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Abstract An ion-imprinted (IIP) film has been successfully
prepared in this work. Firstly, mixture solution of cellulose
and alginate was obtained by dissolving those polymers in a
NaOH/urea aqueous solution. Then the mixture solution was
cast onto glass plate and coagulated in CaCl, aqueous solution
bath to prepare a composite film. The matrix of the film was
further fixed by cross-linking. Finally, the chelated Ca®" in the
matrix was removed to obtain the IIP film. The IIP film was
characterized to show satisfactory mechanical properties, and
to exhibit porous mesh network microstructure. The equilib-
rium swelling ratio of the IIP film was determined to be
700 %. The IIP film was immersed into Ca®", Ca>"/Cu*",
Ca®*/Zn*" and Ca®*/Mg®" solutions to check the adsorption
behavior, respectively. The results indicate that the IIP film
displayed highly selective Ca®" recognition, and the presence
of additional cations had little effect on the Ca®" recognition.
Thus prepared Ca®" imprinted film have potential applications
in fields such as hard water softening, and Ca®" enrichment or
recognition.

Keywords Regenerate cellulose - Sodium alginate -
Porous film - Ion-imprinting - Selective recognition

Introduction

Molecular imprinting technique is a process through
templating a special target molecule for selective recognizing
specific chemical species [1]. Due to the specific recognition
and the feasibility, molecularly imprinted polymers (MIP)
based on this technique have attracted extensive attention
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and been widely applied in many fields such as chromatogra-
phy, sensor device, membrane separation, and enzyme catal-
ysis [2-5]. For example, Xu et al. [3] have prepared a porous
MIP for solid-phase extraction of triazines in soil. If the MIP is
porous film material, it will combine the advantages of MIP as
well as the membrane separation. In other words, the material
will have a huge space of target molecule exchange for MIP
together with high separation efficiency of membrane [2].

Lately [6—14], a characteristic ion rather than a targeted
molecule has been used as template for the preparation of
porous MIP. The obtained ion imprinting polymer (IIP) is thus
to have the specific ion recognition, which has been used for
toxic ion removal [6—8] or for analyte enrichment [9—14]. The
ion-recognition of the IIP is similar as that of MIP, namely the
special groups in the matrix of the IIP would have specific
interaction like chelating interaction with the designated ion.
However, the preparation of IIP often requires complex syn-
thesis condition. For example, Zhen et al. [9] employed graft
polymerization combining with chemical modification to
have prepared an ion-imprinted microporous polypropylene
film for the selective removal of Cu>*. A Ni** IIP of porous
polyvinylidene fluoride film was synthesized via copolymer-
ization, with the in situ templating ion of Ni*" and dithizone as
chelating ligand cross-linked in the film matrix [10]. The
separation factor of the IIP film for the Ni*" ion versus Co*"
ion was 2.6 [10]. However, it has been claimed that some
disadvantages were employed during the polymerization pro-
cess of the IIP preparation [8, 15], i.e. the densely cross-linked
matrix would limit the activity of the deeply embedded bind-
ing sites of the IIP. On the contrary, porous structure and
swollen-able network of the IIP would facilitate the affinity
and capacity of the imprinted polymer toward the template
target.

Sodium alginate (SA), a natural polymer widely derived
from brown algae and consisting of 1,4-linked D-manuronic
and L-guluronic acid residues, has been extensively
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investigated and applied in biomedical fields due to its bio-
compatibility, low toxicity and relatively low cost [16]. An
important feature of alginate is its gelation behavior in the
presence of divalent cations such as Ca®". The divalent cations
are believed to bind solely to guluronate blocks along alginate
chains to form “egg-box™ [17, 18], suggesting the Ca>" rec-
ognition ability of SA. If the Ca®" was removed by stronger
chelators such as ethylenediaminetetraacetic acid disodium
salt dihydrate (EDTA) [19], Ca®" recognition caves would
be left in the SA matrix.

It has been reported [20-22] that cellulose and SA were
miscible at the molecular scale, and the obtained blend films
displayed porous mesh network structure to have satisfactory
heavy metal ion adsorption and high equilibrium swelling
ratio. Therefore, the blend system could provide an ideal
matrix for IIP preparation, where the porous mesh network
structure would facilitate the diffusion and recognition of
solutes [8, 15] and the stiff cellulose chains [23, 24] would
strengthen the obtained material. Therefore, cellulose and
alginate were solution blended in a co-solvent of NaOH/urea
aqueous solution and cast onto glass plate, and then were
coagulated in CaCl, aqueous solution bath to prepare a blend
film. The film was further fixed by cross-linking. After that,
the chelated Ca®" was removed to obtain the IIP film. The
microstructure and the properties of the IIP film were charac-
terized, and its selective Ca*" recognition was measured in
presence of competitive cations. The results indicate that the
prepared Ca®" IIP films have potential applications in fields
such as hard water softening, and Ca®" enrichment or
recognition.

Experimental
Materials

Cotton linter (cellulose) with viscosity-average molecular
mass (M) of 1.01x 10° g/mol [25] was supplied by Hubei
Chemical Fiber Group Ltd (Xiangfan, China). Sodium algi-
nate (SA) with weight-average molecular weight () of 7%
10* g/mol was purchased from Xiamen Renchi Chemical
Industry Co. Ltd (Xiamen, China). Analytical-grade epichlo-
rohydrin (ECH), ethylenediaminetetraacetic acid disodium
salt dihydrate (EDTA), calcium chloride (CaCl,), magnesium
chloride (MgCl,), copper chloride (CuCl,), zinc chloride
(ZnCl,) were purchased from Sinopharm Chemical Reagent
Co., Ltd (Shanghai, China), and were used as received.

Film preparation
Cellulose solution was prepared according to previous work

[23]. Briefly, mixture solvent containing 7 wt.% NaOH,
12 wt.% urea and 91 wt.% water was pre-cold to —12 °C,
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and then cotton linter was dispersed into the mixture solvent
with vigorously stirring for 5 min. The resultant slurry was
centrifuged at 6000 rpm for 8 min to obtain the upper layer
transparent solution with a cellulose concentration of 3 wt.%.
SA was dissolved in the same solvent with stirring for 10 h at
room temperature to have a 6 wt.% polymer concentration.
The cellulose and the SA solutions were mixed under ice-bath
to produce a homogeneous solution with the weight ratio of
3:1 for cellulose to SA.

The polymer mixture solution was cast onto glass plate,
and then exposed in air at ambient condition for 30 min. After
that, the plate was immersed into a 3 wt.% CaCl, aqueous
solution coagulant bath for 10 min. The peeled-off film was
washed with de-ionized water for 3 times, and then immersed
into 3 wt.% epichlorohydrin solution at 60 °C for 2 h, where
the pH was adjusted to 12 with NaOH. ?* The film was then
washed for 3 times in turn with 0.5 wt.% H,SO, solution,
ethanol and deionized water. After that, the film was im-
mersed in 0.02 mol/L EDTA aqueous solution for 6 h to
remove Ca”". Thus treated film was washed thoroughly with
water, and finally air-dried to obtain the ion-imprinted film
(IIP). The non-ion imprinted film (NIIP) was prepared through
a similar procedure by directly coagulating the cellulose/SA
mixture solution in 0.5 wt.% H,SO,4 aqueous solution and
then being cross-linked in 3 wt.% epichlorohydrin solution at
60 °C for 2 h. Pure regenerated cellulose film (RC) was
prepared by coagulating the cellulose solution in 0.5 wt.%
H,SO,4 aqueous solution. Pure SA film was prepared by
coagulating the SA aqueous solution in ethanol.

Measurements

The films before dried were frozen in liquid nitrogen, and
snapped immediately, then freeze-dried. The surface and
cross-section of the fractured films were coated with a thin
layer of gold (about 2 nm) to observe their microstructures by
using an LEO 1530 (LEO, Germany) or an XL30 (ESEM-
TMP, Holland) scanning electron microscope (SEM) with
20 kV accelerating voltage.

About 0.5 g of the dried IIP and NIIP films were immersed in
deionized water for desired time, and then were weighed after
carefully decanting the surface water with filter paper, respec-
tively. The swelling ratio, O, was calculated using Eq. (1):

0= (W) [ Wo (1)

Where W, is the weight of dried film, and W, is the weight
of the wet film at time 7.

The tensile strength (01,) and breaking elongation (£},) of the
films in dry state were measured on an universal testing
machine (WDS-5, Tianshui, Tianshui Hongshan Test



J Polym Res (2014) 21:612

Page 3 of 7, 612

Machine Co. Ltd., Gansu, China) according to ISO 527-2,
1993 (E) at a speed of 5 mm/min.

The salts of CaCl,, MgCl,, CuCl,, and ZnCl, were dissolved
in deionized water to obtain Ca**, Ca®'/Cu**, Ca®"/Mg*",
Ca?"/Zn*" mixture solutions, and their concentrations are listed
in Table 1 or Table 2. About 0.1 g of the IIP and NIIP films were
soaked in 10 mL Ca®", Ca2+/Cu2+, Ca2+/Mg2+, Ca®"/Zn*"
mixture solutions with lightly stirring, respectively. After de-
sired time, 5 mL of the supernatants were extracted. The ion
concentrations (Cs) were respectively checked using an UV-
visible spectrophotometer (50BIO, VARIAN, Australia) ac-
cording to literature methods: Cu®" with chromogenic agent
of EDTA at 265 nm [26], Ca®" with acid chrome blue K at
565 nm [27], Mg”" with acid chrome blue K at 508 nm [27],
and Zn*" with Zincon at 580 nm [28].

X-ray diffraction (XRD) patterns of the films were record-
ed using a PANalytical diffractometer (PANalytical, Nether-
lands) with Cu-K« radiation. The vacuum dried films were
continuously scanned from 10° to 50° (20) at a speed of
0.0167 °/s.

Fourier transform infrared (FT-IR) characterization was
performed on a Nicolet Avatar 360 instrument (Nicolet, Mad-
ison, WI) at 25 °C. The film was firstly grounded with KBr
and then vacuum-dried at 40 °C over 48 h to produce disks for
the measurements.

Results and discussion

Figure 1 shows the microstructures of the surfaces and the
interiors of the regenerated cellulose film, the ITP and the NIIP
films. It is observed that the RC film displays homogeneously
porous microstructure with a mesh network pattern for both
the surface and the inner part, which is similar as the mor-
phology of the regenerated cellulose films reported in the
literatures [29, 30]. The surfaces of the IIP and the NIIP films
exhibit much denser microstructure, while the inner parts of
the films reveal three-dimensional sponge network morphol-
ogies. Both of the IIP and the NIIP films have similar porous
network microstructures with the same level pore size, which
is obviously bigger than that of RC. The porous network

microstructure of the IIP and the NIIP films is consistent with
those of the cellulose/alginate blend films [21] or gels [22]. It
has been reported that the cellulose/alginate blend films or
gels consist of both polymers and the water-soluble alginate
were not removed to act as pore former [21, 22], though the
exact formation of the mesh porous microstructure has not
been clear. We consider that the dehydration and consequently
shrinking of both polymers especially the water-soluble algi-
nate during drying would result in the formation of the mesh
structure of the films. The dense surfaces of the IIP and the
NIIP films are attributed to the cross-linking treatments after
coagulation, where the cross-linking reaction took place with
priority.

The macroporous mesh structure of the films is bene-
ficial to the transportation of small molecules in their
matrix. It has been found that water could easily penetrate
into the matrices of the dried IIP and NIIP films, and the
equilibrium swelling of both films could be reached with-
in 12 h. The equilibrium swelling ratio of the dried IIP
film has been determined to be about 700 %, and that of
the NIIP was about 540 %. The higher equilibrium swell-
ing ratio of the IIP film is attributed to the release of
cross-linking sites of alginate by the EDTA treatment
during preparation. In addition, the IIP film shows satis-
factory mechanical properties. The tensile strength (o)
and the breaking elongation (&y,) of the IIP film have been
tested to be 45.7 MPa and 5.5 %, respectively.

The IIP film was immersed in Ca®" and Cu*" mixture
solution to study its adsorption and competitive ion-recog-
nition. Figure 2 shows the variation of the UV—vis absor-
bance spectra of the mixture solution with adsorption time.
The obvious result is the individually determining of the
concentrations of Cu?" and Ca®" in the feed solution at
265 nm and 565 nm, respectively. It is seen that the peak
intensity at 265 nm, i.e. the concentration of Cu®" decreases
slightly after 45 min. However, the Ca®" concentration
peaked at 565 nm in the spectra has been found to decrease
greatly with adsorption time. Those results clearly indicate
the adsorption of the Ca>" ions prior to the Cu®" ions by the
[P film. Table 1 summarizes the uptake percentages of the
feed metal ions, the uptake capacities, the distribution
coefficients (K4) and the selectivity coefficient (K) [31]

Table 1 The parameters of the

competitive adsorption of Ca" Film  Initial concentration(mg/L)  Uptake (%) Capacity (mg/g) K4 (mL/g) K
and Cu?* by the ITP and the NIIP
films a2 cut cat ' Ca?t Ccut Ca2 Ccu
1P 20 20 984 800 272 2.54 2.35x10%  1.53x10° 154
20 0 9.0 - 292 - 511x10*  —
NIIP 20 20 579 654  1.08 1.84 4.4x10? 9.8x107 0.45
20 0 732 - 2.12 - 1.10x10> -
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Table 2 The absorption of metal

ions by the IIP film in Ca"/Mg?" Feed solution Initial concentration (mg/L) Uptake (%) Capacity (mg/g) K, (mL/g) K
and Ca’*/Zn*" solutions x10°
Ca*'/Mg>* 20/20 87.6/56.3 1.84/1.25 0.79/0.14 55
Ca*/Zn* 20/20 92.1/62.3 1.76/1.17 1.10/0.16 7.1
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Fig. 1 SEM images of the surfaces (A, B and C) and the corresponding inner parts (a, b and c¢) for the RC, IIP and NIIP films
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Fig. 2 UV-vis absorbance spectra of the Ca>"/Cu*" mixture solution
after adsorption with the IIP film for the indicated time

of the IIP film toward Ca®". The distribution coefficient
(mL/g) is defined as

(C—Cy)V

K =
d cw

(2)

Where C; and C; are the initial and the final concentrations
of the feed ion (mmol/L), Vis the volume of the feed solution
(mL) and W is the mass of IIP films (g). The selectivity
coefficient is the comparison of the distribution coefficients
of the competitor ions, i.e.

kd(Ca”)

K=-4"°"_"
kq(Cu?t)

3)

High K value suggests the prior adsorption of the numera-
tor ion by the adsorbent. Table 1 also lists the corresponding
parameters of the NIIP film in order to have a better
comparison.

It can be seen that 98.4 % of the Ca®" and 80.0 % of the
Cu”" in the mixture feed solution have been adsorbed onto the
IIP film, and the adsorption capacities are 2.72 and 2.54 mg/g,
respectively. Without the competitive ion of Cu®", the IIP film
has slightly higher uptake and capacity of the Ca®", suggesting
that the presence of the competitive ion of Cu”* with the same
charge has limited effect on the adsorption of Ca®". At the
same time, the K4 of Ca>" is found to be much higher than that
of Cu?", and the selectivity coefficient has been calculated to
be 15.4, meaning the high Ca”" recognition of the IIP film in
the feed solution of mixture ions. The NIIP film also shows
some adsorption of the ions based on the functional groups of
the polymers, but displays no competitive ion-recognition
(K=0.45).

Figure 3 shows the uptake kinetic of Ca®" in feed solutions
of the Ca®"/Cu?" mixture solution and the Ca®" solution with
the same initial Ca®" concentration. The obvious is the overlap

of the data points for the two adsorptions, evidencing little
effect of the Cu®" upon the Ca>" recognition of the IIP film
once again. The results also indicate that the adsorption of
Ca*" took place rapidly, and almost all Ca>* has been extract-
ed within 40 min.

The Ca®" recognition of the IIP film has been further
testified by immersing the films into Ca**/Zn*" and Ca®"/
Mg>" mixture solutions, respectively. The competitive ions
of Zn** and Mg*" were chosen because they have the same
charge as Ca®" but with different ionic radius. The results of
the competitive adsorption of the ions are summarized in
Table 2. It is found the IIP film shows a certain extent adsorp-
tion capacity to all kinds of ions. However, the selectivity
coefficients are 5.5 for the Ca**/Mg*" and 7.1 for the Ca®"/
Zn**, respectively. Those results clearly indicate the Ca*"
recognition of the IIP film. The lower K values of the Ca*"/
Mg>" systems than that of the Ca®*/Cu" is thought to be due
to smaller ionic radius of the Mg>" (0.65 A) which could be
adsorbed easier than Cu?"(0.72 A). Compared with Ca**/Cu**
system, the Ca®*/Zn*" system shows a lower K with similar
size between Zn®" (0.74 A) and Cu®* (0.72 A). This may be
due to the presence of Zn”" tends to lower the total metal
uptake in two-metal systems, while Cu”" has little influence
on Ca®"/Cu®" system [32].

The FT-IR spectrum of the IIP film and that of the film after
adsorption of Ca®" are shown in Fig. 4. The spectrum of the
[P film shows the characteristic peak of the antisymmetric
and symmetric stretching vibration of carboxyl group for SA
at 1642 cm™ ' and 1430 cm'. The broad bands around
3430 cm ! is attributed to the formation of new hydrogen
bonding between the two components, which is consistent
with those of the cellulose/SA blends reported in literatures
[21]. After adsorption of Ca®", the spectrum of the film shows
a relatively strong and new band peaked at 1560 cm !, which

100
80 [
& i
S
N’ r
= 60r
=)
° p—
~N— = 2+ .
(=% L —O0— Ca” solution
S 40 2+ 2+ . .
g L —O— Ca /Cu” mixture solution
= [
< [
20
o
0 10 20 30 40 50 60

Time (min)

Fig. 3 The uptake kinetic of Ca>" in feed solutions of the Ca*"/Cu*"
mixture solution and the pure Ca*>* solution. The data points are connect-
ed respectively to guide the eyes
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Fig. 4 FT-IR spectra of the IIP (A) and the IIP films after ion-imprinted
with Ca®>" (B)

is attributed to the presence of Ca*" in the film. Moreover, the
characteristic bands of carboxyl group for SA has been found
to shift to 1632 cm ' and 1458 cm™', meaning the chelate
formation between the carboxyl groups of SA and the Ca**
[33]. This further confirms why the uptake kinetics failed to fit
Langmuir isotherm adsorption in Fig. 3. It is because of the
chelating, the IIP film has the property to recognize Ca®".
The crystalline structure of the IIP film has been studied in
order to know more details of its Ca®" recognition. Figure 5
shows the XRD patterns of the regenerated cellulose, the SA
and the IIP film. The pattern of RC exhibits diffraction peaks
at 20=22° and 24°, corresponding to cellulose II crystal
structure [34]. The SA shows a peak at around 14°, while
the peak at 260=23° [35] is not obvious. It is found that the IIP
film exhibits no obvious crystalline peak except the broad
diffraction band at about 22°, and the intensity of the band is
much lower than those of RC peaks. This result suggests the

RC
>
N
E

U 1P
=
=
o

SA

L L L M L L L L | L L L | L L L L
10 20 30 40 50

2 Theta (degree)

Fig. 5 XRD patterns of the films
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presence of SA would interfere with the crystallization of
cellulose in the film, leading to amorphous morphology of
the IIP film. Combining with the SEM results, the preparation
and the recognition of the IIP film is suggested in Fig. 6.
Firstly, the solution mixed two polymers was coagulated in
aqueous CaCl, solution. The compatible cellulose and SA
would form the homogeneously mesh network microstructure
of the film. Simultaneously, the carboxyl groups of the evenly
dispersed SA would chelate with Ca®" in the coagulation bath.
Then the film was strengthened by cross-linker of ECH. After
that, the Ca”* was removed by EDTA treatment to retain the
chelating sites in the film, which could be used for the recog-
nition of Ca*". Therefore, this work provides an easy method
to prepare Ca>" imprinted film, which would have potential
applications in fields such as hard water softening, and Ca**
enrichment and recognition.

Conclusions

An ion-imprinted film has been successfully prepared from
cellulose and alginate through solution blending. The IIP film
exhibits satisfactory mechanical properties for its application.
The SEM characterization indicates porous mesh network
microstructure of the film, which is helpful to the swelling
of the film and to the transportation of small solute in the
matrix. Most importantly, the IIP film displays highly selec-
tive Ca>* recognition, in the presence and/or in the absence of
other metal ions. Detail analysis suggests that compatible
cellulose and SA weaved the porous matrix of the film, which
was then fixed with chemical cross-linker of ECH. The fol-
lowing extraction of the Ca®" from the film leaves the chelat-
ing sites for its post-recognition. Therefore, our work provides
an easy way to prepare a Ca>” imprinted film, which would
have potential applications in fields such as hard water soft-
ening, and Ca”" enrichment or recognition.
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l Epichlorohydrin

Alginate Cellulose Epichlorohydrin Ca?*  Recognition sites of Ca?*

Fig. 6 Schematic preparation of the Ca®" imprinted film
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