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a b s t r a c t

Ab initio total energy calculations are performed on non-stoichiometric vanadium carbidewith supercells
representing vacancy concentrations of VC0.875 and VC0.75. The VC0.875 supercell retains a cubic symmetry
whilst in the case of the VC0.75 supercell C vacancies located in close proximity have the lowest energy
configuration and the cubic lattice slightly distorts to a monoclinic symmetry. Using a stress–strain
calculational procedure, the elastic constants of both the cubic and the monoclinic systems are deduced.
In all cases C vacancies decrease the elastic moduli.
A similar analysis is then applied to consider when W is incorporated into VC. In this case it is found

that the elastic moduli increase with W content suggesting that a V-W-C alloy could have significant
potential as a novel hard material.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

For some time non-stoichiometric vanadium carbide has been
investigated for several potentially useful applications [1,2]. The
material displays a unique combination of properties some of
which are a high melting temperature, high hardness, good high-
temperature strength, and very efficient electrical and thermal
conductivities. More recently, there has also been a growing in-
terest in the use of hard transition metal carbides as functional
coatings [3] which have similar characteristics as their bulk coun-
terparts and even an urgency to explore other possible materials
that can be incorporated into VC. Of such materials WC has been
considered to be especially significant.
In stoichiometric VC, the lattice symmetry is simple cubic with

a Fm3m space group structure however the material is especially
sensitive to the presence of C vacancies. Different structures have
been suggested for the non-stoichiometric phases and as such a
carbide can contain a substantial concentration of C vacancies that
are tentatively located in an ordered octahedral sublattice [4]. A
cubic phase seems to be formed over a range from VC0.86 to VC0.88
and this superstructure has been suggested to have a double lattice
spacing with respect to the disordered carbide with a cubic unit
cell tentatively assigned in the space group of P4332 or P4132 [5].
Another ordered phase, appropriate to the phase VC0.75 appears
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in stoichiometries less than VC0.86, and this may have trigonal
symmetry (space group P31) or a monoclinic (C2, or C2/m) [5]
symmetry. The energetics as to how these different ordered phases
of vacancies arise has not been considered from the viewpoint of
an atomic level investigation and this is one purpose of the present
work.
There have also been several investigations on the elastic prop-

erties of both stoichiometric and non-stoichiometric vanadium
carbide. Extensive Brillouin scattering studies on vanadiumcarbide
have been undertaken in a carbon vacancy concentration ranging
from VC0.75 to VC0.88 [6] and compression measurements have re-
cently beenmade on VC0.85 up to P = 53 GPa [7]. As far as the bulk
modulus and other elastic constants are concerned, such investi-
gations appear to imply a steady reduction in themagnitude of the
elastic constants as the carbon vacancy concentration increases.
In addition, with the strong suggestion that at large vacancy con-
centration the cubic symmetry is reduced to become monoclinic
or trigonal, it is also necessary to understand how the large va-
cancy concentration affects the overall crystal symmetry as well
as the related change in elastic constants in order to associate such
changes with C vacancies.
The C vacancy content of VC reduces the elastic constants of

thematerial andmore recently it has been suggested that incorpo-
ration of WC could produce a cubic ternary V-W-C material with
a structure similar to VC and possibly with enhanced properties
[8–12]. Thus we extend the present work presented here to con-
sider how the presence of W in cubic VC could influence not only
the structure of VC but also and especially the trend in the elastic
constants of a ternary V-W-C system.
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In this paper we first establish what seems to be the most
suitable calculational approach for an analysis of the V-C system
and critically examine the elastic constants of non-stoichiometric
VC. Thereafter we examine the properties of a ternary material V-
W-C.

2. Calculational procedure

The stress-free elastic constants of materials are normally stud-
ied at a fundamental level using an energy-distortion approach
where the total energy is varied and a variation of the following
form applied in the calculation procedure:

E(V , ε) = E(V0)+
∑
i,j

ci,jεiεj

where the strain tensor defined as:

ε =

(
ε1 ε6/2 ε5/2

ε6/2 ε2 ε6/2
ε5/2 ε6/2 ε3

)

takes distortions appropriate to specific lattice elastic constants.
In the case of a system with cubic symmetry, there are only three
independent elastic constants whereas with a very low symmetry
system notably monoclinic or triclinic systems there are far more
elastic constants — namely 13 for monoclinic and up to 20 for
a triclinic system. The calculation task involving a total energy
variation approach in such a case is therefore quite intensive
and often prohibitive. In the present case, we have employed a
somewhat similar but far less computationally intensive approach
to obtain the elastic constants by directly calculating the overall
stress matrix, σ, on the system. This is related to the strain tensor
according to the well known relation:

σ = cε

where both σ and c are the very small stress and strain columnma-
trices and ε the 6× 6 matrix of elastic constants as before. There-
fore, the above equation constitutes six linear equations with six
variables ε involving 21 unknown c. To calculate the elastic con-
stants, c, very small values (±0.005 in the present work) of the de-
formation are employed for a calculation of specific combinations
of the stress tensor. The stress tensors are the output of the calcu-
lations. The computational intensity is reduced considerably from
that used in the more conventional energy-distortion approach.
For the cubic structure, only 4 separate calculations were neces-
sary. In the case of the monoclinic system presented here a to-
tal of 12 separate calculations were needed to get all the elastic
constants.
In the present work the electronic interactions were calculated

through the VASP electronic structure code using PAW pseudopo-
tentials [13]. For V we investigated two choices of PAW-potentials
appropriate to nominal electronic configurations d4s1 and p6d4s1

as well as considering both the local density (LDA) and generalized
gradient (GGA-PBE) functional. In the case of the perfect stoichio-
metric cubic system, the results – now shown in Table 1 – indicate
that the p6d4s1 potential with the GGA-PBE functional was more
suited toVC as assessed by agreement of the computed values of in-
teratomic spacing and bulk modulus which was fitted to the Birch
Equation of State [14] employing a usual energy–volume approach.
Thus the p6d4s1 potential togetherwith theGGA-PBE functional

is chosen in subsequent investigations. We point out that using
this potential there is good agreement with experiment and also
several earlier calculations on aspects of VC [15–21].
Table 1
Calculated cell structure of VC and the bulk modulus as fitted to the Birch Equation
of State.

LDA GGA
a0 (Å) B (GPa) (B′) a0 (Å) B (GPa) B′

d4s1 4.096 345 (4.17) 4.115 316 (4.26)
p6d4s1 4.096 346 (4.12) 4.161 305 (4.19)
Expt. [14] 4.172 303

Table 2
Lattice parameters and cohesive energies of different phases of vanadium carbides.

VC VC0.875 VC0.75a VC0.75b

Lattice
parameter (Å)

4.161 4.145 4.109c , 4.1421d 4.1181c

Cohesive
energy (eV/atom)

−9.563 −9.598 −9.6191c −9.4791d

−9.6272d −9.4682d

a The calculated nonclinically distorted cubic structure when C vacancies are
located on adjacent C sites.
b The simple cubic structure where C vacancies are on next neighbor C sites.
c A cell of 14 atoms with two C vacancies.
d A cell of 56 atoms with 8 C vacancies.

2.1. Non-stoichiometric vanadium carbide

In order to introduce carbon vacancies into the system, we
must employ a series of supercells with similar starting symmetry
as the original cell. A vacancy concentration of VC0.85 can be
simulated either within a 16-atom supercell with one carbon atom
removed whereas for a stoichiometry of VC0.75, again a 16-atom
cell is needed but now with two carbon atoms removed. Whereas
the former VC0.85 16-atom cell will always have a simple cubic
symmetry as there is only one location for the C vacancy; with two
C vacancies the 16-atomcellmay deformdepending on the relative
location of the vacancies. In fact, it turns out that only two locations
really matter for the C vacancies depending on how close they are
located relative to each other. Employing the variable cell approach
implemented in the VASP code in all cases, we are therefore able
to study both changes occurring in lattice geometry as well as, in
the case of the stoichiometry VC0.75, the preferred location of the C
vacancies as indicated by the lowest total energy for each of the C
vacancy locations.
These results are given in Table 2 where we see that in the

case of the VC0.75 the energetically most favored structure is when
the C vacancies are located on adjacent C sites. To check the cell
size effect, we have also used a supercell of 56 atoms with 8 C
vacancies and the calculated results are given in Table 2. Again, we
see that defect structurewith vacancies locating on adjacent C sites
is more energetically favorable. From the symmetry of the overall
deformed unit cell in this case a monoclinic structure is deduced.
When the two C vacancies lie at the more distant locations there
was negligible distortion from cubic symmetry.
Now that the symmetry of the supercells is established from

the total energy calculations, we use the stress–strain method as
described above to evaluate the elastic constants. Values obtained
using this method are shown in Table 3.
In order to get some estimate of the overall hardness of the each

of the systemswe can use the following relations to obtain the bulk
and shear moduli of the system [22]. In the case of the monoclinic
system, since the four elastic constants c15, c35, c16 and c46, are very
small:

B =
1
9

(c11 + c22 + c33)+
2
9

(c12 + c13 + c23)

G =
1
15

(c11 + c22 + c33 − c12 − c13 − c23)

+
1
5

(c44 + c55 + c66) .
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Table 3
Calculated elastic constants (GPa) of stoichiometric and non-stoichiometric VC using the stress/strain approach.

c11 c22 c33 c44 c66 c12 c13 c23 c15 c35 c16 c46

VC 615 178 154
VC0.875 619 161 128
VC0.75a 590 591 592 156 141 110 123 124 2.6 2.5 3.4 1.8
VC0.75b 515 99 153
a The nonclinically distorted cubic structure.
b The cubic structure.
Table 4
Lattice parameters, cohesive energies, Bulk and Shear moduli (GPa) of different
phases of vanadium carbides.

B (Birch-EOS) B G B (expt) G (expt)

VC 305 308 210 308 [10]
VC0.875 272 292 212 237–245c 175–179c
VC0.75a 240 272 185 208c 151c

VC0.75b 267 274 148
a The calculated nonclinically distorted cubic structure.
b The cubic structure.
c The experimental values deduced from Ref. [6] using the relation for cubic
systems of B = (c11 + 2c12)/3 and the Voigt shear G = (c11 − c12 + 3c44)/5.

While for the cubic structure, we use the following equations:

B =
1
3

(c11 + 2c12)

G =
1
5

(c11 − c12 + 3c44) .

The bulk modulus and shear constants are now given in Table 4
where we also include the value of the bulk modulus as obtained
using a least squares fit to the Birch Equation of State and also the
experimentally deduced Bulk and Shear modulus.
Overall there is fair agreement between the Equation of State

value of the Bulk modulus and that deduced from the stress–strain
method. For the exact stoichiometric VC, agreement is very good
whereas for the other stoichiometries agreement is about 10%
which is acceptable for calculations of this sort. Notably in the case
of VC0.75 the lowest Bulk as deduced from the Birch Equation of
State corresponds to the case where the C vacancies are located at
nearest neighbor locations and this is marginally predicted from
the stress–strain method. In all cases there is a similar trend as
that observed experimentally — namely the elastic moduli of non-
stoichiometric VC decrease with C vacancies.

2.2. Ternary vanadium tungsten carbide

In the above section we have established the reliability of the
procedure for studies of cubic VC and especially the types of pseu-
dopotentials and appropriate density functional to be employed.
Within the limits of an 8-atom cell we now apply the technique to
consider the potential properties of a ternary system of the form
V1−xWxC. This ternary alloy has recently been suggested to have
superior properties to that of VC. As with V we also use the GGA
procedure andwith a pseudopotential forW that specifically incor-
porates d-states. Dimensions of the 8-atom unit cell were allowed
to vary — surprisingly there was very little deformation from a cu-
bic symmetry whenWwas included and thus we have considered
the system to have an overall cubic symmetry. This allows us to
investigated the elastic constants in a similar way to that we have
employed earlier. For a specific stoichiometry in the ternary sys-
tem we allowed the W atom to replace a V atom in the unit cell
and the calculated results are now given in Table 5.
It is noted that the presence of W steadily increases the over

lattice constant yet at the same time there is a steady increase in
the Bulk modulus. At larger concentrations of V, the presence of
Table 5
Unit cell, Birch Equation of State Bulk Modulus and elastic constants of the V-W-C
ternary system using the relation for cubic systems of B = (c11 + 2c12)/3 and the
Voigt shear G = (c11 − c12 + 3c44)/5.

a (Å) B (EOS) B′ c11 c12 c44 B G

V0.25W0.75C 4.344 351 4.35 856 172 115 400 206
V0.5W0.5C 4.272 335 4.27 815 168 165 384 228
V0.75W0.25C 4.232 321 4.23 715 179 174 358 212
VC 4.161 305 4.19 615 154 178 304 210

W does increases the shear modulus. This result there points to a
suggestion that the presence of W in VC will increase the hardness
of the material.

3. Conclusion

In conclusion, the present calculations have confirmed that
there is a steady reduction in the compressibility and hardness
(as indicated by the shear modulus) of VC as the C vacancy
concentration is increased. The non-cubic symmetry of VC often
observed in the case of high C vacancy concentrations we suggest,
from results of the energy calculations presented here, is attributed
to C vacancies in very close proximity and gives rise to amonoclinic
deformation of the original cubic lattice. A calculation of the elastic
constants, gives Bulk and Shear moduli that are in fair agreement
with recent experimental work but decrease with C vacancy
concentration. On the contrary we have found that incorporation
of W into cubic VC increases the Bulk modulus and, at lower
concentrations of W, the shear modulus. This suggests that the
presence ofW in VCmay slightly increase the hardness of cubic VC.
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