Article ID: 0253-4827 (2002) 07-0854-13

POSITIVE SOLUTIONS TO A SINGULAR SECOND ORDER THREE-POINT BOUNDARY VALUE PROBLEM *

QU Wen-bo (曲文波)¹, ZHANG Zhong-xin (张中新)², WU Jun-de (武俊德)³

- (1. Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P R China;
 - 2. Institute of Mathematics, Jilin University, Changchun 130012, PR China;
- Department of Applied Mathematics , Zhejiang University , Hangzhou 312000 , P R China)
 (Communicated by DING Xie-ping)

Abstract: A fixed point theorem is used to study a singular second order three-point boundary value problem. The problem is more general. Combining the method of constructing Green functions with operators defined piecewise, the existence result of positive solutions to a singular second order three-point boundary value problem is established. The nonlinearity can be allowed to change sign.

Key words: positive solution; boundary value problem; existence

CLC number: O175.1 Document code: A

1 Introduction and Main Results

The existence of positive solutions has been established for a nonlinear second order three-point boundary value problem of the form

$$\begin{cases} -y = Q(x)f(y) & (0 < x < 1), \\ y(0) = 0, y(1) = y() \end{cases}$$
 (1)

only very recently in [1]. It was assumed there that 0 < < 1, 0 < < 1, $Q(x) C([0,1]; \mathbf{R}_+)$, $f(y) C(\mathbf{R}_+; \mathbf{R}_+)$, $\mathbf{R}_+ = [0, +]$, and f(y) is superlinear or sublinear at y = 0 and y = +. And the proof of the result above-mentioned was based upon the following two propositions.

Theorem $A^{[1,2]}$ Let 0 < < 1, 1 and let h(x) C[0,1]. Then the linear three-point boundary value problem

$$\begin{cases} -y = h(x) & (0 < x < 1), \\ y(0) = 0, y(1) = y() \end{cases}$$

Foundation item: the Educational Foundation of Jiangshu Province

Biography: QU Wen-bo (1965 -), Associate Professor (E-mail: qqqbye @163.com)

^{*} Received date: 2001-06-05; Revised date: 2002-02-28

has a unique solution $y(x) = C^2[0,1]$, which can be expressed by

$$y(x) = - \int_{0}^{x} (x - t) h(t) dt - \frac{x}{1 - 0} (-t) h(t) dt + \frac{x}{1 - 0} (1 - t) h(t) dt.$$

(0,1), and h(x) = 0 on [0,1], then y(x) = 0 on [0,1]; further, if h(x) > 0 for If [0,1], then y(x) > 0 on (0,1).

Theorem $B^{[3]}$ Let E be a Banach space and K be a cone in E. Assume that 1, 2 are $_{1}$, $_{1}$ \subset $_{2}$, and let open subsets of E with 0

$$: K \quad (\overset{-}{\ }_1 \setminus \ _1) \qquad K$$

be a completely continuous mapping such that either

)
$$y$$
 y $\forall y$ K ∂_{-1} and y y $\forall y$ K ∂_{-2} ,) y y $\forall y$ K ∂_{-2} .

Then the mapping has a fixed point $K = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

In the present paper, we restudy the three-point boundary value problem (1) with the aim of extending and improving the above-mentioned result. The hypothesis we adopt is as follows:

(0,1), > 0, f(y) $C(\mathbf{R}_+; \mathbf{R}), \text{ and } Q(x)$ $L^1_{loc}(0,1) \text{ with } Q(x)$ a.e. on (0,1) and

$$0 < \int_{0}^{1} (1 - x) Q(x) dx < + \int_{0}^{1} xQ(x) dx < + .$$

There are two points we should emphasize. First, in our problem the function Q(x) is allowed to be singular at x = 0 and x = 1. For example, the function

$$Q(x) = x^{-a}(1 - x)^{-b}$$
 (a, b) $(1,2)$

satisfies H1). Secondly, our purpose is to deal with not only the case (0,1) but also the 1. For the latter, Theorem A does not work. For this reason, we need the following two propositions.

Theorem 1 For each given

$$\begin{cases} w = Q(x) w & (0 < x < 1), \\ w(0) = 0, & w(0) = 1, \end{cases}$$

$$\begin{cases} w = Q(x) w & (0 < x < 1), \\ w(0) = 0, & w(1) = -1, \end{cases}$$

$$\begin{cases} w = Q(x) w & (0 < x < 1), \\ w(0) = 0, & w(1) = -1, \end{cases}$$

$$\begin{cases} w = Q(x) w & (0 < x < 1), \\ w(1) = 0, & w(1) = 1, \end{cases}$$

and

$$\begin{cases} w = Q(x) w & (0 < x < 1), \\ w(1) = 0, & w(1) = -1 \end{cases}$$
 have solutions respectively $w_1(x) = AC[0,1] = C^1[0,1)$, $w_2(x) = AC[0,1] = C^1(0,1)$

 $w_3(x) = AC[-1] = C^1(0,1]$ and $w_4(x) = AC[0,1] = C^1(0,1]$, which are all convex on their intervals of existence. Moreover,

$$\begin{vmatrix} w_{2}(x) & w_{1}(x) \\ w_{2}(x) & w_{1}(x) \end{vmatrix} \qquad w_{2}(0) = w_{1}() \qquad \text{on } [0,],$$

$$\begin{vmatrix} w_{4}(x) & w_{3}(x) \\ w_{4}(x) & w_{3}(x) \end{vmatrix} \qquad w_{4}() = w_{3}(1) \qquad \text{on } [,1]$$

and

$$\begin{vmatrix} w_4(x) & w_1(x) \\ w_4(x) & w_1(x) \end{vmatrix} \quad w_4(0) = w_1(1) \quad \text{on } [0,1].$$

It is indubitable that $w_1(x) = x$, $w_2(x) = -x$, $w_3(x) = x$, and $w_4(x) = 1 - x$ when = 0.

Theorem 2 For each given \mathbf{R} , there is a 0 such that $w_1(1) - w_1(1) > 0$. (2)

Assume that (2) holds. Then the linear three-point boundary value problem

$$\begin{cases} -y + Q(x)y = h(x) & (0 < x < 1), \\ y(0) = 0, & y(1) = y() \end{cases}$$

has a unique solution

$$y(x) = \begin{cases} \frac{w_4(-)w_1(-)}{w_1(1) - w_1(-)} \left(-\frac{w_1(t)}{w_1(-)} h(t) dt + \frac{1}{w_4(t)} h(t) dt \right) & (x = -), \\ w_2(x) - \frac{x}{0} \frac{w_1(t)}{w_1(-)} h(t) dt + w_1(x) - \frac{w_2(t)}{w_1(-)} h(t) dt + y(-) \frac{w_1(x)}{w_1(-)} \\ w_4(x) - \frac{x}{w_4(-)} \frac{w_3(t)}{w_4(-)} h(t) dt + w_3(x) - \frac{1}{x} \frac{w_4(t)}{w_4(-)} h(t) dt + y(-) \frac{w_4(x) + w_3(x)}{w_4(-)} \\ & (x = -), \\ w_4(x) - \frac{x}{0} \frac{w_1(t)}{w_1(-)} h(t) dt + w_1(x) - \frac{w_2(t)}{w_1(-)} h(t) dt + y(-) \frac{w_1(x)}{w_4(-)} \\ & (0 = x = -), \\ & (0 = x = -)$$

for any fixed $h(x) = L^1_{loc}(0,1)$ with

$$_{0}\,w_{1}(\,t)\,\,/\,\,\,h(\,t)\,\,/\,\,\,\mathrm{d}\,t\,\,+\,\,\,^{1}\,w_{4}(\,t)\,\,/\,\,\,h(\,t)\,\,/\,\,\,\mathrm{d}\,t\,\,<\,+\,\,\,\,\,.$$

If 0, and h(x) 0 a.e. on (0,1), then y(x) 0 on [0,1]; further, if $w_1(x) h(x) dx + w_4(x) h(x) dx > 0$, then y(x) > 0 for all x = (0,1].

Here a function y(x) is said to be a solution to the three-point boundary value problem (1),

if

)
$$y(x)$$
 $AC[0,1]$, $y(0) = 0$, $y(1) = y()$,
) $y(x)$ $AC_{loc}(0,1)$ $L^{1}(0,1)$, $y(x) = L^{1}_{loc}(0,1)$, and

) -
$$y(x) = Q(x)f(y(x))$$
 a.e. on $(0,1)$.

If y(x) > 0 for all x = (0, 1), then it is called a positive solution to (1).

It is obvious that Theorem 2 is an improvement and extension of Theorem A.

To establish the existence of a positive solution to (1), we further assume that

H2) There exists a 0 such that (2) holds and $f^*(y) = f(y) + y$ is nonnegative on \mathbf{R}_{+} , and

H3) One of the following two conditions is fulfilled

$$\lim_{y \to 0} \sup \frac{f^{*}(y)}{y} \quad \text{and } \lim_{y \to 0} \sup \frac{f^{*}(y)}{y} \quad , \tag{4}$$

$$\lim_{y \to 0} \sup \frac{f^{*}(y)}{y} \quad \text{and } \lim_{y \to 0} \sup \frac{f^{*}(y)}{y} \quad . \tag{5}$$

$$\lim_{y \to 0} \sup_{y \to 0} \frac{f^{*}(y)}{y} \quad \text{and } \lim_{y \to 0} \sup_{y \to 0} \frac{f^{*}(y)}{y} \quad . \tag{5}$$

Here

are both constants satisfying
$$M \begin{bmatrix} w_1(x) & Q(x) & dx + w_4(x) & Q(x) & dx \end{bmatrix} < 1,$$
(6)

$$\frac{w_1(\)}{w_1(1) - w_1(\)} \stackrel{1}{w_4}(x) Q(x) dx > 1, \tag{7}$$

$$M = 1 + \frac{\max \left(\frac{w_4(\cdot), w_1(\cdot)}{w_1(1)} + \max_{x \in \mathbb{R}} \left\{ \frac{w_4(x) + w_3(x)}{w_4(\cdot)} \right\} \right), \tag{8}$$

$$= \underbrace{\frac{\min_{x=1}^{w_{1}} \left(\frac{w_{4}(x) + w_{3}(x)}{w_{4}()} \right)}{\left(\frac{w_{1}(1) - w_{1}()}{\max \left(w_{4}(), w_{1}() \right)} \right) + \max_{x=1}^{w_{1}} \left(\frac{w_{4}(x) + w_{3}(x)}{w_{4}()} \right)}_{w_{4}()} < 1.$$
(9)

It is clear that H2) allows f(y) to change sign when > 0

Applying Theorem 2 and Theorem B, we can prove the existence results below-mentioned.

Theorem 3 Let H1) - H3) be fulfilled. Then the three-point boundary value problem (1) has a positive solution.

Theorem 4 Let
$$0 < < 1$$
, $0 < < 1$, $f(y) = C(\mathbf{R}_+; \mathbf{R}_+)$ and $Q(x) = L^1_{loc}(0, 1)$ with $Q(x) = 0$ a. e. on $(0,1)$ and $0 < (1 - x) Q(x) dx < + \dots Q(x) dx < + \dots$

Then the three-point boundary value problem (1) has a positive solution, provided that one of the following two conditions holds

)
$$\lim_{y \to 0} \frac{f(y)}{y} = 0$$
 and $\lim_{y \to 0} \frac{f(y)}{y} = +$,
) $\lim_{y \to 0} \frac{f(y)}{y} = +$ and $\lim_{y \to 0} \frac{f(y)}{y} = 0$.

Being a consequence of Theorem 3, Theorem 4 improves and extends the result in [3].

It must be pointed out that the condition (0,1) is sharp in Theorem 4. There are two = 0 the three-point boundary value problem (1) "degenerates "into a tworeasons: first, when point boundary value problem; secondly, when = 1, when claim that the three-point boundary value problem

$$\begin{cases} -y = y^2 & (0 < x < 1), \\ y(0) = 0, & y(1) = \frac{1}{y}() \end{cases}$$

has no positive solution. In fact, if the claim is false, i.e., the problem has a positive solution y(x), then the equation implies that y(x) is a strictly concave function on [0,1] and hence y(1), which contradicts the boundary condition $y(1) = \frac{1}{y(1)}$. This shows that the claim is true.

2 Preliminaries

In this section, we are going to prove Theorems 1 and 2. To this end, we first present a proposition, which will be frequently used later on.

Lemma 1 Let
$$h(x) = L_{loc}^{1}(0,1)$$
 with $h(x) = 0$ a.e. on $(0,1)$ and
$$xh(x) dx + \frac{1}{(1-x)} h(x) dx < + .$$

Then we have

$$\lim_{x \to 0} x h(t) dt = 0 = \lim_{x \to 1} (1 - x) h(t) dt.$$
 (10)

Proof of Lemma 1 Put v(x) = x h(t) dt, 0 < x. Then

0
$$v(x)$$
 $th(t) dt < +$ for all x $(0,],$

$$v(x) = h(t) dt - xh(x) (0 < x <),$$

(0,)and hence for any

$$\int v(x) / dx$$
 $dx = \int_{x}^{h(t)} dt + \int_{0}^{h(t)} xh(x) dx = \int_{0}^{h(t)} h(t) dt + \int_{0}^{h(t)} xh(x) dx$

$$2 xh(x) dx < +$$

which shows that
$$v(x) = L^1(0, \cdot)$$
 and $v(x) = AC[0, \cdot]$. As a result, we obtain
$$\int_0^s v(x) dx = \int_0^s dx \int_x h(t) dt - \int_0^s xh(x) dx \qquad v(s) \qquad \text{for all s} \qquad (0, \cdot],$$

which implies that v(0) = 0, i.e., the first equation is true.

In the same way as above, we can lead to the second equation. The Lemma is thus proved.

Proof of Theorem 1 When = 0, all the conclusions of Theorem 1 are fulfilled, of course. We now prove that the initial value problem

$$\begin{cases} w = Q(x) w & (0 < x < 1), \\ w(1) = 0, & w(1) = -1 \end{cases}$$
 (11)

has a unique positive solution for given > 0. Put

$$B = \left\{ \begin{array}{ccc} u(x) & C[0,1]; & u & B & <+ \\ & & & \end{array} \right\},$$

 $B = \left\{ u(x) & C[0,1]; & u_{B} < + \\ u_{B} = \max_{0 \le x \le 1} / u(x) / \exp \left[-2 \frac{1}{x} (1 - s) Q(s) ds \right] \right\}.$

Define a mapping L:B B by

$$Lu(1) = 1$$
,

$$(Lu)(x) = 1 + \frac{1}{1-x} \int_{-x}^{1} (t-x)(1-t) Q(t) u(t) dt$$
 (0 x 1).

For any u B, we have

$$\left| \frac{1}{1-x} \int_{x}^{1} (t-x)(1-t) Q(t) u(t) dt \right| \int_{x}^{1} t(1-t) Q(t) |u(t)| dt$$

$$\max_{0 \neq t} |u(t)| \int_{0}^{1} t(1-t) Q(t) dt < + .$$

As a result, we conclude that $L(B) \subset B$. We claim that L is a contraction mapping. For any $u_1(x)$, $u_2(x) = B$, we have

i.e., $Lu_1 - Lu_2$ B $\frac{1}{2}$ $Lu_1 - Lu_2$ B $\forall u_1, u_2$ B. This shows that the claim is true.

From the claim, we know that L has a unique fixed point in B. Let $u_4(x)$ C[0,1] be the unique fixed point. Then

$$u_4(x) = 1 + \frac{1}{1-x} \int_{-x}^{1} (t-x)(1-t) Q(t) u_4(t) dt$$
 (0 x < 1).

Write

$$w_4(x) = (1 - x) u_4(x) = 1 - x + \int_{x}^{1} (t - x) Q(t) w_4(t) dt \qquad (0 \quad x \quad 1).$$
(12)

Then $w_4(1) = 0$,

$$w_4(x) = -1 - \int_{-\infty}^{1} Q(t) w_4(t) dt \quad (0 < x < 1), \quad w_4(1) = -1,$$
 (13)

$$w_4(x) = Q(x) w_4(x)$$
 a.e. on x (0,1). (14)

This shows that $w_4(x)$ is a solution to (11).

Note that

$$\frac{1}{0} / w_4(x) / dx = 1 + \int_0^1 \frac{1}{dx} (1 - t) Q(t) / u_4(t) / dt$$

$$1 + \int_0^1 t(1 - t) Q(t) dt \max_{0 \neq t} / u_4(t) / < + ,$$

which means that $w_4(x) = AC_{loc}(0,1] = L^1(0,1)$ and $w_4(x) = AC[0,1]$.

We now claim that $w_4(x) > 0$ for all x = [0,1) i.e., $w_4(x) = 0$ is the only zero of $w_4(x)$. If it is not the case, then there exists an $x_0 = [0,1)$, such that

$$w_4(x) > 0$$
 on $(x_0, 1)$, $w_4(x_0) = w_4(1) = 0$

since that $w_4(1) = -1$ together with $w_4(1) = 0$ implies that $w_4(x) > 0$ on a left neighborhood of x = 1. By the Rolle's Theorem, there exist a $(x_0, 1)$ such that $w_4() = 0$. On the other hand, from (13) we lead to

$$w_4(\) = -1 - {Q(t) w_4(t) dt} < 0,$$

a contradiction. This shows that the claim is true. That is to say, $w_4(x)$ is the unique positive solution to (11). And (14) tells us that $w_4(x)$ is convex on [0,1].

In the same way as above, we can prove that the initial value problems

$$\begin{cases} w = Q(x) w & (0 < x < 1), \\ w(0) = 0, & w(0) = 1, \\ w = Q(x) w & (0 < x <), \\ w() = 0, & w() = -1, \end{cases}$$

and

$$\begin{cases} w = Q(x) w & (< x < 1), \\ w() = 0, & w() = 1 \end{cases}$$

 $\begin{cases} w = Q(x) \, w & (< x < 1) \,, \\ w() = 0, \quad w() = 1 \end{cases}$ have unique positive solutions $w_1(x)$, $w_2(x)$, and $w_3(x)$, which are convex on $[0, \]$, [1,1], and [0,1], respectively. As a result, we have

$$\begin{cases} x & w_1(x) & w_1(\cdot) x / \text{ and } 0 & w_2(x) & w_2(0) & \text{on } [\cdot, 1], \\ 0 & w_3(x) & w_3(1) \text{ and } (1 - x) & w_4(x) & w_4(\cdot) (1 - x) / (1 - \cdot) & \text{on } [\cdot, 1]. \end{cases}$$
(15)

Put

$$W(x) = \begin{vmatrix} w_4(x) & w_1(x) \\ w_4(x) & w_1(x) \end{vmatrix} \qquad (0 < x < 1).$$

Then

$$W(x) = \begin{vmatrix} w_4(x) & w_1(x) \\ w_4(x) & w_1(x) \end{vmatrix} + \begin{vmatrix} w_4(x) & w_1(x) \\ Q(x) w_4(x) & Q(x) w_1(x) \end{vmatrix} = 0 \text{ a.e. on } (0,1).$$

According to Lemma 1, (15), (12), (13), and

$$\begin{cases} w_1(x) = x + \int_0^x (x - t) Q(t) w_1(t) dt & (0 x 1), \\ w_1(x) = 1 + \int_0^x Q(t) w_1(t) dt & (0 x < t), \end{cases}$$

we obtain

$$W_x = w_4(0) = w_1(1)$$
, on $[0,1]$.

Similarly, we have

$$\begin{vmatrix} w_{2}(x) & w_{1}(x) \\ w_{2}(x) & w_{1}(x) \end{vmatrix} \qquad w_{2}(0) = w_{1}() \quad \text{on} \quad [0,],$$

$$\begin{vmatrix} w_{4}(x) & w_{3}(x) \\ w_{4}(x) & w_{3}(x) \end{vmatrix} \qquad w_{4}() = w_{3}(1) \quad \text{on} \quad [,1].$$
(16)

The proof of Theorem 1 is thus completed

< 1, we can choose = 0. In this case, we have Proof of Theorem 2 When $w_1(1) - w_1() = 1 - > 0.$

When = 1, i.e., = 1/ , we can choose > 0 sufficiently small. In this case , we have

$$w_{1}(1) - w_{1}() = 1 + \int_{0}^{1} (1 - t) Q(t) w_{1}(t) dt - \left(+ \int_{0}^{1} (1 - t) Q(t) w_{1}(t) dt \right) = \int_{0}^{1} (1 - t) Q(t) w_{1}(t) dt + \int_{0}^{1} (1 - t) Q(t) w_{1}(t) dt + \int_{0}^{1} (1 - t) Q(t) w_{1}(t) dt > 0.$$

When > 1, we can choose > 0 such that

$$(1 - t) Q(t) dt \qquad .$$

In this case, we have

$$w_{1}(1) - w_{1}() = w_{4}() w_{1}() - w_{4}() w_{1}() - w_{1}() >$$

$$w_{1}() \left(1 + Q(t) w_{4}(t) dt - \right) >$$

$$w_{1}() \left(1 - t) Q(t) dt - \right) = 0.$$

To sum up, for each gives \mathbf{R} there exists a 0 such that $w_1(1) - w_1(1) > 0$.

By Lemma 1, (15) and (16), it is easy to check that the function y(x) defined by (3) is a solution to the linear three-point boundary value problem

$$\begin{cases}
-y + Q(x)y = h(x) & (0 < x < 1), \\
y(0) = 0, y(1) = y().
\end{cases}$$
(17)

Next we prove the uniqueness. Let $y_1(x)$ and $y_2(x)$ be solutions to (17). Put $y(x) = y_1(x) - y_2(x)$. Then

$$\begin{cases} y(x) = Q(x)y(x) & \text{a.e. on } (0,1) \\ y(0) = 0, & y(1) = y(). \end{cases}$$

Note that the homogeneous linear differential equation has a general solution

$$y(x) = C_1 w_1(x) + C_2 w_4(x)$$
 (0 x 1),

where C_1 and C_2 are arbitrary constants. From the boundary conditions and (2), it follows that $C_1 = C_2 = 0$. i.e., y(x) = 0 on [0,1]. The uniqueness is thus proved.

The remainder of Theorem 2 follows from (3). Theorem 2 is thus proved.

In the sequel, we assume that there exists a 0 such that $w_1(1) - w_1(1) > 0$. Put

$$\begin{array}{l} Ly = - \ y + \ Q(x) \ y \, , \\ D(L) = \left\{ \begin{array}{ll} y(x) & AC[0,1]; \ y(x) & L^1(0,1) & AC_{loc}(0,1) \, , \\ y(x) & L^*(0,1) \, , \quad y(0) = 0 \, , \quad y(1) = \ y(\) \end{array} \right\} \, . \\ L^*(0,1) = \left\{ \begin{array}{ll} h(x) & L^1_{loc}(0,1); & h^{-*} < + \end{array} \right\} \, , \end{array}$$

where
$$h^* = {}_{0}w_1(x) / h(x) / dx + {}^{1}w_4(x) / h(x) / dx$$
.

From Theorems 1 and 2, we come to two conclusions. First, L:D(L) $L^*(0,1)$ is inverse positive, i.e.,

$$y(x) = D(L), (Ly)(x) = 0, \text{ a.e. on } (0,1) \Rightarrow y(x) = 0 \text{ on } [0,1],$$

which is usually called the maximum principle (see [4]). Secondly, there exists a positive number C such that

$$L^{-1}h$$
 $C h^* (\forall h L^*(0,1)),$

where is the usual supremum norm.

3 Proofs of Main Results

In the present section, we give proofs of Theorems 3 and 4.

Proof of Theorem 3 Let us define a mapping
$$: K - K$$
 by
$$\begin{cases} \frac{w_4(-)w_1(-)}{w_1(1) - w_1(-)} \begin{pmatrix} \frac{w_1(t)}{w_1(-)} Q(t) f^*(y(t)) dt + \frac{1}{w_4(t)} \frac{w_4(t)}{w_4(-)} Q(t) f^*(y(t)) dt \\ w_2(x) \frac{x}{0} \frac{w_1(t)}{w_1(-)} Q(t) f^*(y(t)) dt + w_1(x) \frac{w_2(t)}{w_1(-)} Q(t) f^*(y(t)) dt + \\ (-y)(-) \frac{w_1(x)}{w_1(-)} & (0 - x -), \\ w_4(x) \frac{x}{w_4(-)} \frac{w_3(t)}{w_4(-)} Q(t) f^*(y(t)) dt + w_3(x) \frac{1}{x} \frac{w_4(t)}{w_4(-)} Q(t) f^*(y(t)) dt + \\ (-y)(-) \frac{w_4(x) - w_3(x)}{w_4(-)} & (-x - 1), \\ K = \begin{cases} y(x) - [0, 1]; \ y(x) - 0 \ \text{on} \ [0, \] \ \text{and} \ y(x) - y - 0 \ [0, \] \ \text{and} \ \text{is the constant defined by (9)}. \ \text{Clearly }, K \end{cases}$$
where $y = \max\{ / y(x) / ; 0 - x - 1 \}$ and is the constant defined by (9). Clearly $y = \max\{ / y(x) / ; 0 - x - 1 \}$

is a cone in C/0, 1.

From the definition of , Lemma 1, Theorems 1 and 2, we know that for each fixed y(x)

$$\begin{cases} (y)(0) = 0, & (y)(1) = (y)(y), \\ (y)(x) = 0, & x = [0,1], \\ (y)(y) = \frac{\min \{w_4(y), w_1(y)\}}{w_1(1) - w_1(y)} (I_1 + I_4), \end{cases}$$
(18)

$$I_{1} = \underset{0}{w_{1}(t)} Q(t) f^{*}(y(t)) dt,$$

$$I_{4} = \underset{w_{4}(t)}{\overset{1}{w_{4}(t)}} Q(t) f^{*}(y(t)) dt,$$

$$(y) () \frac{\max w_{4}(y, w_{1}(y))}{w_{1}(1) - w_{1}(y)} (I_{1} + I_{4}),$$

$$(y) (x) I_{1} + I_{4} + (y) (y) \max_{x} \left\{ \frac{w_{4}(x) + w_{3}(x)}{w_{4}(y)} \right\} (0 - x - 1),$$

$$(19)$$

and hence, by (19)

$$y = \left(1 + \max_{x \in \mathbb{Z}} \left\{ \frac{w_4(x) + w_3(x)}{w_4(x)} \right\} \frac{\max_{x \in \mathbb{Z}} \left\{ w_4(x) + w_3(x) \right\}}{w_1(1) - w_1(x)} \right) (I_1 + I_4) = M(I_1 + I_4),$$
(20)

where M is the constant defined by (8). On the other hand, it follows from (18) that

$$y = \left\{ \frac{w_1(x) - w_1()}{\min w_4(), w_1()} + \max_{x \in \mathbb{R}} \left\{ \frac{w_4(x) + w_3(x)}{w_4()} \right\} \right\} (y) ().$$

Therefore

re
$$(y)(x) \qquad (y)() \quad \min_{x=1}^{\infty} \frac{w_4(x) + w_3(x)}{w_4()}$$

$$\frac{w_1(1) - w_1()}{\min(w_4(), w_1())} + \max_{x=1}^{\infty} \frac{w_4(x) + w_3(x)}{w_4()}$$

$$y \qquad (x \qquad 1).$$

This shows that (K) is a subset of K.

We now claim that is a completely continuous mapping. In fact, for any r > 0 and y(x) = K

 $= \left\{ y(x) \qquad C[0,1]; \quad y < \vec{\eta} \right\},\,$

we have, by (20) and the definition of

$$y = M(I_{1} + I_{4})$$

$$M \max_{0} y f^{*}(y) \begin{bmatrix} w_{1}(t) Q(t) dt + w_{4}(t) Q(t) dt \end{bmatrix} = B_{r},$$

$$w_{2}(x) \sum_{0}^{x} \frac{w_{1}(t)}{w_{1}(t)} Q(t) f^{*}(y(t)) dt + w_{1}(x) \sum_{x} \frac{w_{2}(t)}{w_{1}(t)} Q(t) f^{*}(y(t)) dt +$$

$$(y) (x) = \begin{cases} w_{1}(x) & (0 < x), \\ w_{2}(x) & \frac{w_{1}(x)}{w_{1}(t)} & (0 < x), \end{cases}$$

$$w_{2}(x) \sum_{0}^{x} \frac{w_{2}(t)}{w_{1}(t)} Q(t) f^{*}(y(t)) dt + w_{3}(x) \sum_{x}^{t} \frac{w_{4}(t)}{w_{4}(t)} Q(t) f^{*}(y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt + w_{3}(x) \sum_{x}^{t} \frac{w_{4}(t)}{w_{4}(t)} Q(t) f^{*}(y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{3}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(x)}{w_{4}(t)} (y(t)) dt +$$

$$(y) (y) \sum_{0}^{t} \frac{w_{4}(x) + w_{4}(t)}{w_{4}(t)} (y(t)) dt +$$

$$(y$$

and hence

$$| (y) (x) | - w_{2} \frac{w_{1}(t)}{w_{1}(\cdot)} Q(t) f^{*}(y(t)) dt + w_{1}(x) Q(t) f^{*}(y(t)) dt +$$

$$(y) () \frac{w_{1}(x)}{w_{1}(\cdot)} (0 < x)$$

$$\max_{y \neq r} f^{*}(y) \left[\frac{-w_{2}(x)}{w_{1}(\cdot)} w_{1}(t) Q(t) dt + w_{1}(x) Q(t) dt \right] +$$

$$B_{r} \frac{w_{1}(x)}{w_{1}(\cdot)} = G_{r}(x) (0 < x < t),$$

$$| (y) (x) | - w_{4}(x) Q(t) f^{*}(y(t)) dt + w_{3}(x) \frac{w_{4}(t)}{w_{4}(\cdot)} Q(t) f^{*}(y(t)) dt +$$

$$(y) (y) = \frac{-w_4(x) + w_1(x)}{w_4(y)}$$

$$\max_{0 \neq y \neq r} \int_{x}^{x} (y) \left(-w_4(x) - \frac{x}{Q(t)} dt + \frac{w_3(x)}{w_4(y)} - \frac{1}{w_4(y)} w_4(y) + \frac{1}{w_4(y)} dt \right) +$$

$$B_r \frac{-w_4(x) + w_3(x)}{w_4(y)} = G(x) \qquad (x < 1).$$

Therefore, we have

fore, we have
$$\frac{1}{0} / (y) (x) / dx = \frac{1}{0} G_r(x) dr = \frac{1}{0} \max_{0 \neq r} \int_{0}^{x} (y) \left(2 w_1(t) Q(t) dt + 2 w_4(t) Q(t) dt \right) + (2 + 1) B_r < + 1, \quad (23)$$

which shows that $(y)(x) = L^{1}(0,1)$ and (y)(x) = AC[0,1] for each fixed y(x)and (22) and (23) imply that (K - 1) is relatively compact in K (by the Ascoli-Arzela theorem). Besides, the continuity of on Kfollows from that of $f^*(y)$ on \mathbf{R}_+ . To sum up, is a completely continuous mapping.

Moreover, from (22), we know that (y) (-0) = (y) (+0), and hence $AC_{loc}(0,1)$. From the above discussion, we can conclude that each fixed point of in K is exactly a solution to (1).

We are now in the position to prove that has a fixed point in K under the assumptions of Theorem 3.

For given
$$r_1, r_2 > 0$$
, we write ${}_{1} = \begin{cases} y & C[0,1]; & y < r_1 \end{cases}, {}_{2} = \begin{cases} y & C[0,1]; & y < r_2 \end{cases}.$

From (6) and (7), we know that there exists a sufficiently small > 0 such that

$$(+) M \begin{bmatrix} w_1(t) Q(t) dt + w_1(t) Q(t) dt \end{bmatrix} < 1,$$

$$(r-) \frac{w_1(-)}{w_1(1) - w_1(-)} w_4(t) Q(t) dt > 1.$$

Now suppose that (4) holds. Since $\lim_{y \to 0} \sup \frac{f^*(y)}{y}$, we can choose $r_1 > 0$ so that $f^*(y)$ (+) y for all y [0, r₁].

In this case, it follows from (20) that for any given $y \in K$ ∂_{-1}

$$y \qquad M \left(\int_{0}^{1} w_{1}(t) Q(t) f^{*}(y(t)) dt + \int_{0}^{1} w_{4}(t) Q(t) f^{*}(y(t)) dt \right)$$

$$M(+) \left(\int_{0}^{1} w_{1}(t) Q(t) dt + \int_{0}^{1} w_{4}(t) Q(t) f^{*}(y(t)) dt \right) r_{1} < r_{1} = y .$$

From $\lim \inf \frac{f^*(y)}{y}$, we know that there exists an $r_2 > r_1$ such that $f^*(y)$ (-) y for all y r_2 .

In this case, it follows from the definition of that for any fixed $y \in K$ ∂_{-2} ,

$$y \qquad (y)(y) = \frac{w_1(y)}{w_1(y)} - \frac{w_1(y)}{w$$

From the first part of Theorem B, we reach the conclusion that has a fixed point in $K = (\frac{1}{2} \setminus 1)$. Let y(x) be the fixed point. Then the function

$$y(x) = (y)(x) (0 x 1)$$

is a positive solution to the three-point boundary value problem (1), since

$$y(x)$$
 y r_1 on [,1] and $y(x)$ $y()$ $\frac{w_1(x)}{w_1()}$ on [0,].

Next suppose that (5) holds. From $\liminf_{y \to 0} \frac{f^*(y)}{y}$, we know that there exists an $r_1 > 0$ such that

$$f^*(y)$$
 (-) y for any y [0, r₁].

In this case, we have that for any given $y \in K$ ∂_{-1}

$$y = \frac{w_{1}(\)}{w_{1}(1) - w_{1}(\)}^{1} w_{4}(t) Q(t) f^{*}(y(t)) dt$$

$$(r -) \frac{w_{1}(\)}{w_{1}(1) - w_{1}(\)} \begin{bmatrix} 1 \\ w_{4}(t) Q(t) dt \end{bmatrix} r_{1} > r_{1} = y .$$

Since $\lim_{y \to 0} \sup \frac{f^*(y)}{y}$, we can choose an $N > r_1$ so that $f^*(y) = (-+-)y$ for any $y \in N$.

Let $r_2 > N$ be a positive number such that

$$r_{2} > \frac{M \max \left(f^{*}(y); 0 \quad y \quad N \right) \left(w_{1}(t) Q(t) dt + w_{4}(t) Q(t) dt \right)}{1 - (+) M \left(w_{1}(t) Q(t) dt + w_{4}(t) Q(t) dt \right)}.$$

In this case, we have that for any fixed $y \in K \cap \partial_{-2}$

$$r_2 = y$$
.

The second part of Theorem B tells us that has a fixed point $y(x) = K = (-2 \setminus 1)$. As before, the fixed point y(x) is a positive solution to (1), of course. The proof of Theorem 3 is completed up to now.

Proof of Theorem 4 Since (0,1), we can choose = 0 so that $w_1(1) - w_1(1) = 1 - 1 > 0$. The assumptions of Theorem 4 imply that (0,1) can be arbitrarily small and arbitrarily large. Therefore, (0,1) and (0,1) are fulfilled. Theorem 4 follows from Theorem 3.

Acknowledgement The authors are grateful to Professor WANG Jun-yu for his suggestion and help.

References:

- [1] MA Ru-yun. Positive solutions of a nonlinear three-point boundary value problems [J]. Electron J Differential Equations, 1999, 34:1 8.
- [2] Gupta C P. A sharper condition for the solvability of a three-point second order boundary value problem[J]. J Math Anal Appl, 1997, **205**(2):586 597.
- [3] Krasosel 'skill M A. Positive Solutions of Operator Equation[M]. Gorningen: Noordhoff, 1964.
- [4] Cabada A, Nieto J J. Fixed points and approximate solutions for nonlinear operator equations [J]. J Comput Appl Math, 2000, 113(1-2):17 25.