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Abstract: A fixed point theorem is used to study a singular second order threepoint
boundary value problem. The problem is more general. Combining the method o
constructing Green functions with operators defined piecewise, the existence result o
positive solutions to a singular second order three-point boundary value problem is
established. The nonlinearity can be allowed to change sign.
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1 Introduction and Main Results

The existence of positive solutions has been established for a nonlinear second order three-
point boundary value problem of the form
- Y = Q(x) f(y) (0<x<1,
y(0) =0,y(1) =ayn)
only very recently in [1]. It was assumed therethat 0 <N < 1,0 <o < 1, Q(x)
C([0,1]; Ry, f(y) C(R+; Ry), Ry =0, + ), and f(y) is superlinear or sublinear
ay = 0and y =+ o. And the prodf o the result above-mentioned was based upon the
following two propositions.
Theorem A3 LetO<n <1,0n #landlet h(x) C[0,1]. Then the linear three
point boundary value problem

(1)

-y = h(x) 0<x<1,
y(0) =0,y(1) =ayM)
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has a unique solution y( x) C?[0,1] , which can be expressed by

y(x) = -I:(x- t) h(t)dt - ﬁfﬁj’r;m -t h(D)dt +

_x r!
T Otr]_[o(l - 1) h()dt.

If on (0,1 ,and h(x) £0on[0,1], then y(x) = 0on [0,1]; further, if h(x) > Ofor
some x [0,1],then y(x) > Oon (0,1).

Theorem B! Let Ebe aBanach space and Kbe a cone in E. Assume that Q, Q, are
open subsets of Ewith0 Qq, Q; CQ,, and let

cD:Kﬂ(cF]_\Ql) - K

be a completely continuous mapping such that either
) TPyl < Iyl Vy Kn&Qpand | Pyl
) Tyl = Iyl Vy Kn&Qpand | Pyl
Then the mapping ® has a fixed point K n (Q,\ Qy) .
In the present paper , we restudy the three-point boundary value problem (1) with the aim of
extending and improving the above- mentioned result. The hypothesis we adopt is as follows:
HON (0,1),a >0, f(y) C(R:; R,and Q(x)  Lic(0,1) with Q(x) =0
a.e. on (0,1) and

Iyl Vy KnQ,,
Iyl Vy K n 0Q,.

2
<

0 <I:(1- X) Q(x)dx <+ oo, IZXQ(x)dx <+ o0,

There are two points we should emphasize. Frst, in our problem the function Q(x) is
allowed to be singular at x = Oand x = 1. For example, the function

Q(x) = x*1-x"" (a,b (1,2)

satisfies H1) . Secondly, our purpose is to deal with not only the casedn (0,1) but aso the
caseOn = 1. For the latter, Theorem A does not work. For this reason, we need the following
two propositions.

Theorem 1 For each givenp = 0, initial value problems

{vw =pQ(0w  (0<x<1),
w() =0, w(0) =1,
{W'—DQ(X)W (0<x<n),
w0 =0, w() =-1,
{Vw =pQ(IwW (< x<1,
w(n) =0, w@®) =1,
and
{ =pQ(0w  (0< x<1),
w(l) =0, w() =-
have solutions respectively wi(x)  AC[0,1] n C'0,1), wo(x) AC[ONn] n c(oni,
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ws(x)  AC[N,1] n C'(0,1] and wa(x)  AC[0,1] n C'(0,1], which are all convex on
their intervals of existence. Moreover ,

wo(x)  wi(x)
= w,(0) = wi(N) on[0OnN],

V\/z(X) Wl(X)

wa(x)  ws(x)

ws(N) = wa(1) on [N ,1]

wa(x)  wz(x)
and

wa(x)  wi(x)
= ws(0) = wy(1) on[0,1].

V\/4(X) V\/l(X)
It is indubitable that wi(x) = X, wo(X) =N - x, wa(x) = x-N,andws(x) =1- X
whenp = 0.
Theorem 2 For each givend R, there is ap = O such that
wi(1) - aw;(n) > 0. (2
Assume that (2) holds. Then the linear three-point boundary value problem
{- Yy +PQ0Y = h(x) (0 <x<1),

y(0 =0, y(1) =ay®)
has a unique solution

[ w@wi) [ wa(n) ! walt) )
wi(D) 'Gwl(”)ho w) M0G0 (n)h“)dJ (x=n),

Wz(x)f LR wl(x)f —Zfr%)h(t)dt -y Ll

wi ()
() = ©0<x<n),
wy (t) Wa(X) +0wsz(x)
w4(x)J’ m) h(t)dt+W3<x)I L) h(Ddt+y@) )
N <x<1

3
for any fixed h(x)  Linc(0,1) with

In wi(t) | h(t) | dt +I1W4(t) | h(t) | dt <+ oo.
0 n

n
Ifa =0,and h(x) =0a.e. on (0,1) ,theny(x) =00n[0,1]; further, ifj'owl(x) h(x) dx

1
+Inw4(x) h(x)dx > 0, then y(x) > Oforal x  (0,1].

Here afunction y( x) is said to be a solution to the three-point boundary value problem (1) ,
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) y(x)  AC[0,1], y(0) =0, y(1) =ay@),
) Y(X)  ACk(0,1) nL'(0.1), Yy (X = Li(0,1),and
) - Y'(¥) = Q(x)f(y(x) a.e. on (0,1).
If y(x) > Oforal x (0,1], thenit is called a positive solution to (1) .
It is obvious that Theorem 2 is an improvement and extension of Theorem A.
To establish the existence of a positive solution to (1) , we further assume that
H2) There exists ap = Osuch that (2) holds and f “(y) = f(y) +Pyis nonnegative on
R., and
H3) One o the following two conditions is fulfilled

Iirr;gtjpj_)(/‘yl <fB and Iirynﬂigpj_)(fo' >n, (4)
Iimyiupj_)(/#)' >y andliryn#sotojpj_)(/l)' <PB. (5)
Here3 andy are both constants satisfying
n 1
BM OW1(X) Q(x)dx +J'nW4(X) Q(X)dg <1, (6)
1
Yo @) ) Q0 dx > 1, (7

wi(1) - aws ()

o med ) wm)) {WA(x)mwS(x)}
=1+ nns’]?i( ,

v wi(1) - awi(n) ws(N) (8)
min wa(X) + 0w (x)
= A=xs wa(N)
©= Wl(l) - GWl(n) + mex W4(X) +GW3(X) < 1. (9)
W4(r]) ,W]_(n)) n<xs W4(n)

It is clear that H2) alows f(y) to change sign whenp > 0.

Applying Theorem 2 and Theorem B , we can prove the existence results bel ow- mentioned.

Theorem 3 Let H1) - H3) befulfilled. Then the three-point boundary value problem (1)
has a positive sol ution.

Theorem4 LetO<n <1,0<an <1,f(y) C(Rs; R) and Q(Xx)  Lic(O0,
1) with Q(x) = O0a.e. on (0,1) and

O<I:(l- X) Q(x)dx <+ oo, J’ZxQ(dX) <+ 00,

Then the three-point boundary value problem (1) has a positive solution, provided that one of the
following two conditions holds

) limTO% = gand lim £ - 0
y -0 y Y o+ 0 y

)Iimj‘u)‘ =+ oo and Iimj‘u)‘ = 0.
y 0 y y -+ 0 y

Being a consequence of Theorem 3, Theorem 4 improves and extends the result in [3].

It must be pointed out that the conditionOn (0,1) is sharp in Theorem 4. There are two
reasons : first, whend = Othe three-point boundary vaue problem (1)" degenerates” into a two-
point boundary value problem; secondly , whenon = 1, when claim that the three-point boundary
value problem
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Y=y (0<x<1,
y(© =0, y() = ,‘]Ly(n)

has no positive solution. Infact, if the claim is fase, i.e. , the problem has a positive solution
y(x) , then the equation implies that y(x) is a strictly concave function on [0,1] and hence

y(N) =ny(1) , which contradicts the boundary condition y(1) = 'r%L y(N) . This shows that the

claim is true.
2 Preliminaries

In this section, we are going to prove Theorems 1 and 2. To this end, we first present a
proposition, which will be frequently used later on.
Lemmal Let h(x) Lic(0,1) with h(x) = Oa.e. on (0,1) and

J-r;xh(x)dx +J-:(1 - X) h(x)dx <+ oo,
Then we have
Ixi[p>j':h(t)dt = 0 = lim(1 - x)J'nXh(t)dt. (10)
Proof of Lemmal Putv(x) = >j.2h(t)dt, 0 < x<n. Then
0 < v(x) SJ.Zth(t)dt<+ 00 forall x (0nj,

n
Vv (X) :I h(t)dt - xh(x) (0< x<n),
and hence for anyd  (0n)

J:: | Vv (x)| dx SI:dx SJ’Zh(t)dt +J'l; xh(x) dx

n n
_[5 (t-90)h(t)dt +onh(x)dx
n

IN

{5xh(x)dx <+ o
which shows that V (x)  L*(0n) and v(x)  AC[ON]. As aresult, we obtain
s s n s
IOV(x)dx :Iodi{xh(t)dt -onh(x)dx =v(s) forals (0N],

which implies that v(0) = 0, i.e. , thefirst equation is true.
In the same way as above, we can lead to the second equation. The Lemma is thus proved.
Proof of Theorem 1 Whenp = 0, al the conclusions of Theorem 1 are fulfilled, of
course. We now prove that the initial value problem
W =pQ(x)w (0<x<1,
w(l) =0, w() =-1
has a unique paositive solution for givenp > 0. Put
B={u(x 0,11l ulg<+ oo,

1
where I ull g = max | u(x) | exp| - ZDJ-XS(l- s) Q(S)d% :

(11)
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Define a mgpping L :B - B by
Lu() =1,

(Lu) (x) = 1+1_‘_)_J1(t - x) (- t)Q(t) u(t)dt 0 x<1).
For any u B, we have
‘1—1— “(t- 0 (@- 0 QD u(Ddt

SIlt(l- ) Q(t) | u(t) | dt <

max | u() | [ (1= D QO AL <+ w.

As aresult, we conclude that L (B) C B. We claim that L is a contraction mapping. For any
ur(x) ,uw(x) B, we have

1
exp[- P s-9 Q(S)d%l (Lu) () - (L) (X) | <
1
exp[- Pf - S)Q(S)d%pj'lxt(l- D QY | (u) () - (uw) (1) | dt <

_l- l
5 Il u - wll gexp| - Ixs(l- s) Q(s)dg x

1 1
I Dt(1- 1) Q(t)exp[- aofxs(l- 9) Q(s)d% dt < % Iu- wll g
foral x [0,1],
ie., ILu - Lupll g < ';‘ I Lu; - Lupll g Yui,u,  B. This shows that the claim is true.

From the claim, we know that L has a unique fixed point in B. Let us(x) C[0,1] be the
unique fixed point. Then

us(x) = 1+l_iLJl(t— X) (1 - t) Q(t) us(t)dt 0< x<1).

Write
1
wWa(x) = (1- x) wa(x) =1- x+pI (t- x) Q(t) wa(t)dt (0 x<1.
(12)
Then wa(1) = 0,
Wex) =- 1- pr(t)wm)dt O<x<D, w@ =-1, (13
wa(x) = PQ(x) wa(x) a.e.onx (0,1). (14)
This shows that wa( x) is a solution to (11) .
Note that

1 . 1 1
IO| wa(x) | dx < “pfod{x(l' ) Q(t) | u(t) | dt <
1

1+pJ'0t(1- ) Q()dt max| uy(t) | <+ oo,

which means that wa(X)  AGiec(0,1] n L*(0,1) and w4(x)  AC[O,1].
We now claim that ws(x) > Ofor all x [0,1) i.e., ws(x) = Ois the only zero of
ws(x) . If it is not the case, then there exists an xo  [0,1) , such that
wa(x) > 00n (x0,1), walxo) = wa(d) =0
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since that wa(1) = - 1together with ws(1) = Oimplies that w4(X) > O on a left neighborhood
o x = 1. By the Rolle’ s Theorem, there exist a  (xo,1) such that w4(€) = 0. On the other
hand, from (13) we lead to

1
wi€) =- 1- PJ'EQ(I) ws(t)dt < 0,

a contradiction. This shows that the claim is true. That is to say, w4 (X) is the unique positive
solution to (11) . And (14) tells us that w4 (x) is convex on [0,1].
In the same way as above, we can prove that the initial value problems

W =pQ(x)w 0<x<1,
w(0) =0, wW(0 =1,
W =pQ(x)w (0< x<n),

win) =0, w@) =-1,
and
{vw —pQ(w M < x<1),
wn) =0, w@) =1
have unique positive solutions wi(x) , w.(x), and ws(x) , which are convex on [0N],
[N,1],and [0,1], respectively. As a result, we have
X < wi(x) € w(n)x/Nnand0 £ wo(x) < w(0) on[n,1],
0 < wi(x) < ws(l)and (1- x) € wa(x) < wa()(1- x/(1-Nn)

on [N ,1].
(15)
Put
Wi = vx{4(X) Wll(x) 0<x<1).
wa(x)  wi(x)
Then
w0 wa(x) ‘ Wa(X) wi(0 |
W= 10wl lbeaw pow(x | = 03¢ on (0.
According to Lemma 1, (15) ,(12) ,(13) , and
wi(x) = x+pJ’:(x- DQw(ndt (0<x<1),
Wi(x) = 1+pJ':Q(t)wl(t)dt O<x<1,
we obtain
Wy = ws(0) = wy(1), on[0,1].
Similarly , we have
wa(x)  wi(x)
. v = w2(0) = wy(N) on [ON],
wo(x)  wi(x)
(x) ()
W0 W @) = ws(@) on [ A (16)
wa(x)  wa(x)

The proof of Theorem 1 is thus completed.
Proof of Theorem 2 Whendl < 1, we can chooseP = 0. In this case, we have
wi(l) -aw;(n) =1-o0n > 0.
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Whenon = 1,i.e.,0 = 1/n , we can chooseP > Osufficiently small. In this case, we

have

1
wa() - awi) = 1+pf (-1 QO wa(1)dt -
n
a[n o U Q(t)wl(t)dﬂ =
1
p.[” (1- t) Q(t) wa(t)dt +

n
pjo(l- t-on +at) Q() wi(t)dt > 0.
Whenan > 1, we can chooseP > 0such that
1
pJ' (1- H)Q(ndt =q.
n

In this case, we have

wi(D) - owi(N) = wa) wi®) - wa) wa(M) - Owi(n) >
1
wi(n)| 1 +p_InQ(t) wy (t) dt - O(J >

1
wi () pJ-n (1- 9 Q(1)dt- GJ > 0.

To sum up, for each givesa Rthere exists ap = Osuch that w1(1) - aw;(n) > O.
By Lemma 1, (15) and (16) , it is easy to check that the function y(x) defined by (3) is
a solution to the linear three-point boundary value problem
{- Yy +pQ(0y = h(x  (0<x<1),
y(0 =0, y() =ay@).
Next we prove the uniqueness. Let y;(x) and y>(x) be solutions to (17). Put y(x) =
y1(x) - y2(x). Then
{Y’(X) =PQ(x) y(x) a.e. on (0,1)
y(0 =0, y() =ay@).
Note that the homogeneous linear differential equation has a general solution
y(x) = Ciwi(x) + Cowa(x) 0=sx<s1,

where Ciand C;are arbitrary constants. From the boundary conditions and (2) , it follows that C;

(17)

= C =0.i.e.,y(x) =00on[0,1]. The uniqueness is thus proved.
The remainder of Theorem 2 follows from (3) . Theorem 2 is thus proved.
In the sequel , we assume that there exists ap = Osuch that wy(1) - adw;(N) > 0. Put
Ly =- ¥y +pQ(xX) vy,
D(L) ={y(¥ AC[0,1];y () L' (0,) n AGw(0,1),
y(0 L0, y© =0, y(1) =ay®)-
L0 ={h(x LhOD:Ihl " <+ o
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* N 1
where Il hll :Iowl(x) | h(x) | dx +I ws(x) | h(x) | dx.
n
From Theorems 1 and 2, we come to two conclusions. Frst, L:D(L) —L “(0,1) is inverse
positive, i.e. ,
y(X) D(L) ,(Ly)(x) =0, a.e. on(0,1) =y(x) =0 on][0,1],

which is usually called the maximum principle (see [4]). Secondly, there exists a positive
number Csuch that

L *hll < cll hil -~ (Vh L7(0,1),
where II - Il is the usual supremum norm.

3 Proofs of Main Results

In the present section, we give prodfs of Theorems 3 and 4.
Proof of Theorem 3 Let us define a mapping® : K — Kby

el B GO M tCL *(y(t))dg
(x =n),
Oy QT )+ wf | S QWO ()t 4
@)= @y m) ﬁg’% ©0<xsn),
W,y QT )+ [ WS QW ()
@y @) HEDEL g <y,

K :{y(x) [0,1]; y(x) =2 0on[0ON]andy(x) =0l yll on[Nn ,1]} ,
where I yll = ma>{| y(x)|;0< x < i andO is the constant defined by (9) . Clearly, K
isaconein C[0,1].
From the definition of @, Lemma 1, Theorems 1 and 2, we know that for each fixed
y(x) K
(®y) (0)
(®y) (x)

(Py) ()

0, (®y) (D) =a(®y) M),
0, x [0.1], 8
mid wa(n) wi ()} G

wi (1) - awi(N) ! Yo

n *
o= [ w0 QU (y(D)dt,

v N

\

1
ly = nw4(t) Q) f " (y(1)dt,

med_wa(n) wi(n)}

wi(D) - awy(m) (F e (19)

(®Py)(n) <

(®y) () < I+ 1s + (By) () max| LAy gy
wa()

and hence, by (19)



Pogtive Slutions to a Sngular Seoond Order BVP 863

Il oyl < {1 + mx{wzl(x) +O(W3(x)}ma>{w4(ﬂ) ,wl(ﬂ)}

ws(N) wi(1) - aw; ()

J (l1+ 18 = M(I1 + 14,

(20)
where M is the constant defined by (8) . On the other hand, it follows from (18) that
wi(x) - Ow; () Wa(x) +0wz(x)

POV < S wm w)) T ) P ).
Theref ore
) wa(x) +0wa(x)
(®y) (x) = (Py) () ”rgxrg{ wa) }( ey 2
wa (X) +O(W3(X)1
n wli)) | oyl =
wi(1) - awi(n) wa(x) +0Owa(x)
md wi(n) ,wi(n)f " T wa () J

olldyll (0 < x<1).
This shows that P ( K) is a subset of K.
We now claim that ® is a completely continuous mapping. In fact, for any r > 0 and
y(x) KnQ,
Q :{y(x) C[0,1]; Iyl < &
we have, by (20) and the definition of P,
Il dyll < M(1p+ 1y <

1
M mmexf “(y) nWl(t) Q(t)dt +J' ws (1) Q(t)dﬂ = B, (21)

W (t)

Wz(x>f (n)Q(t)f (y(t))dt+w1<x)f ) QDT “(y(t)dt +

w (x)
wi(n)

w4(x)J’ m) QD) f " (y(1)dt + w3<x)‘[

Wi (x) +0ws(x)

ws(N)

(Py) ) (0<x<n),

(Py)' (x) =
J{ﬁ%@(t)f (y(t))dt +

(Py) ) N <sxs<1,

(22)
and hence

| (@y)' (N | < - w j’ m)Q(t)f (y(t))dt+wl(x)J' QN f (y(1)dt +

Wi (X)
wi(n)

mext * (y) Tlféyxlﬂwl(t) Q(1)dt + w’l(x)‘[zQ(t)dJ +

mbd oy o< x<n),

wi(N)
' X * U 1 *
| (@Y (X ] < - w4(x)J'nQ(t)f (y(t))dt+vv3(x)jn —“w(r:)@(t)f (y(0)dt +

(Py) ) (0< x<n) <

B
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- wa(x) + 0w (x)

ws() <
, X . 1
mext * (y)] - wzl(x)fncg(t)oltﬁffmx—)l () Q(t)dJ +

(Py) ()

- wa(x) +aws(x)
ws(N)

B, = G(x) N € x<1.

Therefore, we have

I:I (Py)' (x) | dx SI;G(x)dr =

o<ys<r
which shows that (Py)' (x) L1(0,1) and (Py) (x)  AC[0,1] for each fixed y(x) K n
Q and (22) and (23) imply that @ (K n Q) is relatively compact in K (by the Ascoli-Arzela
theorem) . Besides, the continuity of ® on Kfollows from that of f “(y) on R,. Tosum up, ®
is a completely continuous mapping.

Moreover, from (22) , we know that (Py)'(n - 0) = (Py)' (N + 0), and hence
(Py)' (x) ACi,c(0,1) . From the above discussion, we can conclude that each fixed point of
@ in Kis exactly a solution to (1) .

We are now in the position to prove that ® has a fixed point in K under the assumptions of
Theorem 3.

For given r1, r, > 0, we write

Ql:{y C[0,1]; Iyl <r}, sz{y C[o,1]: Iyl < r;.
From (6) and (7) , we know that there exists a sufficiently small€ > 0 such that
n 1
® +e) M[J’Owl(t) QU dt+ wa() Q(t)dﬂ <1,

ow; () ct
wi(1) - aws ()]

N 1
maXf*(y){{owl(t)Q(t)dt +1HW4(t) Q(t)dﬂ + (2+0)B, <+ o, (0

(r-¢€) wa(t) Q(t)dt > 1.

Now suppose that (4) holds. Sincelirp sup‘f_fll)' < B, we can choose r; > 0so that
y

f'(y) < B +€)yforaly [0, r].
In this case, it follows from (20) that for any given y K n dQ;

n 1
I Pyl < M[Iom(t)Q(t)f*(y(t))dt +J'qw4(t) Q(t)f*(y(t))dﬂ <

n 1 .
M@ +8)[I0W1(t) Q(t)dt +J'nw4(t) Q(t)f (y(t)dﬂ r <
ro=1yl.
Fromliryer j_i/‘y)‘ =Y , we know that there exists an ro > ry such that

f'(y) 2 (Y -€)yforal y20r,.
In this case, it follows from the definition of ® that for any fixed y KnQ,,
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Wl(n) l'l *
Oyl 2 (@) ) 2 Ty gy, mf ;20 QDT (y(0)dt 2

1
y -€) Wl(lc)yw-lg(]v)vl(n)[,[nw“(t) Q(t)dﬂ r >

r,=lyl.

From the first part of Theorem B, we reach the conclusion that ® has a fixed point in
K n (Q2\ Qp). Let y(x) be the fixed point. Then the function

y(x) = (Py)(x) (0 x<1)
is a positive solution to the three-point boundary value problem (1) , since

W]fX!

y(x) 20l yll =0r;on[n,1] and y(x) = y(@) W)

on [0N].

Next suppose that (5) holds. From Iinywj)n‘ I_>(/J). > Y , we know that there exists an
ry > Osuch that
f7(y) 2 (y -€)yforany y [0, ri].
In this case, we have that for any given y K n oQ;
wi () !

I dyll = wi(D) - GWl(r])JnW4(t) Q) f "(y(t))dt =
w (N) !
(r - 8) Wj_(l) _ an(r]) r]W4(t) Q(t)dﬂ rl >
rn=Ilyl.
Sinceliryllg;pj_*)(/‘y)' <, we can choose an N > r; so that

f'(y) < @ +€)yforany y = N.
Let r, > N be a positive number such that

n 1
Mrrﬁx{f (y);0<y< N}“Owl(t) Q(t)dt +[nw4(t) Q(t)dJ
1- B +¢) MUH wq (t) Q(t)dt +IlW4(t) Q(t) dﬂ .
0 n

In this case, we have that for any fixed y K n XQ,
n 1
Il Pyl < M[J’Owl(t)Q(t)f*(y(t))dt +J’nwl(t) Q(t)f*(y(t))dﬂ <
M[ I wi(t) QO f (y(1)dt + I wy (1) Q(t)f*(y(t))dﬂ +
0<y()@ N,0< t<n O<y() NN <t<l

ro >

M I wi(t) Q(O)f " (y(1)dt + I W4(t)Q(t)f*(y(t))dJ <
N<y(er,,0<t<n N<y(el r,

n<ts<l

n 1
'V'max{f (y);0<y< l\}[J'Owl(t) Q(t)dt +J’nw4(t) Q(t)dﬂ +

B +e) M[Ir;wl(t) Q(1t) dt +I:W4(t) Q(t)dﬂ r2 <
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=1 yl.
The second part of Theorem B tells us that @ has a fixed point y(x) Kn (Q,\ Q). As
before, the fixed point y(x) is a positive solution to (1) , of course. The proof of Theorem 3 is
completed up to now.
Proof of Theorem 4 Since 0N (0,1) , we can choose P = 0 so that wi(1) -

Owi(N) =1- 0N > 0. The assumptions of Theorem 4 imply that can be arbitrarily small and

Y arbitrarily large. Therefore, (6) and (7) are fulfilled. Theorem 4 follows from Theorem 3.
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