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Abstract—Although many theoretical methods were devel-
oped to price various derivatives, pricing deviation still remains
very high. This paper provides a pragmatical option pricing
method by combining skewness and kurtosis adjusted Black-
Scholes model of Corrado and Su, time series analysis and
Artificial Neural Network (ANN). The empirical tests in FTSE
100 Index options show that pricing deviation calculated by
adjusted Black-Scholes model is still high. After the model is
modified by time series analysis and ANN methods, the pricing
deviation is reduced, which is much smaller than the previous
models. It is suggested that time series analysis and Artificial
Neural Network methods can be used in the pragmatical work
to make the pricing more fast and precise.

Keywords-Adjusted Black-Scholes Model; Times Series Anal-
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I. INTRODUCTION

The Black-Scholes (1973)[1] option pricing model is used

to value a variety of derivatives and securities. Despite its

prominent usefulness, some empirical researches found the

formula had some deficiencies which may lead to inaccu-

racies in assets valuation.These inaccuracies are originated

from the simplified set of assumptions, such as geometric

Brownian motion of stock return, constant variance,without

taxes or continuous trading on the underlying assets, etc,

which are obviously violated in financial market.
Some subsequent researches relaxed the assumptions to

make the formula more approximate to the real market. Mer-

ton (1976)[2] employed jump diffusion model to describe

the movement of the underlying assets return; Hull and

White (1987)[3] combined stochastic volatility to modify the

assumption of constant variance and some later approaches

have tended to combine fat-tailed independent shocks and

time varying variance. Corrado and Su (1996)[4] extended

the Black-Scholes model by introducing the non-normal

skewness and kurtosis into the formula and the estima-

tion indicated significant skewness and kurtosis implied

by option prices. However, the results provided by these

generalizations and extensions did not manage to be truly

consistent with the market data. Moreover, many extensions

are often too complicated to implement and have poor

market performances.

Artificial Neural Network (ANN) is a promising way in

modifying the option pricing model. The former extensions

of option pricing models are strongly correlated with finan-

cial theories, however, some abnormal price behaviors still

can not be explained by the existed financial theory so that

the pricing deviations are still high. The ANN technique

is not set out from financial theory, but can make an

estimation with a black-box method via the input variables.

What’s more, the market is changing frequently because

the attitudes toward the option price changes time to time

(eg. Rubinstein, 1985 [5]) and many theoretical methods

are stationary models which may fail to value the options

precisely. With ANN technique, it can be trained frequently

to adapt the rapidly changing market conditions.

Beside Neural Network technique, statistical method, like

time series analysis, is combined to improve the model per-

formance. By examining the correlation of pricing deviations

in different periods, the result indicated that the correlation

between current pricing deviation and first-order lag devi-

ation is very strong, close to 0.9. With the combination

of these two methods, pricing deviations can be reduced

significantly and the time consumption is relatively small

so that the model is more meaningful and pragmatic to the

investors.

The remainder of the article is organized as follows.The

methodology of this paper is presented in the section 2.

The adjusted Black-Scholes model and implied information

mining method is described in Section 3. The section 4

showed the Time Series analysis with FTSE 100 Index

Options data. In the section 5, Artificial Neural Network

technique is described and explained. The empirical result

is reported in section 6. Finally, conclusions are offered in

section 7.

II. METHODOLOGY

The option price, in theoretical, is the discounted expected

return of the option claim. However, there are lots of uncer-

tainty that impact the expectation, many previous researches

assumed the uncertainty follows some rules and calculated

the option price basing on the assumption. They assume an
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ideal world but there are no ideal world, and that is why

option pricing are not always precise.

This paper trisects option pricing into CBS ,CAR and

CANN and analyzes each part in order to make an accurate

pricing. The trisection can be formulized as below :

C = CBS + CAR + CANN + ε (1)

CBS is the pricing in an ideal world, so C − CBS is

the pricing deviation from ideal world to real world. CAR

analyze the deviation and find out a time series trend of

such deviation, therefore C − CBS − CAR represents the

deviation which can not be explained by time series trends.

Finally, CANN is a fitting function trying to map the market

information to the deviation which can not be explained by

time series trends. The details of CBS ,CAR and CANN will

be discussed in the following sections.

III. THE ADJUSTED BLACK-SCHOLES MODEL AND

IMPLIED INFORMATION MINING

In this section, a traditional option pricing formula is

introduced, which can get an analytical solution under a

hypothetically ideal market, and this can be used in a

data mining process that estimates the implied information

including risk-free interest rate, market volatility, skewness

and kurtosis.

The Black-Scholes model is first published by Fischer

Black and Myron Scholes (1973)[1]. Their model is based on

the assumption of a normal-distribution return of underlying

option , however, empirical study (Vahamaa ,2003[6]) shows

that the return has skewness and kurtosis default normality.

Corrado and Su adjusted this model by adding terms for

non-normal skewness and kurtosis to make the model more

cohesive to the real world[4].

The formula deduced from the Corrado and Su’s model

can be represented as follow (European style call option):

C = SN(d1)−Ke−rTN(d2) + μ3Q3 + (μ4 − 3)Q4 (2)

where:

Q3 = 1
6Sσ

√
T [(2σ

√
T − d)n(d1) + σ2(d1)]

Q4 = 1
24Sσ

√
T [(d21 − 1− 3σ

√
Td2)n(d1) + σ3T 3/2N(d1)]

d1 = ln(S/K)+(r+σ2/2)T

σ
√
T

, d2 = d1 − σ
√
T

K represents the strike price, S is the price of underlying

asset, T is the time to maturity date, σ is the volatility and

r is the risk-free interest rate. In addition to the original BS

formula, terms μ3Q3 and (μ4− 3)Q4 are added to measure

the effects of non-normal skewness and kurtosis, which μ3

represents skewness and μ4 kurtosis.

This formula is the most basic consistent with the pricing

model in equation (1), for it represents the intrinsic option

value in an ideal world. Thus, let CBS equal C in equation

(2). The residual term CAR+CANN +ε in equation (1) can

be understood as the pricing deviation between ideal world

and real world and will be analyzed in the following section.

The adjusted BS formula is useful to capture implied

information (risk-free interest rate, market volatility, skew-

ness and kurtosis). Many previous researches of pricing

utilized BS formula, and the parameter estimation is still

a controversial issue. Some researches employed a constant

parameter, say, volatility, or estimated the parameters in a

period, say, 60 days. But the determination of the interval

of period remains divergence. Hull and White regarded the

parameters as a stochastic process and refined the Black-

Scholes formula with the method (Hull, 1987 [3]). However,

this begets more estimation work. In this paper, a simple

and smart method is developed to estimate the parameters,

and it has been proved to be well-performed(Mayhew, 1995

[7]). The implied parameters suggest the expected by market

average parameters of the period till maturity.

Implied parameters are estimated by minimizing the sum

of squared deviations between the observed market prices

and the price calculated by BS formula in equation (2).

sq(r, σ, μ3, μ4) =
∑

(C − CBS(r, σ, μ3, μ4))
2 (3)

To get the implied parameters, Lagarias’s Nelder-Mead

simplex algorithm (Lagarias, 1998[8]) is used to minimize

sq(r, σ, μ3, μ4) in equation (3) and hence get the parameters

estimated as implied ones which makes sq minimized.

In this study, a generally accepted assumption is made

that the parameters r, σ, μ3, μ4 are continuous when time

interval tends to zero, which means that no jump behavior

is observed. That is:

lim
t→t0

σt = σt0 and so do r, μ3, μ4

Thus, current value of r, σ, μ3, μ4 can be used in the

pricing model, since values of these parameters in the last

second can be always known and they are very close to the

current ones. Under this consideration, current values (or a

approximate one) of r, σ, μ3, μ4 are accessible if the time

interval is set small enough.

IV. TIME SERIES ANALYSIS

After pricing options with the BS formula (2), the residual

term of the BS pricing model, CAR+CANN +ε, represents

the pricing deviation between ideal world and real world.

Conjecture is made, without difficulty, that the pricing de-

viation of a specific contract will not change much during a

small period or follows a certain rule. It can be easily found

that, things like transaction fee and margin bring similar

deviation to the option price, which make the deviations

strongly correlate. Besides the transaction fee and margin,

there may be lots of similar factors that affect the option

price, these will be reflected on the time series trends.

Therefore, time series analysis is incorporated to catch the

rule of pricing deviation.

To prove the conjecture, Figure 1 shows a strong rela-

tionship between the pricing deviation of two neighboring
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time ticks. (FTSE 100 index option daily close price from

2008/4/1 to 2008/6/30, including average 314 contracts per

day). The correlation is 0.9298, which suggests that time

series analysis can help a lot in this pricing model.

��� ��� ��� ��� � �� �� �� �� ���
���

���

���

���

�

��

��

��

��

���

CAR,t−1 + CANN,t−1 + εt−1

C
A
R
,t
+

C
A
N
N
,t
+

ε
t

Figure 1. the correlation of pricing deviation between lags

Autoregressive-moving-average (ARMA) model is a s-

tatistic tool to analyze the time series data. It consists of

two parts, the autoregressive(AR) part shows the relationship

between the current data and the past data, the moving-

average(MA) part shows the similar relationship between

white noises. A general ARMA model (Whittle, 1951[9])

can be written as equation (4):

Xt = c+ εt +

p∑

i=1

φiXt−i +

q∑

i=1

θiεt−i (4)

ARMA model is applied in the pricing model described

as equation 1 and let CAR + CANN + ε be Xt showed

in equation (4). In practice, Xt is assigned as C − CBS ,

every contract is considered respectively. ARMA model can

analyze a potential statistical rule of the pricing deviation

and a prediction can be made under the rule.

After the coefficients of ARMA model are estimated,

Xt in equation (4) can be calculated through the estimated

coefficients, Xt−i and εt−i used in the equation (4). The

residual term of this equation, εt, can be understood as the

pricing deviation which can be explained by time series

trend. In equation (1), CBS is the intrinsic option price

assumed in an ideal world, and CAR is the pricing deviation

which can be explained by time series trend1, so the residual

term εt in equation (4) equals CANN + ε in equation (1).

V. ARTIFICIAL NEURAL NETWORK

The previous 2 sections, The Adjusted Black-Scholes Mod-
el and Implied Information Mining and Time Series Analysis,

discussed: (1) option pricing with theoretical formula in the

ideal world; (2) mining the implied information hidden in

1CAR, instead of CARMA, is denominated because ARMA(1,0) is
detected in the empirical study, which suggests an AR(1) model

the option price; (3) the time series trend of pricing deviation

between ideal world and the real world. However, the pricing

model is still inaccurate when these process completed.

So, what other factors determine the pricing deviation

besides time series trends? There are lots of factors that

impact the option price. However, such impacts may not

have an intuitive formula. For example, the skewness is

considered to be associated with market sentiment (Majmin,

2012 [10]), and this will surely affect the option price to

some extent. Unfortunately, the sentiment or emotion effect

is unmeasurable.

Now, let CANN (information) be a function mapping

Rp → R.

CANN : information→ (C − CBS − CAR) (5)

This abstract function attempts to find the relationship

between market information and the deviation which can

not be explained by time series trend. Here, artificial neural

network (ANN) is introduced to solve this fitting prob-

lem.Similar fitting problem (fitting residual of BS model)

has been successfully solve by ANN before (Andreou, 2008

[11]).

The first thing to be considered is what the term

information consist of, in other word, what should be

the inputs of function CANN . In the BS formula (2), the

variables in the formula plays an important role. So these

variables are important enough to included in information,

another variable Δ 2 is included which is decisive in

arbitrage process.

The variables included in the vector information are

listed below:

• S/K : the ratio of S and K

• T : time to maturity

• r : risk-free rate

• σ : volatility

• μ3 : skewness

• μ4 : kurtosis

• Δ : the change rate of an option price when the price

of the underlying benchmark changes

Therefore, the information is a vector of R7, CANN

is a function mapping R7 → R. A specific ANN, Cascade-

forward network is used to fitting this function. The structure

of Cascade-forward network is shown in Figure 2.

Finally, Levenberg-Marquardt (Hagan, 1999 [12]) algo-

rithm can efficiently make the training of this networks

convergence with second-order training speed.

2Δ = ∂CBS
∂S

= N(d1) + μ3q3 + (μ4 − 3)Q4 (Vahamaa, 2003 [6])
where
q3 = 1

6
[σ3T 3/2N(d1) + (φ1d1

σ
√

T
+ σ2T − 1− φ1)n(d1)]

q4 = 1
24

[σ4T 2N(d1) + σ3T 3/2n(d1) +
n(d1)

σ
√

T
(φ2 − 2σ2T + 2rT +

2ln(S/K))− φ2d1n(d1)

σ2T
]

φ1 = rT − (3/2)σ2T + ln(S/K)
φ2 = r2T 2−2rσ2T 2 +(7/4)σ4T 2−σ2T + ln(S/K)(2rT −2σ2T +
ln(S/K))
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Figure 2. The Structure of Cascade-forward Network

VI. EMPIRICAL STUDY

A. Data

The data in this article contains the daily option close

prices 3 of FTSE 100 index options traded at the London

International Financial Futures and Options Exchange, ag-

gregating 19833 samples. The sample period extends from

April 4, 2008 to June 4, 2008, including average 314

contracts per day with different maturity days and strike

prices.

B. Black-Scholes Pricing and Implied Information Mining

In the empirical study, the pricing and mining are pro-

cessed day by day in order to figure out the daily implied

information of the underlying FTSE 100 index. The implied

information of FTSE 100 index from April 4, 2008 to June

4, 2008 is shown in Figure 3.

	
���� 	
���� ����������� ������
�

����

����

����
��
�������������������

	
���� 	
���� ����������� ������
���

����

���

����
��
������ ��������

	
���� 	
���� ����������� ������
����

��

����

�

���
��
��������!����

	
���� 	
���� ����������� ������
�

�

�

�

�
��
��������� ���

Figure 3. Implied Information

After the BS model is applied, the pricing performance

and residuals are shown in Figure 4. Note that only a 1000

samples (5001 - 6000) is put in the figure in order to make

it concise.

The average pricing deviation, which is measured in mean

of absolute values, is 13.3618, and most of deviations spread

from -50 to 50. So far the term CBS in equation (2) is

obtained. The pricing deviations in this subsection form

3minute price is also used in the empirical study and the pricing is almost
exactly correct. Minute price tends to change a little which may not truely
show how the model performs well, so daily data is put here to show the
advantage of the model.
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Figure 4. Pricing Performance

CAR + CANN + ε, and will be analyzed in the following

subsection. The average running time of this process is

0.23 second (Intel i5-3317U CPU, Windows 8 pro, Matlab

R2013a).

C. Time Series Analysis

As mentioned in Section IV, the pricing deviation has

some sorts of time series rule. The ARMA model is used

here to detect the rule. Here, every time series data of single

contract is considered respectively. Autocorrelation function

(ACF) and Partial autocorrelation function (PACF) suggest

that it should be ARMA(1,0) or simplified, AR(1).

In practice, each prediction is made using the time series

data [0, t − 1], where t is the date under consideration.

The result is shown in Figure 5. For the same reason, only

1000 samples (5001 - 6000) are put in the figure under the

consideration of conciseness.
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Figure 5. Predicting Performance

The average pricing residual is 2.5659 (mean of absolute

values), and most of them spread from -10 to 10. CAR has
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been calculated in this subsection, the last term, CANN + ε
will be analyzed in the next subsection. The average running

time of this process is 0.00 second.

D. Artificial Neural Network

The remaining term CANN + ε or equally, C − CBS −
CAR is difficult to be analyzed by theoretical explanation.

However, it can be measured in a black box method, treated

as a function which can be fitted. Artificial Neural Network,

more specifically Cascade-forward network, is put here to

fit the deviation which can not be explained by time series

trends. [11] did a similar research using different pricing

details and proved ANN is feasible on this matter, without

incorporating time series analysis.

In practice, samples 1 - 5000 are used for learning and the

neural network outputs fitting samples 5001 - 6000 basing

on the learning. The performance is shown in Figure 6.
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Figure 6. Fitting Performance

The picture shows that ANN can fit part of the deviations.

Though most of them still spread from -10 to 10, the average

pricing residual is reduced to 1.9766, which means that the

pricing is more precise. The average running time of learning

process is 10.23 seconds, however once the leraning process

is completed, the average running time of fitting is 0.00

second, which is feasible in pratice.

VII. CONCLUSION

This paper aims at developing a pragmatical pricing

method combining skewness and kurtosis adjusted Black-

Scholes model of Corrado and Su (1996), time series

analysis and Artificial Neural Network. The option price

is trisected into BS theoretical part, AR time series trends

part and ANN fitting part and each part is calculated one

by one using the residual of the previous calculation. In

the empirical study, the model analyzes the daily close

price of FTSE 100 Index options, we can draw some

conclusions. First, although the adjusted Black-Scholes has

reduced pricing deviation to some extend, the deviation still

remains very high. Second, modified the model with time

series trend and ANN methods can make the option pricing

become more accurate, without consuming too much time,

during the calculations. It is suggested that our model is a

more precise and timesaving method in pragmatical work.

Futhermore, it can be found that the terms in equation (1),

CBS , CAR and CANN , are first order differentiable to the

underlying price, which implies that the model can be used

in a delta arbitrage process.
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