
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards a choreography for IRS-III
Conference or Workshop Item
How to cite:

Galizia, S. and Domingue, J. (2004). Towards a choreography for IRS-III. In: Proceedings of the Workshop
on WSMO Implementations (WIW 2004), Frankfurt, Germany.

For guidance on citations see FAQs.

c© [not recorded]

Version: [not recorded]

Link(s) to article on publisher’s website:
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-113/paper7.pdf

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Open Research Online

https://core.ac.uk/display/41385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-113/paper7.pdf
http://oro.open.ac.uk/policies.html

Towards a Choreography for IRS-III

S. Galizia1,2 and J. Domingue2

1Department of Mathematics, Università della Calabria, Rende (CS), Italy
galizia@mat.unical.it

2Knowledge Media Institute, The Open University, Milton Keynes, UK
J.B.Domingue@open.ac.uk

Abstract. In this paper we describe our ongoing work in developing a choreog-
raphy for IRS-III. IRS-III is a framework and platform for developing WSMO
based semantic web services. Our choreography framework is based on the
KADS system-user co-operation model and distinguishes between the direction
of messages within a conversation and which actor has the initiative. The im-
plementation of the framework is based on message pattern handlers which are
triggered whenever an incoming message satisfies pre-defined constraints. Our
framework is explained through an extensive example.

1 Introduction

Web services promise to turn the web of static documents into a vast library of inter-
operable running computer programs and as such have attracted considerable interest,
both from industry and academia. For example, IDC [IDC, 2002] predicts that the
Web Services market, valued at $416 million in 2002, will be worth $21 billion by
2007. Current web service technologies are, however, relatively inflexible and ongo-
ing research is investigating how semantic web technology can alleviate this.

Existing web service technologies are based on a manual approach to their crea-
tion, maintenance and management. At the centre of the conceptual architecture is a
registry which stores descriptions of published web services. Clients query the regis-
try to obtain relevant details and then interact directly with the deployed service. The
descriptions, represented in XML based description languages such as WSDL
[WSDL, 2001] and UDDI [UDDI, 2003], mostly focus on the specification of the in-
put and output data types and the access details. These specifications are obviously
not powerful enough to support automatic discovery, mediation and composition of
web services. A software agent cannot find out what a web service actually does, by
reasoning about a WSDL specification. Analogously the same agent cannot locate the
appropriate service in a UDDI registry, given a specification of a target functionality.
As a result, existing web service infrastructures by and large support a manual ap-
proach to web service management: only manual discovery can be supported and only
‘static’, manually configured web applications are possible.

The above issues are being addressed by ongoing work in the area of semantic web
services [OWL-S, 2002; Fensel and Bussler, 2002]. The overall approach is that by
augmenting web services with rich formal descriptions of their competence many as-
pects of their management will become automatic. Specifically, web service location,

composition and mediation can become dynamic, with software agents able to reason
about the functionalities provided by different web services, to locate the best ones for
solving a particular problem and to automatically compose the relevant web services
to build applications dynamically.

Recently a number of initiatives based on the WSMF framework [Fensel and Bus-
sler, 2002] have started. WSMF is an extension of the UPML framework [Fensel and
Motta, 2001] revised to integrate fully with web services and to support e-commerce.
WSMF is centered on two complementary principles: a strong de-coupling of the
various components that realize an ecommerce application; and a strong mediation
service enabling Web services to communicate in a scalable manner. Mediation is ap-
plied at several levels: mediation of data structures; mediation of business logics; me-
diation of message exchange protocols; and mediation of dynamic service invocation.
Three related initiatives associated with WSMF have recently begun. These are
WSMO [WSMO, 2004] which will develop an ontology for WSMF, WSML [WSML,
2004] which will develop a formal language for representing the WSMO based de-
scriptions and WSMX [WSMX, 2004] which will develop a reference implementa-
tion.

In this paper we describe our ongoing work on choreography in IRS-III (Internet
Reasoning Service) [Domingue et al., 2004] a framework and implemented infrastruc-
ture which supports the creation of semantic web services according to the WSMO
ontology.

The paper is organized as follows: in the following section we give a brief over-
view of choreography followed by an overview of IRS-III. We then describe our ap-
proach to choreography IRS-III in detail. The final section of the paper contains a
summary.

2 Choreography

Web service choreography deals with all the interactions between web services and
their users [W3C a, 2004], [Dijkman and Dumas, 2004] where the users in some cases
can be automated services. Additionally a choreography globally describes the behav-
iour observable from an external point of view.

W3C presents a notion of choreography at several levels of abstraction [W3C b,
2004], [W3C c, 2004], [W3C d, 2004]. An abstract choreography definition will con-
tain descriptions of the data types used and the conditions under which a given mes-
sage is sent. The advantage of an abstract choreography is that it is relatively easy to
reuse. However, more detail is often required. For this reason W3C defines other two
types of choreography: portable and concrete, that extend the abstract choreography
definition.

A portable choreography includes descriptions of the physical structure of the in-
formation exchanged and of the technologies used. A concrete choreography extends
a portable description including destination URLs, and specific rules, such as infor-
mation about digital certificates to be used for securing messages.

When creating a choreography the level of abstraction chosen would depend on the
current context (e.g. the type of organization it was designed for) and the level of re-

 2

usability and extendibility required. Actually the abstraction levels just illustrated rep-
resent a logical division, it is possible to define a choreographies that contain a de-
scription of the message physical structure, as required in a portable choreography,
but without information about the technologies used. We define a choreography with
a high level of concreteness, as we specify the message exchange pattern that includes
the destination URLs, the model used for the information flow representation, but it
does not include still information about digital certificates. Our choreography descrip-
tion may be considered as portable/concrete level. Furthermore, W3C choreographies
are described from the viewpoint of a group of web services [W3C c, 2004], specify-
ing a global peer-to-peer model of cross-enterprise interactions and their semantics.
Within IRS-III (and WSMO) our viewpoint, instead, is at a local single web service
level. That is we describe how one web service talks to one other.

3 Overview of IRS-III

The IRS project has the overall aim of supporting the automated or semi-automated
construction of semantically enhanced systems over the internet. IRS-I supported the
creation of knowledge intensive systems structured according to the UPML frame-
work and IRS-II [Motta et al., 2003] integrated the UPML framework with web ser-
vice technologies. Within IRS-III we have now incorporated and extended the
WSMO ontology.

IRS-III has four main classes of features which distinguish it from other work on
semantic web services. Firstly, it supports one-click publishing of ‘standard’ program
code. In other words, it automatically transforms programming code (currently we
support Java and Lisp environments) into a web service, by automatically creating an
appropriate wrapper. Hence, it is very easy to make existing standalone software
available on the net, as web services.

Secondly, by extending the WSMO goal and web service concepts users of IRS-III
directly invoke web services via goals that is IRS-III supports capability-driven ser-
vice invocation.

Thirdly, IRS-III is programmable. IRS-III users can substitute their own semantic
web services for some of the main IRS-III components.

Finally, IRS-III services are web service compatible – standard web services can
be trivially published through the IRS-III and any IRS-III service automatically ap-
pears as a standard web service to other web service infrastructures.

4 Choreography in IRS-III

4.1 Message Exchange Events

According to the WSMO standard model [WSMO, 2004], a web service interface de-
scription is composed of choreography and orchestration.

 3

Choreography describes how one web service interacts with another web service
and orchestration specifies how a complex web service calls subordinate web ser-
vices. The detailed description of interactions are based on Message Exchange Pat-
terns (MEPs) [W3C a, 2004].

The IRS-III choreography framework classifies messages according to two dimen-
sions following the system-user cooperation model proposed in KADS [Greef and
Breuker, 1992], namely,
• The initiative in the communication, and
• The direction of the communication.

The initiative expresses which actor, either a web service or a user, is responsible
for starting the communication, while the direction represents the communication
route, which can be from the system to the user or vice-versa.

In a message exchange pattern we can specify two main parameters: a sender and a
receiver. A message exchange event is a kind of transfer task, an elementary action
executed by an actor during a conversation.

From the IRS-III perspective we consider four kinds of events: receive, provide,
obtain and present. The overall framework shown in the figure below.

Fig. 1. Message exchange events

The message transfer events depicted above are obtained by permuting the possible
values for direction and initiative in the communication; the arrows (coloured red)
show the communication direction and the balls (blue) represent which actor, in-
volved in conversation, has the initiative.

Initiative is associated with actors who in some sense have control of the conversa-
tion. For example, only actors with initiative are allowed to start a conversation. Also
actors with initiative are allowed to negotiate a conversation, where “negotiate”
means to alter the topic of a communication or to update data sent within previous
messages. Within IRS-III initiative state (as part of conversation state) is held by an
instance of a choreography class.

Receive is the first exchange message event; when this event occurs the external
web service has the initiative and the IRS-III server receives a message sent by the
web service. The second type of event, Obtain, represents information transferred
from the web service to the server; IRS-III obtains a message and holds the initiative.
Provide is the third type of event; in this case the web service has the initiative and it

 4

receives a message provided by IRS-III. The last event type shows the situation in
which IRS-III has the initiative and sends a message to the web service.

4.2 An Example

Let us give an example of message exchanges between a web service and IRS-III
focusing on the different events happening.

We want to describe the behaviour (visible from the outside) of IRS-III during a
conversation with a Travel Agency System that deals with travel reservations.

This travel agent service has the following capabilities:
• Replying to the requests of the traveller,
• Proposing the best itinerary according to some criteria (e.g. cheapest, quickest),
• Reserving tickets,
• Cancelling reservations, and
• Sending statements.

Imagine that a user is planning a trip from Milton Keynes (UK) to southern Italy
for a holiday. The traveller does not have a specific preference regarding the plane
company or the itinerary to follow, but she is only concerned about finding the cheap-
est ticket. As there are no airports in Milton Keynes it is necessary to consult coach
and/or train line services to plan the whole itinerary.

The user sends her request to IRS-III which using predefined WSMO goal and web
service descriptions invokes airline, train and coach travel related web services.

Fig. 2. The interactions involved in booking a trip via bus, train and airline booking services
with IRS-III.

The final solution that IRS-III presents to the user will be composed of the differ-
ent contributions from the given pool of heterogeneous web services. In this example,
however, we analyze only the conversation between IRS-III and the airline web ser-
vice.

We will now describe the conversation shown in figure 3. IRS-III asks the airline
service to book the cheapest trip from Milton Keynes to a city in southern Italy. Note
that IRS-III starts the conversation with the airline service, thus IRS-III has the initia-
tive. The airline service returns the details of a two legged flight Luton to Amsterdam

 5

followed by Amsterdam to Naples. The travel ontology used as a basis for the WSMO
descriptions contain flight evaluation criteria. Running the criteria results in a low
convenience rating for the proposed flight. As the IRS-III has the initiative it is able to
start a negotiation process. IRS-III sends a new request to the airline service, changing
the journey parameters, in particular, giving a higher priority to the criteria related to
the number of legs in the journey. The web service then returns a direct flight from
Luton to Reggio in Calabria.

Fig. 3. An example of an IRS-III/web service conversation

We can see in the above example that only messages of type obtain and present
were used - in fact these are the only possible types when the IRS-III has the initia-
tive. Another aspect of the example we should emphasise is that only actors who cur-
rently hold the initiative can negotiate the information. In our example IRS-III was
able to change the journey constraints when the proposed trip failed to satisfy evalua-
tion criteria.

4.3 Movement of the initiative
Within web service conversations there will be occasions when it is necessary to
move the initiative. Our framework supports the transfer of initiative through the use
of an initiative marker.

Fig. 4. Initiative movement events

Figure 4 displays the only two possible events regarding the movement of initiative
from the IRS-III point of view. The initiative flow is indicated by an arrow (red), the
ball (blue) indicates which actor has the initiative. The two types of events are:
• Present-initiative - IRS-III sends the initiative to the web service. IRS-III has the

initiative while the send-event is performing, if the action does not generate errors,
the initiative is transferred to the web service.

• Obtain-initiative – the initiative is transferred from a web service to IRS-III.

 6

The initiative can also be transferred within the four other ‘standard’ message types.

4.4 Structure of Messages

The table below shows the structure of choreography messages. We elected not
adopt all of the Fipa ACL specification [Fipa a, 2001; Fipa b, 2002] because it did not
completely conform to our requirements. In our conversations one of the actors is a
WSMO web service description sitting within an IRS-III server. To identify the actor
we therefore require an identifier for the server (a URL) and an identifier for the web
service description, namely, an ontology and a web service class name.

Obviously, each web service will have its own message structure. Internally,
within a web service choreography IRS-III will transform, as far as possible, the mes-
sages received from web services into the IRS-III message structure.

Within IRS-III deployed web services are attached to WSMO web service descrip-
tions through a publishing process (see section 3). During the publishing process an
identifier is generated for the web service which is used as the value for id-sender and
id-receiver. The value for sender-WSMO-obj and receiver-WSMO-obj is simply the
name of the WSMO web service class. Correspondingly the value for sender-WSMO-
ontology and receiver-WSMO-ontology is the name of the home ontology for the
WSMO web service class.

Parameters Description Type

Id-message Message identifier String
Sender-WSMO-ontology Home ontology of sender WSMO

object
WSMO ontology

Receiver-WSMO-ontology Home ontology of receiver WSMO
object

WSMO ontology

Sender-WSMO-Obj Sender identifier of WSMO object WSMO web service concept
Receiver -WSMO-Obj Receiver identifier of WSMO object WSMO web service concept
Id-sender Identifier of the sender URL
Id-receiver Identifier of the receiver URL
Event-type Kind of event (e.g. Receive, obtain) Event type
Initiative Who has the initiative WS/IRS-III (actor)
Content Denotes the content of message String
Time Records the time when the action is

executed
Date/time

Tab. 1. Message Structure

The other parameters of a message are relatively straightforward. Every message is
recognized by a unique identifier id-message. The parameter event-type indicates the
type of message sent (receive, provide, obtain, present, present-initiative or obtain-
initiative). The initiative parameter specifies who has the initiative and the content pa-
rameter contains the actual data exchanged. For initiative transfer messages (present-
initiative and obtain-initiative) the initiative marker is passed within the content pa-
rameter. The final parameter time contains a timestamp for the event.

 7

4.5 Representation in IRS-III

When a web service communicates with IRS-III, it instantiates a message exchange
pattern as described in the choreography. In this subsection we show how an example
pattern handler is represented in IRS-III. Following from the previous example, we
represent in OCML the pattern handler for managing communication between IRS-III
and an Easy-Jet flight booking web service.

(def-wsmo-pattern-handler easy-jet-airline-pattern-handler
 (message ?id ?easy-jet-ontology
 easy-jet-web-service-ontology
 easy-jet-airline easy-jet-flight-booking-service
 ?id-message-sender irs-iii obtain-message-event
 ?current-initiative-holder
 ?content ?time)

(flight-passenger ?content ?person)
 (flight-passenger ?content ?departure-location)
 (flight-arrival-location ?content ?arrival-location)
 (flight-departure-time ?content ?departure-time)
 (has-travel-plan ?person ?travel-plan)
 (matches-travel-plan ?travel-plan ?departure-time

?departure-location ?arrival-location)
(has-travel-plan-message ?travel-plan

?travel-plan-message)
 then
(send-message
 (create-message-id)
 easy-jet-web-service-ontology
 ?easy-jet-ontology easy-jet-flight-booking-service
 easy-jet-airline
 irs-iii ?id-message-sender present-message-event
 ?current-initiative-holder
 ?travel-plan-message (current-time)))

Fig. 5. An example of an IRS III choreography pattern handler

The above pattern handler is invoked when flight details for a passenger are re-
ceived which match the passenger’s stored travel plan. When invoked a message as-
sociated with the travel plan is retrieved and sent. The definition of the pattern follows
the message structure defined in the previous section. In fact the arguments for the
message and send-message relation are the same as table 1. In this specific sce-
nario, the slot id-receiver would have the URL of the IRS-III server and initiative
would have as its value an instance of the web service easy-jet-flight-
booking-service’s associated choreography class. The value for event-type would
be obtain-message-event.

A collection of pattern handlers are stored within a choreography description.
When a deployed web service is published against a WSMO web service description
the name of the appropriate choreography concept would be given.

 8

Summary

IRS-III is a framework and implemented infrastructure which allows WSMO based
semantic web services to be created and used. One of the main aims in designing IRS-
III was to make the process of semantic web service based application development as
easy as possible.

In this paper we have described our ongoing work on choreography within IRS-III.
Our choreography framework is based on the KADS system-user co-operation model
and distinguishes between the direction of messages and which conversation actor
currently has the initiative. In implementing the framework we have devised a mes-
sage structure and a representation for handling conversations based on pattern han-
dlers.

Successfully managing the choreography of heterogeneous web services, each with
its own message organization, process and underlying ontology, is a non-trivial prob-
lem. We believe that our framework is step towards addressing this problem within
the WSMO framework.

Acknowledgements

This work is supported by the DIP (Data, Information and Process Integration with
Semantic web services) and AKT (Advanced Knowledge Technologies) projects. DIP
(FP6 - 507483) is an Integrated Project funded under the European Union’s
IST programme. The AKT Interdisciplinary Research Collaboration (IRC), is spon-
sored by the UK Engineering and Physical Sciences Research Council under grant
number GR/N15764/01. The AKT IRC comprises the Universities of Aberdeen, Ed-
inburgh, Sheffield, Southampton and the Open University.

References

J. Domingue, L. Cabral, F Hakimpour, D. Sell, and E. Motta (2004) IRS-III: A Platform and
Insfrastructure for Creating WSMO-based Semantic Web Services. 1st WSMO Implementa-
tion Workshop (WIW), Frankfurt, 29th and 30th September 2004, CEUR Workshop Pro-
ceeding.

D. Fensel and C. Bussler. (2002) The web service modeling framework WSMF. Electronic
Commerce Research and Applications, 1(2):113–137, 2002.

D. Fensel and E. Motta. (2001) Structured Development of Problem Solving Methods, IEEE
Transactions on Knowledge and Data Engineering, 13(6):9131-932.

Fipa [a]. (2001) Fipa ontology service specification. Document number XC00086D, Available
from http://www.fipa.org/specs/fipa00086/XC00086D.pdf

Fipa [b]. (2002) Fipa acl message structure specification. Document number SC00061G, Avail-
able from http://www.fipa.org/specs/fipa00061/SC00061G.pdf/.

H. P. Greef and J. A. Breuker. (1992) Analysing system-user cooperation in KADS. Knowl-
edge Acquisition, 4:89–108, 1992.

 9

http://www.fipa.org/specs/fipa00086/XC00086D.pdf

IDC. (2002) U.S. Web Services Market Analysis, 2002 IDC
(http://www.internetnews.com/xSP/article.php/1579171)

E. Motta. (1999) Reusable Components for Knowledge Modelling. IOS Press, Amsterdam, The
Netherlands, 1999.

E. Motta, J. Domingue, L. Cabral, and M. Gaspari. (2003) IRS-II: A framework and infrastruc-
ture for semantic web services. In 2nd International Semantic Web Conference
(ISWC2003), 20-23 October 2003, pages 406–417. Sundial Resort, Sanibel Island, Florida,
USA, 2003.

OWL-S. (2002) Web Service Description for the Semantic Web. In the Proceedings of The
First Int’l. Semantic Web Conf. (ISWC), Sardinia (Italy) (2002).

R. Dijkman and M. Dumas. (2004) Service-oriented Design: A Multi-viewpoint Approach.
CTIT Technical Report Series No. 04-09, Centre for Telematics and Information Technol-
ogy, University of Twente, The Netherlands, February 2004.

 UDDI. (2003) UDDI Spec Technical Committee Specification v. 3.0,
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm

W3C [a]. (2004) Web services architecture. W3C Working Group Note 11 February 2004,
Available from http://www.w3.org/TR/2004/NOTE-ws-arch-20040211.

W3C [b]. (2004) Web services choreography requirements. W3C Working Draft 11 March
2004, Available from http://www.w3.org/TR/2004/WD-ws-chor-reqs-20040311.

W3C [c]. (2004) Web services choreography model overview. W3C Working Draft 24 March
2004, Available from http://www.w3.org/TR/2004/WD-ws-chor-model-20040324.

W3C [d]. (2004) Web services choreography description language version 1.0. W3C Working
Draft 27 April 2004, Available from http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427.

 WSDL. (2001) Web Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

WSML. (2004) Languages for WSMO, http://www.wsmo.org/2004/d16/
WSMO. (2004) Web Service Modeling Ontology – Standard, http://www.wsmo.org/2004/d2/
WSMX. (2004) Overview and Scope of WSMX, http://www.wsmo.org/2004/d13/.

 10

http://www.internetnews.com/xSP/article.php/1579171%3c/div
http://www.wsmo.org/2004/d13/

