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Islet transplantation is a therapeutic option for type 1
diabetes, but its long-term success is limited by
islet allograft survival. Many factors imperil islet survival,
especially the adverse effects and toxicity due to clinical
immunosuppressants. Compound (Cpd) K is a synthe-
sized analog of highly unsaturated fatty acids from Isatis
tinctoria L. (Cruciferae). Here we investigated the ther-
apeutic effect of Cpd K in diabetic mice and found that
it significantly prolonged islet allograft survival with
minimal adverse effects after 10 days. Furthermore, it
reduced the proportion of CD4+ and CD8+ T cells in
spleen and lymph nodes, inhibited inflammatory cell
infiltration in allografts, suppressed serum interleukin-2
and interferon-g secretion, and increased transforming
growth factor-b and Foxp3 mRNA expression. Surpris-
ingly, Cpd K and rapamycin had a synergistic effect. Cpd
K suppressed proliferation of naïve T cells by inducing
T-cell anergy and promoting the generation of regula-
tory T cells. In addition, nuclear factor-kB signaling was
also blocked. Taken together, these findings indicate
that Cpd K may have a potential immunosuppressant
effect on islet transplantation.

Diabetes is a fatal disease and has become a worldwide
health issue. In 2012, more than 371 million people had
diabetes (1). People with diabetes suffer devastating

neural and vascular complications such as neuropathy,
metabolic syndrome, cardiovascular disease, and reti-
nopathy (2,3). Type 1 diabetes is a chronic autoimmune
disease resulting from destruction of insulin-secreting
b-cells in the islets of Langerhans (4). For most type 1
diabetes patients, insulin therapy may be sufficient to
maintain glycemic control, but hypoglycemia is a poten-
tially lethal side effect of insulin treatment. Pancreas
transplantation reduces insulin dependence but may
also increase risk of major surgery (5).

Since the Edmonton protocol was developed in 2000
(6), islet transplantation had become a more widespread
therapy for type 1 diabetes patients. However, rapamycin
(Rapa) and tacrolimus (FK506) have been reported to in-
hibit b-cell regeneration and result in nephrotoxicity after
chronic treatment (7). Meanwhile, the high risk of sensi-
tization after failed islet transplantation due to the pro-
duction of donor-specific antibodies raises great concerns
(8). Therefore, development of new immunosuppressants
with improved safety and effectiveness for islet transplan-
tation is needed.

Natural products and their derivatives have played an
extraordinary role in preventing and curing human
diseases (9–11). More than half of all clinically used drugs
are thought to be of natural product origin (12). Several
immunosuppressants (cyclosporin A, tacrolimus, and
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Rapa) and immunomodulators (fingolimod) currently in
clinical use were discovered or developed from natural
sources (13–16). Isatis tinctoria L. (Cruciferae) is an an-
cient Chinese medicinal plant in which the leaf and root
are used. Others have shown that lipophilic extracts from
Cruciferae have anti-inflammatory and antiallergic ac-
tivities in vivo (17,18), but their immunosuppressive
activity remains unclear. In our previous studies, we
isolated a highly unsaturated fatty acid from the
Cruciferae root and synthesized dozens of analogs (19).
Compound (Cpd) K, with a molecular weight of 546.51,
is one of these analogs. In addition, Cpd J, another
analog with a molecular weight of 461.32, has been
shown to reverse multidrug resistance in tongue cancer
(19).

In this study, we investigated the immunosuppressive
effect and mechanism of action of Cpd K after islet
transplantation in streptozocin (STZ)-induced diabetic
mice. We first examined islet allograft survival after
treatment with Cpd K alone or combined with sub-
therapeutic dose of Rapa (sub Rapa). Immunorejection
after allotransplantation is mediated mainly by T lym-
phocytes. Thus, we examined the activation, anergy, and
apoptosis of T cells and T-cell subsets, especially regula-
tory T cells (Tregs), after Cpd K treatment. Our results
revealed the immunosuppressive effects of Cpd K are
mediated through T-cell inhibition, T-cell anergy, and
increasing the proportion of Tregs. Moreover, we dem-
onstrate Cpd K has a strong synergistic effect with
Rapa. Together, these findings indicate that Cpd K may
be a potential effective immunosuppressant for islet
transplantation.

RESEARCH DESIGN AND METHODS

Preparation of Cpd K
Cpd K, an analog of a highly unsaturated fatty acid, was
synthesized at the College of Pharmacy, Guangxi Medical
University (Guangxi, China). Its identity was confirmed
by spectrum analysis, with a purity of more than 99.5%
based on high-performance liquid chromatography anal-
ysis. Cpd K stock solutions were prepared by dissolving
in absolute ethanol to final concentrations of 10 and
20 mg/mL, followed by sterile filtration (pore size,
0.22 mm).

Chemicals and Antibodies
Rapa was obtained from LC Laboratories (Woburn, MA)
and dissolved in PBS (0.01 mol/L, pH 7.2) to a final
concentration of 0.02 mg/mL. Arsenic trioxide (As2O3) was
obtained from SL Pharmaceutical, and concanavalin (Con)
A (C0412) was from Sigma-Aldrich. Recombinant mu-
rine interleukin (IL)-2 was from PeproTech. Anti–b-actin
(N21; SC130656) was from Santa Cruz Biotechnology.
Antibody to IkBa phosphorylated at Ser32-Ser36 (5A5;
#9246), to nuclear factor (NF)-kB p65 phosphorylated
at Ser536 (93H1; #3033), to Jun NH2-terminal kinase
(JNK) phosphorylated at Ser473 (D9E; #4060), and to

p38 phosphorylated at Thr180-Tyr182 (#9211) were
from Cell Signaling Technology. Fluorescein isothiocyanate
anti-mouse CD4 (RM4-5) and phycoerythrin (PE) anti-
mouse Foxp3 (FJK16s) and their isotype controls were
from eBioscience. PE/Cy5 anti-mouse CD8a (53-6.7) and
its isotype control were from BioLegend.

Experimental Animals
All animals were purchased from SLAC Laboratory Animal
Co. Ltd (Shanghai, China). Female C57BL/6 (H-2Kb) and
BALB/c (H-2Kd) mice (8–12 weeks old) were used as graft
recipients and donors, respectively. All animals were
maintained and bred in specific pathogen-free facilities,
following National Institutes of Health Principles of Labo-
ratory Animal Care.

Experimental Diabetic Mice
Mice were fasted overnight and then injected intraperi-
toneally with 180–220 mg/kg STZ dissolved in 0.1 mol/L
sodium citrate buffer (pH 4.4). Blood glucose was mea-
sured using a FreeStyle glucose meter (Abbott, Abbott
Park, IL). Diabetes onset was defined as two consecutive
daily blood glucose measurements of .16.7 mmol/L.

Experimental Treatment of Diabetic Mice
Five treatment groups (n = 6 mice each) were defined:
normal saline treatment as the control, sub Rapa (0.1
mg/kg/day) treatment, Rapa treatment (0.2 mg/kg/day),
Cpd K (20 mg/kg/day) treatment, and combination of Cpd
K (20 mg/kg/day) and Rapa (0.1 mg/kg/day) treatment
(Cpd K + sub Rapa). Cpd K and Rapa were administered
orally and intraperitoneally over 0–9 days after transplan-
tation, respectively.

Islet Isolation, Purification, and Transplantation
Donor islets were isolated and transplanted by kidney
subcapsular injection, as previously described (20,21). Is-
let transplants were considered functional with two con-
secutive blood glucose measurements ,8 mmol/L. The
time of islet graft rejection was defined as the first day
of two consecutive blood glucose measurements .11.1
mmol/L.

Cell Culture

Pancreas Islets
Isolated islets were dissociated into single-cell suspension
by incubating with 0.25% trypsin-EDTA and 25 units/mL
DNase I for 15 min at 37°C. Islet cells were maintained in
RPMI 1640 medium supplemented with 20% (vol/vol)
FBS.

T Cells
T cells were isolated from the spleen by negative
isolation with nylon wool columns (Wako, Richmond,
VA), with purity of ;90–95% (data not shown). Cells
were maintained in RPMI 1640 medium supplemented
with 10% (vol/vol) FBS, penicillin, and streptomycin. All
cells were cultured in a humidified chamber with 5% CO2

at 37°C.

diabetes.diabetesjournals.org Ma and Associates 3459



Apoptosis Assay
Cells were treated with different concentrations of Cpd K
or 4 mmol/L As2O3 for 24 h at 37°C and then washed
twice with prechilled PBS (0.01 mol/L, pH 7.2). Apoptosis
assays were performed using a PE-Annexin V detection kit
(BD, Franklin Lakes, NJ), following the manufacturer’s
protocol. All samples were analyzed by flow cytometry
with FACScan (BD).

Insulin Secretion Assay
Ten isolated islets were incubated with different concen-
trations of Cpd K and 5.6 mmol/L glucose for 1 h at 37°C
in DMEM (Gibco, Grand Island, NY), and the medium was
replaced with fresh DMEM containing 16.7 mmol/L glu-
cose. Supernatant was collected after being incubated for
1 h and measured using a Rat/Mouse Insulin 96-Well
Plate Assay Kit (Millipore, Billerica, MA).

Histopathology Analysis
Kidney islet grafts were removed from recipient mice at
day 10 after transplantation, fixed in 4% paraformalde-
hyde fixative (Beijing Solarbio Science & Technology Co.,
Ltd., Beijing, China), and embedded in paraffin. Grafts

were cut into 5-mm sections, stained with hematoxylin
and eosin, and examined by microscopy.

Immunohistochemistry Analysis
Immunohistochemistry was performed with Polink-2 plus
Polymer HRP Detection System (GBI Laboratories, Mukilteo,
WA), following the manufacturer’s protocol. Rabbit anti-
insulin monoclonal antibody (#3014) was from Cell Signal-
ing Technology (Danvers, MA). Samples were visualized with
a 3,39-diaminobenzidine detection kit (Maixin-Bio, Fuzhou,
China).

Intraperitoneal Glucose Tolerance Test
Recipient mice underwent an intraperitoneal glucose
tolerance test (IPGTT) at day 8 after transplantation.
Mice were fasted for 10 h by removal to a clean cage
without food at the end of their dark feeding cycle, and
weighed. A fasting glucose level was obtained from the tail
vein. D-Glucose (1 mg/g body weight) was injected intra-
peritoneally. Blood glucose values were measured at 0, 5,
10, 15, 30, 60, and 120 min. We assessed the area under
the curve for glucose using the trapezoidal rule and the
area above baseline.

Figure 1—Cpd K is nontoxic to islet cells and has low nephrotoxicity. A: Islet cells were purified and treated with 0, 40, 80, 120, or 160 mg/mL
Cpd K for 24 h, and apoptosis was assayed. The numbers are for representative data of three independent experiments. B: Insulin secretion
from isolated mouse islets was detected in the presence of 5.6 and 16.7 mmol/L glucose. Islets were treated with various concentrations of
Cpd K plus 5.6 mmol/L glucose. C and D: C57BL/6 mice were administered orally with normal saline, 20 mg/kg/day, or 40 mg/kg/day Cpd
K for 10 and 20 days, and sera creatinine (CRE) and blood urea nitrogen (BUN) were measured by an automated biochemical analyzer
(Beckman Coulter, Brea, CA). Data are presented as mean6 SEM of three independent experiments. ***P < 0.001 vs. 5.6 mmol/L glucose.
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Figure 2—Effects of Cpd K on islet graft survival, insulin secretion, and glucose intolerance in diabetic mice. Islet graft survival (A) and
blood glucose levels (C) are shown in recipient mice with different treatments. Graft survival was calculated by the Kaplan-Meier method
and compared by a log-rank test (n = 6). B: Insulin immunohistochemistry assays were done at day 10 after transplantation. IPGTT was
performed on day 8, blood glucose levels were measured (D), and the area under the curve (AUC) was calculated (E). Data are presented as
mean 6 SEM of three independent experiments. *P < 0.05 vs. control group; #P < 0.05 vs. sub Rapa group; +P < 0.05 vs. control group.
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Mixed Lymphocyte Reaction Assay
Splenic T cells (;90–95% pure; data not shown) were
isolated from recipient mice using nylon wool columns
(Wako) and used as responder cells. BALB/c splenocytes
were used as stimulator cells and were pretreated with
mitomycin C (40 mg/mL; AMRESCO, Solon, OH). Re-
sponder cells (5 3 105 cells) were cocultured in 96-well
plates with stimulator cells (5 3 104 cells) in 200 mL
RPMI 1640 medium supplemented with 10% (vol/vol)
FBS, 1% penicillin and streptomycin, and incubated at
37°C in 5% CO2 humidified atmosphere for 72 h. Cell
proliferation was measured using a BrdU cell proliferation
assay kit (Roche Diagnostics, Indianapolis, IN). Optical
density values were measured by a microplate reader
(Model 680 reader; Bio-Rad Laboratories, Hercules, CA)
at 450 nm (reference wavelength at 690 nm), with the
measurements performed in triplicate.

Flow Cytometry Analysis
Lymphocytes (1 3 106) from the spleens and lymph
nodes of recipient mice were suspended in 100 mL
PBS. After incubation with fluorescein isothiocyanate

anti-mouse CD4 (RM4-5), PE/Cy5 anti-mouse CD8a
(53-6.7), and isotype controls at 4°C for 30 min, Tregs
were labeled using the Mouse Regulatory T-cell staining
kit (eBioscience), following the manufacturer’s protocol.
Stained cells were detected on the FACScan and the
data analyzed using FlowJo software (Tree Star Inc.,
Ashland, OR).

ELISA
ELISAs were performed using commercially available kits
(NeoBioscience Technology, Shenzhen, China) to detect
the quantity of IL-2, interferon (IFN)-g , IL-4, and trans-
forming growth-b (TGF-b) in cultured T-cell supernatants
and the sera of recipient mice, according to the manu-
facturer’s instructions. Each reaction was carried out in
triplicate.

Carboxyfluorescein Diacetate Succinimidyl Ester Assay
Splenic T lymphocytes were stained with carboxyfluo-
rescein diacetate succinimidyl ester (Sigma-Aldrich)
and cultured in 96-well plates at a concentration of
1.5 3 106 cells/mL. Cells were exposed to different

Figure 3—Cpd K effect on inflammatory cell infiltration and cytokine expression in diabetic mice. Grafts were removed from recipient mice
at day 10 posttransplantation and sera prepared. A: Pathological analysis of islet grafts was performed by hematoxylin and eosin staining,
which showed there were inflammatory cells both around and within the islet grafts. Graft IL-2, IFN-g, and IL-4 mRNA levels were quantified
by qRT-PCR (B), and protein concentrations in recipient mouse sera were determined by ELISA (C). Each reaction was done in triplicate.
Data are presented as mean 6 SEM of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 vs. control group; #P < 0.05,
##P < 0.01 vs. sub Rapa group; +P < 0.05, ++P < 0.01, +++P < 0.001 vs. Cpd K group.
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concentrations of Cpd K and 2.5 mg/mL Con A (Sigma-
Aldrich) in RPMI 1640 medium supplemented with 10%
(vol/vol) FBS, and 1% penicillin and streptomycin. Lym-
phocyte proliferation was analyzed by flow cytometry
after 48 h.

Quantitative Real-Time (RT)-PCR Analysis
Total RNA was isolated from islet grafts and cultured
T lymphocytes with TRIzol (Life Technologies, Carlsbad,
CA). Reverse transcription and quantitative (q)RT-PCR
were performed using commercially available reagents
(Toyobo, Osaka, Japan). The StepOne Real-Time PCR
System (ABI, Foster City, CA) was used to detect IL-2,
IFN-g, IL-4, TGF-b, and Foxp3. b-Actin served as a con-
trol. The following primer sequences were used for
qRT-PCR:

b-actin: forward 59-CATCCGTAAAGACCTCTATGCCA
AC-39, and reverse 59-ATGGAGCCACCGATCCACA-39; IL-2:
forward 59-GGAGCAGCTGTTGATGGACCTAC-39, and re-
verse 59-AATCCAGAACATGCCGCAGAG-39; IFN-g: forward
59-CGGCACAGTCATTGAAAGCCTA-39, and reverse 59-GTT
GCTGATGGCCTGATTGTC-39; IL-4: forward 59-TCTCGAAT
GTACCAGGAGCCATATC-39, and reverse 59-AGCACCTTGG
AAGCCCTACAGA-39; TGF-b: forward: 59-TGACGTCACT
GGAGTTGTACGG-39, and reverse 59-GGTTCATGTCATGG
ATGGTGC-39; and Foxp3: forward 59-CAGCTCTGCTGGC
GAAAGTG-39, and reverse 59-TCGTCTGAAGGCAGAGT
CAGGA-39.

Immunoblot Analysis
Cells were lysed with cell lysis buffer (Beyotime Institute
of Biotechnology, Jiangsu, China) supplemented with
protease inhibitor cocktail (Roche Diagnostics). Extract
protein concentrations were determined by bicinchoninic
acid assay (Pierce, Rockford, IL). Immunoblot analysis was
performed as previously described (22).

Statistical Analysis
The data are expressed as mean 6 SEM. The median
survival times of the five groups were calculated and com-
pared by the Kaplan-Meier method. One-way ANOVA
was used to evaluate the significance of multiple compar-
isons, and a Bonferroni correction was calculated and
applied. Differences were considered to be statistically
significant at P , 0.05. All analyses were performed
using GraphPad Prism software (GraphPad Software
Inc., La Jolla, CA).

RESULTS

Cpd K Is Nontoxic to Islets and Has Low
Nephrotoxicity
To determine Cpd K cytotoxicity on islet cells, we purified
BALB/c islet cells and treated them with 0, 40, 80, 100, and
120 mg/mL Cpd K for 24 h. A PE-Annexin V/7-AAD kit was
used to assay cellular apoptosis; however, we did not observe
any at the concentrations tested (Fig. 1A). In addition,
insulin secretion analysis showed that Cpd K is nontoxic
to islets in vitro (Fig. 1B). We also determined the effect

of Cpd K on mouse kidney function (Fig. 1C and D) but
did not observe any obvious changes in sera creatinine
and urea nitrogen after treatment with normal saline or
Cpd K at 20 or 40 mg/kg/day. Together, these results
indicate that Cpd K is nontoxic to islets and has low
nephrotoxicity.

Effect of Cpd K on Islet Allografts in STZ-Induced
Diabetic Mice
We next investigated the effect of Cpd K on islet allograft
survival time in STZ-induced diabetic mice. Cpd K (20
mg/kg/day) administered orally for 10 days significantly
prolonged survival time compared with controls (P = 0.0007;
Fig. 2A). Immunohistochemistry analysis detected insulin
secretion from islet allografts, with insulin levels in the
Cpd K–treated group higher than those in controls (Fig.
2B). We nephrectomized mice that received the combined
therapeutics at day 120 posttransplantation and observed
elevated glucose levels (Fig. 2C). This result indicates that

Figure 4—Cpd K effect on T lymphocyte–mediated immune re-
sponse. MLR assays were used to test the proliferative response
of recipient splenic T cells to donor BALB/c (A), and ELISA was
used to test IL-2, IFN-g, and IL-4 supernatant concentrations (B).
Each reaction was done in triplicate. Data are presented as mean 6
SEM of three independent experiments. OD, optical density. &&&P<
0.001 vs. naïve group; *P < 0.05, **P < 0.01, ***P < 0.001 vs.
control group; #P < 0.05, ##P < 0.01, ###P < 0.001 vs. sub
Rapa group; +++P < 0.001 vs. sub Cpd K group.
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islet grafts maintain normoglycemia. The IPGTT result from
day 8 posttransplantation suggests Cpd K may improve glu-
cose intolerance in diabetic mice (Fig. 2D and E).

Cpd K Effects on Inflammatory Response in STZ-
Induced Diabetes After Islet Transplantation
Grafts were dissociated from recipient mice at day 10
posttransplantation and processed for histology. Grafts
from control mice exhibited islet damage and were filled
with infiltrating inflammatory cells. However, Cpd K–treated
mice showed less islet damage and fewer infiltrating in-
flammatory cells (Fig. 3A). Next, graft and sera expression
of inflammatory cytokines were analyzed by qRT-PCR and
ELISA (Fig. 3B and C). IL-2 and IFN-g in the Cpd K group
were effectively downregulated at the mRNA and protein
levels, whereas there was no significant influence on IL-4.
Mixed lymphocyte reaction (MLR) test results suggest
recipient splenic T cells from Cpd K–treated mice showed
a reduced proliferative response when stimulated with
mitomycin C–treated donor splenocytes compared with
controls (Fig. 4A). Moreover, Cpd K significantly down-
regulated IL-2 and IFN-g expression, as determined by
MLR tests, but had no effect on IL-4 (Fig. 4B). These
results suggest that Cpd K may suppress the function of
Th1 cells.

Effects of Cpd K on CD4+, CD8+, and Tregs in
STZ-Induced Diabetic Mice
Flow cytometry was used to investigate Cpd K effects on
splenic and lymph node CD4+ and CD8+ T cells and Tregs
of recipient mice at day 10 posttransplantation. Cpd K
administered orally for 10 days effectively decreased the
proportion of splenic and lymph node CD4+ and CD8+ T
cells (Fig. 5), whereas the proportion of Tregs increased

(Fig. 6A). It is known that TGF-b induces the generation
of Tregs and that Foxp3 is a key transcriptional regulator
in Tregs. We next examined TGF-b and Foxp3 expression
in islet grafts and sera of recipient mice. Cpd K increased
graft TGF-b and Foxp3 mRNA levels (Fig. 6B) and
sera TGF-b concentrations (Fig. 6C) compared with control
mice.

Synergistic Effects of Cpd K and Rapa in STZ-Induced
Diabetic Mice
To investigate the synergistic effects of Cpd K and Rapa,
Cpd K (20 mg/kg/day) and sub Rapa (0.1 mg/kg/day) were
administrated orally and intraperitoneally, respectively, at
day 0–9 posttransplantation. We found that this combi-
nation therapeutic schedule resulted in longer survival
times (Fig. 2A), elevated insulin levels (Fig. 2B), and in
better glucose tolerance (Fig. 2D and E) than Cpd K or sub
Rapa treatment alone. Moreover, the combination of Cpd
K and sub Rapa inhibited the inflammatory reaction (Fig.
3) and immune response (Fig. 4), effectively reducing the
proportion of CD4+ and CD8+ T cells (Fig. 5). It also in-
creased splenic and lymph node Tregs (Fig. 6) of recipient
mice compared with Cpd K or sub Rapa treatment alone.
The effects of Cpd K plus sub Rapa treatment on diabetic
mice were similar to the full-dose Rapa treatment.

Effects of Cpd K on T-Cell Proliferation, Anergy,
Apoptosis, and Activation In Vitro
Con A–stimulated T-cell proliferation was suppressed by
Cpd K in a dose-dependent manner (Fig. 7A and B). Nev-
ertheless, 100 units/mL exogenous IL-2 reversed suppres-
sion (Fig. 7C). However, T-cell apoptosis was not observed
at all Cpd K treatment concentrations (Fig. 7D). We next
assayed potential Cpd K target proteins in mice, using the

Figure 5—Cpd K effects on the generation of CD4+ and CD8+ T cells. Proportion of splenic and lymph node CD4+ and CD8+ T cells were
analyzed by flow cytometry at day 10 posttransplantation (n = 3 mice per group). The numbers are for representative data of three
independent experiments. FITC, fluorescein isothiocyanate.
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inverse docking (INVDOCK) approach, and found 13 can-
didates, including Rel A (Fig. 8A), a key transcription fac-
tor regulating T-cell activation. Thus, it appeared to detect
the effects of Cpd K on the expression of T-cell activation–
related signaling molecules. As shown in Fig. 8B, Cpd K
reversed increased phosphorylated NF-kB (p65-Ser536)
protein expression, whereas expression of phosphorylated
IkBa, phosphorylated p38, and phosphorylated JNK were
not influenced. Notably, we found Cpd K inhibited IL-2 and
IFN-g expression in cultured Con A–stimulated primary T
cells (Fig. 8C). These results suggest that Cpd K inhibits T-
cell proliferation by inducing T-cell anergy and blocking
NF-kB signaling.

DISCUSSION

We have demonstrated for the first time, to the best of
our knowledge, that Cpd K alleviates the alloimmune
response and maintains islet function after islet trans-
plantation in an STZ-induced diabetic mouse model. We
also provide in vitro evidence that Cpd K represses
T-lymphocyte proliferation through enhancing T-cell

anergy and blockage of NF-kB signaling, which plays an
important role in the immune system (23–25).

Diabetic patients often suffer from severe immune
rejection after islet transplantation. T lymphocytes have
been shown to be the main mediators during allo- and
autoimmune responses (26,27). The current immunosup-
pressants used in clinical islet transplantation, such as
FK506 and Rapa, show their immunosuppressive effects
by inhibiting the activation, proliferation, and survival of
T lymphocytes (28–32). However, a number of publica-
tions have shown that severe adverse effects are mani-
fested during clinical use of these immunosuppressants,
including nephrotoxicity, neurotoxicity, and inhibition of
b-cell regeneration (7,33,34). These adverse effects limit
the clinical application of immunosuppressants by affect-
ing survival of transplanted organs. Therefore, develop-
ment of new effective and safe immunosuppressants has
become urgent.

Natural products, especially some agents in traditional
Chinese medicine, are getting more attention. A number
of derivative compounds made from such medicines have

Figure 6—Cpd K effect on Tregs induction. A: Proportions of splenic and lymph node CD4+ Foxp3+ Treg cells were analyzed by flow
cytometry at day 10 posttransplantation (n = 3 mice per group). Graft TGF-b and Foxp3 mRNA levels were quantified by qRT-PCR (B), and
recipient mouse sera TGF-b concentrations were quantified by ELISA (C). A: The numbers are for representative data of three independent
experiments. B and C: Data are presented as mean6 SEM of three independent experiments. *P < 0.05, **P < 0.01 vs. control group; #P <
0.05, ##P < 0.01 vs. sub Rapa group; +P < 0.05, ++P < 0.01, +++P < 0.001 vs. Cpd K group.
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been applied in the clinic and have played important roles
in preventing and curing human diseases. FTY720 and
As2O3, which are from traditional Chinese medicine, sup-
press the immune response (35–37). In this study, Cpd K,
a compound synthesized from Cruciferae, was examined
in-depth in mouse islet transplantation models and pro-
longed islet graft survival in recipients. Furthermore, Cpd
K exhibited low-level toxicity to islets and low nephrotox-
icity. Nevertheless, synergistic effects of Cpd K and Rapa
were observed in STZ-induced diabetic mice, suggesting
that a combination therapy may minimize the adverse
effects of Rapa in the clinic. To investigate the mechanism
by which Cpd K suppresses the immune response, we
examined Cpd K effects on the proliferation, differentia-
tion, anergy, apoptosis, and activation of T-cell subsets
and Tregs in vivo and in vitro.

CD4+ T cells play a key role in the immune system,
including stimulation of antibody production by B cells
and enhancement of CD8+ T-cell responses, which are
important in islet transplantation (38). Furthermore, var-
ious functions are acquired by differentiation of naïve
CD4+ T cells stimulated by special antigens, which become
effector or memory cells. Th1 and Th2 cells are two im-
portant lineages differentiated from naïve CD4+ T cells.
IL-12 and IFN-g play important roles in the differentia-
tion of Th1 cells by secreting IFN-g and promoting cell-
mediated immune responses (39,40). IL-4 is essential for
the induction of Th2 cells, of which IL-4 is a signature
cytokine, and Th2 cells promote humoral immune
responses (41,42). To investigate which T cells were im-
paired after treatment with Cpd K in recipient mice, we
examined the proportion of splenic and lymph node CD4+

Figure 7—Cpd K effect on T lymphocytes in vitro. The proliferation, anergy, and apoptosis of Con A–stimulated cultured primary T cells
were assayed. T cells were treated with different concentrations of Cpd K for 48 h and proliferation analyzed by BrdU (A) and carboxy-
fluorescein succinimidyl ester (CFSE) (B) assays. T cells were first treated with different concentrations of Cpd K for 24 h and then with 0,
50, and 100 units/mL exogenous IL-2 for another 48 h. C: BrdU was used to analyze T-cell anergy. OD, optical density. D: T-cell apoptosis
was evaluated by flow cytometry with PE-Annexin V/7-AAD after treatment with different concentrations of Cpd K for 24 h. A and C: Data
are presented as mean6 SEM of three independent experiments. **P < 0.01, ***P < 0.001 vs. group with treatment of Con A alone; ##P <
0.01 vs. group with treatment of 100 or 120 mg/mL Cpd K alone. B and D: The numbers are representative data of three independent
experiments.
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and CD8+ T cells. The results showed that CD4+ and CD8+

T cells both decreased after Cpd K treatment. In addition,
Cpd K decreased IL-2 and IFN-g expression, with no
change in IL-4 expression. These results suggest that
Cpd K protects islet allografts by inhibiting the Th1-
mediated immune response.

Induction of immunological tolerance to transplants
would avoid rejection and eventually wean transplant
recipients off immunosuppressive drugs (43,44). Joffre
et al. (45) showed that Tregs protect skin and cardiac
allografts from acute and chronic rejection. Tregs differ-
entiate from naïve CD4+ T cells and depend on T-cell
activation in the presence of TGF-b and IL-2 (46–48).
Furthermore, Foxp3 is reported to be a key transcrip-
tional regulator of Tregs. A recent study demonstrated
that Foxp3+ Tregs exert their regulatory function by the
initiation of long-term tolerance, whereas Treg type 1
cells regulate maintenance (49). Here, we found that
Cpd K induces Tregs during early-stage transplantation,
whereas we did not observe Treg expansion in long-term
recipients (data not shown).

T-cell anergy occurs when T cells encounter antigens
presented by chemically fixed antigen-presenting cells,

which are unable to upregulate costimulatory ligands. In
addition, poor proliferation and decreased IL-2 produc-
tion is observed in anergic T cells. However, the anergic
status is reversible by the addition of exogenous IL-2 (50),
and we also found that poor T-cell proliferation was re-
versible by adding exogenous IL-2 (100 units/mL). We
thus analyzed T-cell apoptosis after Cpd K treatment be-
cause apoptosis induction is an important mechanism for
some immunosuppressive agents, such as As2O3, which
promote apoptosis of mouse T cells by activating JNK
and p38 signaling pathways (35). However, we did not
find significant induction of T-cell apoptosis by Cpd K.
These results indicate that Cpd K may induce anergy.

Previous studies have shown immunosuppressive
agents, such as cyclosporin A and FK506, inhibit the
immune response and protect allografts from rejection
after organ transplantation by suppressing T-cell recep-
tor/CD28-mediated T-cell activation (28). To investigate
whether Cpd K affects activation of T cells, we measured
T-cell proliferation after Cpd K treatment. The results
showed that Cpd K inhibits T-cell proliferation in
a dose-dependent manner. Surprisingly, the results of
INVDOCK analysis suggested that Cpd K binds to Rel A

Figure 8—Cpd K effects on T cell activation–related signaling molecules. A: Potential Cpd K target proteins were analyzed by INVDOCK. B:
Primary T cells were cultured with Con A and different concentrations of Cpd K for 24 h, and expression of T cell receptor–related signaling
molecules (phosphorylated NF-kB p65, phosphorylated IkBa, phosphorylated JNK, and phosphorylated p38) were determined by Western
blotting. After 48 h treatment with Con A and various concentrations of Cpd K, primary T cells were collected and RNA was isolated. mRNA
levels of IL-2 (C) and IFN-g (D) mRNA levels were quantified by qRT-PCR. B: Representative images of three independent experiments are
shown. C and D: Data are presented as mean 6 SEM of three independent experiments. ***P < 0.001 vs. group with treatment of Con A
alone.
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(p65), a NF-kB family member that regulates cytokine
expression. Furthermore, the NF-kB, NF of activated
T cells, and mitogen-activated protein kinase signaling
pathways play key roles in T-cell activation and the im-
mune response. We found that Cpd K reversed the in-
crease in p65 phosphorylation but did not influence
increased phosphorylated p38 and JNK in cultured primary
T cells. In contrast, phosphorylation of IkBa, an important
inhibitor of NF-kB, did not decrease after Cpd K treatment.
These results suggest NF-kB–related signaling is involved
in the immunosuppressive activity of Cpd K.

In conclusion, Cpd K suppresses T cell–mediated im-
mune responses and prolongs islet graft survival in STZ-
induced diabetic mice. NF-kB–related signaling and anergy
appear to be involved in the immunosuppressive effects
mediated by Cpd K. Moreover, Cpd K decreased Th1 IFN-g
expression and increased production of Tregs, which
play important roles in the induction of transplant tol-
erance. However, the mechanism should be revealed in
the future. We also found that Cpd K exhibits low tox-
icity to islets and appears to have synergistic effects with
Rapa. Our findings suggest that Cpd K may be a potential
therapeutic option for diabetic patients treated with islet
transplantation.
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