphically, the unrelaxed non-
Koopmans energy Πu

iσ(f) corresponds to the error made
in approximating the ionization curve connecting the ini-
tial state (I) to the final state (F ) by a straight line
whose slope is the derivative of the total energy at the
transition point (Tf ) (Fig. 3). In fact, if the adiabatic
Koopmans’ theorem were satisfied, that is, if the energy
ǫuiσ(f) were constant and equal to the ∆SCF energy dif-
ference Eu

iσ(fiσ)−Eu
iσ(0), the ionization curve would be

exactly linear and the non-Koopmans deviation Πu
iσ(f)

would vanish for any occupation f between 0 and fiσ.
With the non-Koopmans measure in hand, it becomes

possible to impose Koopmans’ theorem, as shown in
Ref. 28. Here, for the purpose of outlining the method,
the non-Koopmans-corrected (NKC) functional can be
described simply as a sum of weighted orbital constraints
that are added to the Kohn-Sham total energy functional
to penalize deviations from Koopmans’ theorem:

ENKC = EKS +
∑
iσ

αNK
iσ Πu,KS

iσ (fNK
iσ ), (3)

In Eq. (3), the terms Πu,KS
iσ are the adiabatic non-

Koopmans deviations that correspond to the chosen
Kohn-Sham approximation, the coefficients αNK

iσ repre-
sent the weights of the non-Koopmans penalties, which
must be calculated self-consistently to equate orbital en-
ergies with ∆SCF energy differences [condition (a)] and
the coefficients fNK

iσ stand for the reference occupations,
which must be fixed to preserve the accuracy of ∆SCF
energies [condition (b)], as explained further below.
At this point, it is important to note that Kohn-Sham

density-functional theory is a ground-state theory, which
is originally not intended to predict excited-state ener-
gies. As a consequence, only the non-Koopmans energies
of the highest occupied and lowest unoccupied molecu-
lar orbitals can be rigorously defined within DFT since
they correspond to ionization processes that take the N -
electron ground state into the ground states with N − 1
and N+1 electrons, respectively. In contrast, the ioniza-
tion of other electron orbitals ends up into non-Aufbau
states whose non-Koopmans energies are in principle not
defined within DFT.
As a consequence, the OD-DFT penalty sum that

appears in Eq. (3) should be rigorously restricted to
the frontier highest occupied and lowest unoccupied
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states. Despite this recognized limitation, it is real-
ized in practical computations that ∆SCF based upon
local and semilocal DFT functionals predict accurate ex-
citation energies provided that orbitals do not delocalize
nonphysically.12,42 These computational observations in-
dicate that generalizing non-Koopmans penalties to the
full orbital spectrum in Eq. (3) should yield a Koopmans-
compliant OD-DFT method able to predict electronic
structures with good accuracy. In practice, it is found
that this generalization provides spectral predictions in
very good agreement with experimental data.28,29
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0 0.5 1

occupation f ′

0

5

10

15

en
er

g
y

E
u 2
p

(e
V

)

KS

αNK
2p = 1

5

αNK
2p = 2

5

αNK
2p = 3

5

αNK
2p = 4

5

αNK
2p = 1

(b) relaxed

0 0.5 1

occupation f ′

0

5

10

15

en
er

g
y

E
2
p

(e
V

)

KS

αNK
2p = 1

5

αNK
2p = 2

5

αNK
2p = 3

5

αNK
2p = 4

5

αNK
2p = 1

FIG. 4: Occupation dependence of the non-Koopmans-
corrected total energy upon ionization of the 2p state of car-
bon as a function of the penalty coefficient αNK

2p in the (a) un-
relaxed and (b) relaxed cases. The underlying Kohn-Sham ap-
proximation is LSDA. The reference occupation is of fNK

2p = 1

2
.

To complete the presentation of the Koopmans-
compliant functional, it remains to explain the deter-
mination of the penalty coefficients αNK

iσ and reference
occupations fNK

iσ . The analytical determination of αNK
iσ

has already been presented.28 In this analysis, it has
been shown that, starting from convex-energy local and
semilocal DFT functionals, there always exist a value of
αNK
iσ lying between 0 and 1 that equalizes the slope of

the ionization curve (i.e., the orbital energies) at the ini-
tial point (I) and that at the final point (F ). Further-
more, the value of αNK

iσ that fulfills this condition can be

calculated straightforwardly through the secant-method
recursion:

αn+1 = αn +
(1− αn)∆

NK
iσ (αn)

∆NK
iσ (αn)−∆NK

iσ (1)
, (4)

where ∆NK
iσ (α) denotes the difference of orbital energies

from (I) to (F ) for the penalty coefficient αNK
iσ = α. At

that precise value, the energy curve is closely linear and
Koopmans’ theorem is satisfied.
To illustrate this fact, we depict the influence of αNK

iσ

on the linearity of the energy curve upon ionization of the
2p state of carbon in Fig. 4. Considering first the adia-
batic case [Fig. 4(a)], it is seen that the linearity of the
ionization energy, that is, the fulfilment of the adiabatic
Koopmans’ theorem, is achieved for αNK

2p = 1. This result
remains valid for any adiabatic process, as demonstrated
by analyzing non-Koopmans residual errors.28

Instead, in the diabatic case, the value of αNK
iσ that

satisfies the generalized Koopmans’ theorem is found to
be lower than 1. As a matter of fact, for relaxed ioniza-
tion of the 2p state of carbon, it is seen in Fig. 4(b) that
linearity is achieved for αNK

2p close to 4
5
. Precisely, the

converged value of the penalty coefficient that is deter-
mined after 2 recursion steps [Eq. (4)] is of 0.85. More
generally, it has been shown that αNK

iσ can be regarded
as a relaxation coefficient that measures the stability of
the final ionized state. Thus, for systems that consist of
a lone electron around a closed shell (e.g., alkali-metal
atoms), the outer-shell penalty coefficient equals 1. In
contrast, αNK

iσ becomes lower than 1 upon withdrawing
an electron from a filled or partly filled shell (cf. Fig. 9
in Ref. 28).
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FIG. 5: Occupation dependence of the non-Koopmans-
corrected total energy upon relaxed ionization of the 2p state
of carbon as a function of the reference occupation fNK

2p . The
underlying Kohn-Sham approximation is LSDA. The penalty
coefficient is set to be αNK

2p = 0.85, as calculated recursively
from Eq. (4).

After explaining the calculation of the penalty coeffi-
cients, we now turn our attention to the determination of
the reference occupation. Based upon Slater’s theorem
and the sum rule satisfied by the exchange-correlation
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hole, it can be shown that fNK
iσ should be set to 1

2
in

order to preserve the accuracy of the underlying Kohn-
Sham functional in predicting total-energy differences.28

This fact is illustrated in Fig. 5 where it can be seen
that the Koopmans-compliant energy difference matches
the Kohn-Sham ∆SCF energy difference at half reference
occupation for diabatic ionization of the 2p state of car-
bon. Therefore, at the reference occupation fNK

2p = 0.5

and with the relaxation parameter αNK
2p = 0.85 that has

been determined from Eq. (4), the Koopmans-compliant
functional yields an orbital energy ǫNK

2p = 11.83 eV on a
par with the accuracy of the ∆SCF prediction (11.72 eV)
and experimental IP (11.26 eV).
These results demonstrate the possibility of rectify-

ing the nonlinear behavior of the ionization curve and
restoring Koopmans’ theorem [condition (a)] while pre-
serving the accuracy of total-energy predictions [condi-
tion (b)] within Koopmans-compliant OD-DFT. In ad-
dition, Koopmans compliance presents the central ad-
vantage of avoiding to treat negatively charge molecu-
lar states [condition (c)] for both the evaluation of non-
Koopmans penalties and the calculation of orbital levels,
thereby allowing us to determine accurate acceptor levels
straightforwardly, as shown in Sec. III B.
Further details on the implementation of one

Koopmans-compliant method (the αNKC0 computa-
tional approach) are presented in the Appendix.

III. RESULTS

We now assess the predictive ability of Koopmans-
compliant functionals in describing the donor-acceptor
properties of a range of organic molecules relevant to
OPV molecular junctions, first focusing on donor levels
in Sec. III A and then examining the problem of acceptor
levels in Sec. III B.

A. Donor levels

The initial benchmark that is depicted in Fig. 6 con-
sists of a representative set of molecules, which has been
studied in Ref. 17. These molecules constitute elemental
components for relevant photovoltaic organics and allow
us to assess the accuracy of the self-interaction method
in capturing the electronic structure of organic materials
across a representative sample of chemical compositions
and molecular sizes.
Koopmans-compliant calculations are carried out at

the αNKC0 level. We employ conventional norm-
conserving pseudopotentials to represent atomic cores
with a cutoff energy of 60 Ry in expanding wave func-
tions. All of our calculations take into account spin po-
larization. Employing auxiliary-function correction,59 a
vacuum separation of 9 Å is sufficient to achieve conver-
gence of the electronic structure within 0.15 eV, even for
the large PTCDA and phthalocyanine molecules. In all

1 2 3
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7 8 9

benzothiadiazole benzothiazole fluorene

PTCDA phthalocyanine porphine

tetraphenylporphyrin thiophenethiadiazole

FIG. 6: Representative sample of organic molecules (Ref. 17)
for benchmarking the performance of electronic-structure
methods.
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FIG. 7: LSDA and αNKC0 donor levels compared with ex-
periment (cf. references in Table I) for the organic molecules
listed in Fig. 6.

cases, less than two recursions of Eq. (4) are needed in
converging the penalty coefficient α of the highest occu-
pied state of the molecule, and the same penalty weight
is imposed on the full spectrum (as justified by the sen-
sitivity analysis presented in the Appendix). Damped
electronic dynamics is used in optimizing electronic de-
grees of freedom with the inner-loop procedure described
in Ref. 60 and with a convergence threshold of 10−5 Ha
on the electron-dynamics kinetic energy. Regarding the
experimental literature, it is important to mention that
all of the measurements that are reported here corre-
spond to molecules isolated in the gas phase. Therefore,
environmental effects arising from a surrounding solvent
or from an embedding bulk need not be included in our
calculations.

LSDA and αNKC0 predictions for the frontier donor
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TABLE I: Absolute donor levels of benchmark organic
molecules within LSDA, PZ, αNKC0, and GW compared with
experimental vertical ionization energies (cf. Ref. 45 and ref-
erences below).

Donor levels (eV)

LSDA PZ αNKC0 GWa Expt.

benzothiadiazole 6.40 10.29 9.03 8.56 9.15b

benzothiazole 6.20 9.66 8.64 8.48 8.85c

fluorene 5.64 8.69 7.51 7.64 7.91d

PTCDA 6.32 9.66 8.12 7.68 8.2e

phthalocyanine 5.21 8.31 6.54 6.10 6.41f

porphine 5.24 8.34 6.66 6.70 6.9g

tetraphenylporphyrin 4.89 8.10 6.21 6.20 6.39h

thiadiazole 7.13 11.73 10.10 9.89 10.11i

thiophene 6.02 10.97 8.76 8.63 8.85j

MAD 2.20 1.43 0.16 0.32
RMS 0.64 0.45 0.11 0.15

aReference 17.
bReference 46.
cReference 47.
dReference 48.
eReference 49.
fReference 50.
gReference 51.
hReference 52.
iReference 53.
jReference 54.
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FIG. 8: LSDA and αNKC0 donor levels compared with ex-
periment for benzene (Ref. 55) and oligoacenes (Ref. 56).

levels (i.e., the absolute energy of the highest occupied
orbital) of benchmark molecules are reported and com-
pared with experiment in Fig. 7. (Here and throughout
the comparative assessment, we focus on LSDA results
rather than on GGA predictions due to the fact that
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FIG. 9: LSDA and αNKC0 donor levels compared with ex-
periment for fullerenes. Experimental vertical ionization po-
tential are from Ref. 57 for C50, C60, and C80 (D5d) and from
Ref. 58 for C70.

αNKC0 is applied to LSDA; this permits to directly re-
solve the effective influence of αNKC0 on the underlying
functional. Note that GGA orbital energies would be
very close to the LSDA results on the scale of the self-
interaction error.)
First, we observe a marked underestimation of absolute

donor levels within LSDA. The underestimation is above
1 eV for porphyrin complexes and reaches 2.5-3 eV for
strong aromatic donors. This incorrect trend is rectified
by αNKC0 that reduces the error down to a few tenths
of an eV. Furthermore, the accuracy of αNKC0 compares
favorably with that of the original self-interaction cor-
rection (PZ)25 and GW approximation. Indeed, data
reported in Table I reveal that PZ provides some im-
provement over LSDA, reducing the mean absolute error
from 2.20 eV to 1.43 eV. Much better agreement with
experiment is achieved within self-consistent GW79 with
a mean absolute error as low as 0.32 eV and a stan-
dard deviation of the error of 0.15 eV. Despite the very
good performance of GW calculations,80 the Koopmans-
compliant αNKC0 method is found here to be more pre-
cise in predicting the highest donor levels with an error
of 0.16 eV and a low standard deviation of 0.11 eV.
After highlighting the remarkable precision of αNKC0

across a variety of chemical compositions, we now assess
its ability to capture the influence of molecular size on the
electronic structure. For this complementary benchmark,
we consider two important families of organic molecules,
namely, acene oligomers and fullerene clusters. We em-
ploy the same calculation parameters as those above —
with the exception of the plane-wave cutoff that can be
reduced to 40 Ry without altering numerical convergence.
For oligoacenes (Fig. 8), we observe that LSDA is in er-

ror of 2.8 eV for the donor level of benzene. The error de-
creases gradually with the length of the chain but is still
as large as 2 eV for hexacene. In terms of relative errors,
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TABLE II: Absolute acceptor levels of benchmark organic
molecules within LSDA, PZ, αNKC0, and GW compared with
available experimental data.

Acceptor levels (eV)

LSDA PZ αNKC0 GWa Expt.

benzothiadiazole 3.52 3.42 1.07 0.42 —
benzothiazole 2.35 2.20 <0 <0 —
fluorene 2.05 2.00 <0 <0 —
PTCDA 4.80 4.81 3.19 2.68 —
phthalocyanine 3.79 3.82 2.34 2.07 —
porphine 3.28 3.19 1.53 1.39 —
tetraphenylporphyrin 3.07 3.04 1.68 1.49 1.69(10)b

thiadiazole 2.95 2.78 <0 <0 —
thiophene 1.59 1.38 0.04 <0 —

aReference 17.
bReference 61.

the LSDA underestimation fluctuates in the narrow range
29-31%. Applying αNKC0 restores the agreement be-
tween electronic-structure calculations and experiment,
reducing the error to less than 0.2 eV regardless of the
length of the chain. Similarly, for fullerenes (Fig. 9),
αNKC0 brings about some considerable improvement in
capturing the delicate influence of cluster size. Indeed,
despite the fact that the LSDA error varies in a much
wider range than for acene oligomers (22-28%) and that
the dependence of the highest occupied level as a func-
tion of the molecular size is clearly nonmonotonic, the
αNK0 error never exceeds 0.2 eV compared to available
experimental data, providing further confirmation of the
predictive precision of the Koopmans-compliant method
in describing subtle electronic-structure trends.
In addition, an important advantage of the αNKC0

method lies in its moderate computational cost. In fact,
converging the full electronic spectrum of an extended
PTCDA molecule with a large plane-wave cutoff of 60
Ry on a conventional 16-processor machine requires half
of a CPU day, whereas the same calculation within HF
and hybrid-DFT is 3 times more costly using compa-
rable cp implementations. Indeed, as explained previ-
ously, although conventional self-interaction corrections
and hybrid-DFT both scale quartically [O(N4)] with the
size of the electronic system, the algorithmic prefactor
of self-interaction methods is lower than that of hybrid-
DFT since the former do not require to evaluate pairwise
exchange contributions.

B. Acceptor levels

After validating the αNKC0 method for occupied
donor levels, we now concentrate on the prediction of un-
occupied acceptor levels. As already mentioned, accep-

TABLE III: Absolute acceptor levels of acene chains of in-
creasing length within LSDA, αNKC0,and GW compared
with experimental data.

Acceptor levels (eV)

LSDA αNKC0 GWa Expt.

benzene 1.38 0.03 — —
naphthalene 2.27 0.49 — —
anthracene 2.85 1.16 0.29 0.53b

tetracene 3.22 1.60 0.93 1.07c

pentacene 3.48 1.98 1.36 1.39c

hexacene 3.68 2.18 — —
octacene 4.27 2.48 — —

MAD 2.19 0.59 0.13
RMS 0.09 0.04 0.09

aReference 17.
bReference 62.
cReference 63.

tor levels represent a central difficulty for ∆SCF predic-
tions due to the inability of conventional DFT methods
to properly stabilize negatively charged states. In what
follows, we demonstrate that αNKC0 provides a solution
to this important methodological limitation.

In calculating acceptor levels, we use the same com-
putational parameters as those of donor-level calcula-
tions. In particular, the αNK0 penalty weights remain
unchanged. First-principles predictions for benchmark
organic compounds are reported in Table II. Our results
clearly confirm the poor performance of LSDA and PZ
in predicting acceptor levels; both methods overstabilize
acceptor states by several eVs relative to GW due to self-
attraction. In contrast, αNKC0 and GW predictions are
found to be in close agreement. In quantitative terms, the
discrepancy between αNKC0 and GW is as low as 0.15
eV for porphine and is at most of 0.6-0.7 eV for benzoth-
iadiazole. It should also be noted that our comparison
reveals that αNKC0 acceptor levels are always more sta-
ble than their GW counterparts. Additionally, although
experimental data for benchmark molecules are scarce,
comparison with the measured vertical electron affinity
of tetraphenylporphyrin suggests that the predictive ac-
curacy of αNKC0 is comparable with the accuracy of GW
predictions.

To gain further insight into the performance of first-
principles methods in predicting acceptor levels, we con-
centrate on the lowest unoccupied state for acenes (Ta-
ble III) and for fullerenes (Table IV). For weak acene
acceptors, the first notable feature is the propensity of
LSDA to overestimate absolute acceptor levels. This ex-
pected nonphysical tendency is rectified to a large ex-
tent by αNKC0, which reduces the mean absolute error
from 2.19 to 0.59 eV relative to vertical ionization exper-
iments. Nevertheless, it is seen that GW performs sig-
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TABLE IV: Absolute acceptor levels of fullerene clusters of in-
creasing size within LSDA, αNKC0, QMC (quantum Monte-
Carlo), GW0 (nonself-consistent), scGWf (self-consistent
with vertex corrections) compared with experimental data.

Acceptor levels (eV)

LSDA αNKC0 QMCa GW0
a scGWf

a Expt.

C20 4.24 2.19 1.76(11) 3.55 2.36 2.25b

C24 5.06 2.88 2.57(11) 4.19 2.88 —
C50 5.20 3.49 3.52(14) 4.75 3.73 3.10c

C60 4.27 2.64 2.23(19) 3.87 2.98 2.69d

C70 4.10 2.61 2.46(11) 3.98 2.83 2.76e

C80 (D5d) 5.00 3.91 3.25(10) 4.62 3.88 3.70c

C80 (Ih) 4.56 2.99 3.90(11) 5.17 4.38 —

MAD 1.66 0.18 0.42 1.25 0.26
RMS 0.32 0.12 0.06 0.26 0.21

aReference 64.
bReference 65.
cReference 66.
dReference 67.
eReference 68.

nificantly better than αNKC0, bringing the error down
to 0.13 eV. In the same vein, we note that the naph-
thalene acceptor level is predicted to be stable within
αNKC0 in contradiction to experiment. In fact, among
all of our benchmark calculations, acenes represent the
only instance where GW performs better than αNKC0,
suggesting that GW should be preferred over αNKC0 in
capturing shallow acceptor levels.

Despite this fact, the scenario is entirely different for
strong acceptors. Indeed, as shown in Table IV, αNKC0

yields acceptor levels in close agreement with experimen-
tal data for fullerene clusters with a mean absolute de-
viation of 0.18 eV, which is significantly lower than that
found for many-body quantum Monte-Carlo (0.42 eV),
nonself-consistent many-body perturbation theory (1.25
eV), and self-consistent many-body perturbation theory
(0.26 eV). These results suggest us to employ Koopmans-
compliant αNKC0 to describe the electronic properties of
the strong acceptor compounds relevant to photovoltaic
applications.

Overall, the systematic comparison of electronic-
structure methods offers a clear validation of αNKC0 as
an accurate and efficient method to describe the donor
and acceptor levels of relevant OPV compounds. This re-
markable performance allows us to access the electronic
structure of novel organics and provides a reliable start-
ing point to address the charge-transfer and optical prop-
erties of donor-acceptor photovoltaic junctions.

IV. CONCLUSION

In order to overcome the predictive deficiency of con-
ventional DFT methods in capturing the donor and ac-
ceptor levels of molecular complexes, we have presented
a correction procedure that enables one to eliminate the
nonphysical curvature of the total energy upon with-
drawing (injecting) electrons from (into) the molecular
system. When applied to LSDA, the procedure yields
an orbital-dependent functional that fulfills the gener-
alized Koopmans’ theorem, thereby restoring or impos-
ing the agreement between frontier orbital levels and
∆SCF energy differences, and overcoming central limi-
tations in applying ∆SCF techniques to predict accep-
tor levels. Specifically, the αNKC0 formulation of the
Koopmans-compliant method has been applied to OPV
compounds spanning a wide range of chemical composi-
tions and molecular sizes, thereby highlighting the con-
ceptual simplicity and computational performance of the
method with an accuracy comparable to that of many-
body perturbation theory.
Although the study has essentially focused on de-

termining frontier donor and acceptor levels, the non-
Koopmans corrective procedure can be straightfor-
wardly extended to compute the full electronic spec-
trum of molecular systems in a single first-principles
calculation.29 For future studies, we plan to apply the
Koopmans-compliant method to other relevant fami-
lies of photovoltaic compounds, including metallic por-
phyrins and phthalocyanines, and to generalize the ap-
proach to describe strongly interacting dyads and bulk
organic semiconducting materials at both the electronic
and excitonic levels.
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Appendix A: Computational details

In this appendix, we present the computational im-
plementation of the Koopmans-compliant method in the
cp (Car-Parrinello) code69 of the quantum-espresso

open-source project.70 Specifically, we describe the cal-
culation of contributions to the total energy and effective
Hamiltonian that arise from the non-Koopmans correc-
tion, we explain algorithmic choices in optimizing the
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electronic structure, and we detail the evaluation of the
penalty coefficients.

Before proceeding to the calculation of non-Koopmans
contributions, it should be noted that cp is a plane-wave
code. Adopting a plane-wave representation here allows
us to envision applications to relevant periodic molec-
ular structures, such as semiconducting polymers and
bulk materials. Despite the benefit of the plane-wave
approach, the evaluation of electrostatic contributions
to the non-Koopmans energies [Eq. (2)] in the context
of plane waves requires to correct periodic-image errors
that arise from the use of the supercell approximation
in describing nonperiodic systems. To eliminate arti-
ficial periodic-image interactions, we employ auxiliary-
function corrections that consist in removing singular-
ities in the reciprocal-space summation of electrostatic
terms through the addition of a regularizing auxiliary
functions to the point-charge electrostatic kernel.59 The
choice of this reciprocal-space scheme is motivated by
the fact that it allows us to use fast-Fourier-transform
(FFT) techniques, thereby minimizing the computational
burden associated with the repeated calculations of the
electrostatic energy and potential for each orbital of the
system; without this correction the calculation would be
prohibitively expensive.

The second difficulty in calculating non-Koopmans
terms lies in the assessment of the second-order func-
tional derivatives that appear in the expression of
the variational contributions to the effective potential,
namely, the wKS

ref,iσ and wKS
xd,iσ terms defined in Ref. 28.

To address the calculation of these terms, we employ the
computational subroutines written by Dal Corso and de
Gironcoli in the context of the DFPT (density-functional
perturbation theory) calculation of phonon dispersions.71

These subroutines are based upon explicit expressions
of second-order derivative contributions and also em-
ploy finite-difference techniques. Similar subroutines dis-
tributed as independent libraries (e.g., the libxc module
of the octopus code)72,73 can be conveniently ported to
compute second-order terms.

Overall, the calculation of non-Koopmans contribu-
tions to the total energy and effective Hamiltonian is
already less expensive than that of exchange contribu-
tions in hybrid-DFT functionals.21 Nevertheless, in order
to gain further computational performance, it is neces-
sary to reduce the computational burden associated to
the calculation of wKS

ref,iσ and wKS
xd,iσ. To this end, a suc-

cessful strategy consists in not updating the reference
density ρNK

iσ (r) = ρ(r) + (fNK
iσ − fiσ)niσ(r) that appears

in the expression of non-Koopmans energies at every iter-
ation of the self-consistent electronic-structure optimiza-
tion but only periodically for each given number of itera-
tions, thereby avoiding to calculate wKS

ref,iσ and wKS
xd,iσ at

each self-consistent step. This computational approach
that consists in neglecting the wKS

ref,iσ and wKS
xd,iσ contribu-

tions to the self-consistent OD-DFT potential is referred
to as the NKC0 method.

Remarkably, it is found that relaxing self-consistency

via the NKC0 method preserves and actually improves
the accuracy of predicted electronic properties relative
to NKC for difficult molecular complexes due to its in-
creased localization strength, with the caveat that only
orbital properties and not total energies can be evalu-
ated using NKC0.

28 Variational alternatives to NKC0,
endowed with a comparable localization strength can be
derived at the cost of increased sophistication. A pre-
liminary discussion of variational non-Koopmans self-
interaction corrections is presented in Ref. 74. In the
present study, we focus on NKC0 due to its simplicity
and accuracy in describing individual organic donors and
acceptors. Admittedly, more work would be necessary for
the variational description of systems where strong elec-
tronic delocalization prevails.
Regarding computational implementation, NKC0 is

straightforward to program since it simply relies on sub-
stituting the DFT Kohn-Sham potential with the OD-
DFT potential written below:

vKS
Hxc[ρ]

↓ (A1)

(1− αNK
iσ )vKS

Hxc[ρ] + αNK
iσ vKS

Hxc[ρ
NK
iσ ]

where vKS
Hxc denotes the sum of the Hartree and exchange-

correlation potentials and ρNK
iσ has been defined above.

Once the subroutines that calculate vKS
Hxc are identified,

this modification can be performed with some minimal
coding experience.
We now turn our attention to the optimization of the

electronic structure. In this regard, we first note that
only few of the conventional minimization algorithms ap-
plicable to DFT can be employed in the context of the
OD-DFT corrections. In particular, conventional itera-
tive diagonalization would represent a very poor choice
since eigenfunctions of different Hamiltonians would have
to be calculated for each of the orbitals in the system,
thereby considerably increasing computational complex-
ity. Instead, direct-minimization approaches, such as
conjugate-gradient or damped-dynamics techniques, are
more suited to OD-DFT calculations. Additionally, since
OD-DFT self-interaction corrections lead to energy func-
tional that are variant with respect to unitary rotation
of the orbital manifold contrary to DFT, it is also nec-
essary to consider unitary-rotation degrees of freedom in
minimizing the energy. Several approaches have been
proposed and can be used to this end.60,75–78

The final hurdle in implementing the Koopmans-
compliant method pertains to evaluating the penalty co-
efficients αNK

iσ .
Here, one first source of computational savings springs

from the fact that αNK
iσ is much less sensitive to the

resolution of the plane-wave grid than orbital-level pre-
dictions. In quantitative terms, in the case of furan
(Fig. 10), reducing the cutoff from 60 Ry to 15 Ry causes
the relaxation coefficient to vary by 3%, whereas such a
low plane-wave cutoff in expanding wave functions would
be intolerably low for the description of orbital levels.
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Therefore, since αNK
iσ can be evaluated on coarse plane-

wave grids, the preliminary determination of the weights
of the non-Koopmans penalty αNK

iσ represents a marginal
fraction of the computational cost associated with the
calculation of orbital levels.
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FIG. 10: Non-Koopmans penalty coefficient for the highest
occupied molecular orbital [1a2(π3)] of furan as a function of
wave-function cutoff energy.

The second important source of cost reduction in prac-
tical calculations is the fact that the relaxation coeffi-
cients αNK

iσ varies in a limited range, typically, between
0.5 and 1. To illustrate this fact, we report the value of
the coefficients αNK

iσ for the electronic states of carbon
in Fig. 11. On the basis of these calculations, we can
assess the sensitivity of electronic-level predictions as a
function of the αNK

iσ ’s. Indeed, LSDA is typically in error
of ∆ = 40% in predicting the electronic levels of atoms
and molecules. As a consequence, a simple sensitivity
estimate reveals that an error of α−αNK

iσ in the determi-
nation of the self-consistent penalty coefficient translates

into an error of
α−αNK

iσ

αNK

iσ

∆ in the electronic level relative

to the exact Koopmans-compliant estimate (that is, rel-
ative to the ∆SCF energy difference). Thus, in the case
of carbon, making the approximation of equating all of
the penalty coefficients to that of the highest occupied 2p
state (i.e., α = 0.85), we obtain errors as low as 2% for
the spin-up 2s state and lower than 14% for the spin-down
1s state, which in both cases represents a significant re-
duction of the LSDA error relative to ∆SCF predictions.
This sensitivity analysis provides a clear justification

for the αNKC0 method that consists in setting the
penalty coefficients αNK

iσ to be all equal to the same value,
thereby avoiding in particular to treat negatively charged
states. In explicit terms, αNKC0 consists in performing
the following substitution in lieu of Eq. (A1):

vKS
Hxc[ρ]

↓ (A2)

(1− α)vKS
Hxc[ρ] + αvKS

Hxc[ρ
NK
iσ ].

To complete the presentation of αNKC0, it is relevant
to discuss the size consistency of the method. Within
αNKC0, size consistency may be lost when considering
a molecular system composed of separate fragments; in
this situation, the α coefficient calculated for the global
system may differ from the α coefficients that correspond
to each of its subparts. (The same problem is known to
arise in range-separated hybrid-DFT approaches where
a single optimally tuned parameter γ is employed to im-
pose Koopmans’ theorem.) An immediate solution to ad-
dress this problem is to resort to NKC0, which preserves
the size consistency of the underlying local or semilocal
functional owing to the orbital-specific coefficients αNK

iσ .
Note that other simple solutions may be employed, such
as the approach that consists in using a different α for
each separate molecular fragment. Following this proce-
dure, orbitals localized on a given molecular fragment feel
the same α while orbitals localized on different fragments
have different α’s, thereby preserving size consistency.

2p

2s

1s 0.65

0.81

0.85   

2s

1s 0.54

0.68
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FIG. 11: Penalty coefficients αNK
iσ that quantify orbital relax-

ation upon ionization for the orbitals of carbon in the spin-up
and spin-down channels.
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