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Abstract
The core-level photoelectron spectra of N2 molecules are observed at high
energy resolution, resolving the 1σg and 1σu components as well as the
vibrational components in the extended energy region from the threshold up
to 1 keV. The σg/σu cross section ratios display modulation as a function of
photoelectron momentum due to the two-centre interference, analogous to the
classical Young’s double-slit experiment, as predicted by Cohen and Fano a long
time ago. The Cohen–Fano interference modulations display different phases
depending on the vibrational excitations in the core-ionized state. Extensive
ab initio calculations have been performed within the Hartree–Fock and random
phase approximations in prolate spheroidal coordinates. The dependence of
photoionization amplitudes on the vibrational states was taken into account
using the Born–Oppenheimer approximation. The ab initio results are in
reasonable agreement with the experimental data. The theoretical analysis
allows the modulation to be connected with the onset of transitions to the
states of increasing orbital angular momentum which occurs at increasing
photon energies. Deviation from the Cohen–Fano formula is found for both
the experimental and the ab initio results and is attributed to electron scattering
by the neighbouring atom. A new formula for the interference modulation is
derived within the framework of the multiple scattering technique. It differs
from the classical Cohen–Fano formula by the addition of twice the scattering
phase of the photoelectron by the neighbouring atom. We demonstrate that
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one can measure directly the scattering phase by fitting our formula to the
experimental results.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Young’s double-slit experiment (YDSE) provides the simplest and most fundamental
example in which the addition of two coherent waves of light leads to interference oscillations
of the light intensity. Photoionization of diatomic molecules represents conceptually a similar
phenomenon for the electron waves. Instead of passing through the holes in a screen the
photoelectron is ejected from an orbital described as a linear combination of two atomic
orbitals (LCAO) localized in different atoms. The interference of the coherent electron waves
emitted from two indistinguishable atoms leads to intrinsic interference oscillations similar to
YDSE. Cohen and Fano [1] were the first to derive the equation for the total photoionization
cross section for the H2 molecule including this YDSE effect. Stimulated by this pioneering
work, some theoretical [2–5] and experimental [6–8] studies of ionization of H2 and D2

molecules with different projectiles were performed. Results of these experiments clearly
exhibited the Cohen–Fano (CF) interference modulation.

Core-level photoemission from molecules like N2 provides a new opportunity to
investigate coherent emission of photoelectron waves (see, for example, [9]). For core-level
photoionization of these molecules, an additional complication appears due to the presence
of the gerade and ungerade 1σ bound orbitals with a very small energy gap between them.
This gap is 0.1 eV and is even smaller than the vibrational splitting of ∼0.3 eV. Modern high-
resolution x-ray photoelectron spectroscopy using synchrotron radiation as a light source is,
however, able to resolve this small splitting [10–12]. This opens the possibility of performing
YDSE using core-level photoionization of N2 and observing the CF interference modulation,
as briefly discussed in our preliminary report [13]. In this paper, we present our extensive
investigations, both experimental and theoretical, for the CF interference modulation in the
core-level photoemission of the N2 molecule. The present theoretical analysis of the CF
interference modulation elucidates the physics of the intramolecular photoelectron scattering
and provides a new tool to determine the electron phase shift due to the scattering by the
neighbouring atom from the displacement of the interference modulation.

The paper is organized as follows. In section 2, we describe the high-resolution
measurements of core-level photoelectron spectra of the N2 molecule in the extended energy
region from the threshold up to 1 keV. The unprecedented resolutions achieved for both the
soft x-ray monochromator and electron energy analyser make this challenging experiment
possible. We show that the measured σg/σu cross section ratios for vibrational transitions
v = 0 → v′ = 0 and v = 0 → v′ = 1 modulate as a function of the photoelectron
momentum. This modulation is caused by the two-centre interference, which is analogous to
the interference modulations seen in the classical Young’s double-slit experiment, as predicted
by Cohen and Fano (CF) [1] in 1966. Sections 3 and 4 present our theoretical analysis. In
section 3, we describe our ab initio calculations within the random phase approximations
(RPA) with the use of the relaxed core Hartree–Fock (RCHF) wavefunctions as a zero-order
approximation. We will show that the ab initio calculations are in reasonable agreement with
the experiments. We then demonstrate that the modulation is connected with the behaviour
of the partial cross sections corresponding to different angular momenta of the photoelectron
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Figure 1. Photoelectron spectrum at photon energy of 831 eV, parallel to the polarization vector.
Circles—experiment; thick solid line—fitted spectrum; thin lines—individual peaks.

wavefunction. The onsets of these contributions with increasing angular momentum are shifted
to higher and higher energies. Summation over all partial waves leads to the appearance of
the modulation of the cross section. In section 4, we focus on the high energy region. To give
insights into the physics, we investigate the high energy asymptotic of the wavefunction of the
fast photoelectron. We first briefly review the CF treatment [1] and demonstrate a deviation
of both experimental and ab initio results from the classical CF formula. The deviation is
attributed to electron scattering by the neighbouring atom, which is neglected in the CF model.
A new formula for the interference modulation is derived within the framework of the multiple
scattering technique. It differs from the classical CF formula by the addition of twice the
scattering phase of the photoelectron by the neighbouring atom. We demonstrate that one
can measure directly the scattering phase by fitting our formula to the experimental results.
Section 5 presents our concluding remarks.

2. Experimental details

The experimental set-up, experimental procedure and data analysis were similar to those
described elsewhere [11–14]. Briefly, the experiment was carried out at the high-resolution
soft x-ray photochemistry beam line 27SU [15, 16] at SPring-8, Japan. The light source of
the beam line is a figure-8 undulator [17] which provides linearly polarized radiation, whose
polarization axis can be selected either horizontal or vertical by changing just the undulator
gap, without changing any other optics. In the present high energy measurement, only
horizontally polarized radiation was used. The heart of the electron spectroscopy apparatus is
a 20 cm radius hemispherical electron energy analyser (Gammadata-Scienta SES-2002) [18].
The lens axis of the analyser is set in the horizontal direction. In the present experiment,
the analyser bandwidth was set to ∼31 meV. The overall bandwidth, i.e., a convolution of
the monochromator and analyser bandwidths, was determined separately by measuring Xe 5p
photoelectrons at the same monochromator and analyser settings.

Figure 1 shows an example of the N 1s photoelectron spectrum recorded at a photon energy
of 831 eV. The experimental spectra recorded at different energies up to ∼1 keV have been
decomposed by least-squares curve fitting into 1σg and 1σu components with the individual
vibrational progressions, as seen in figure 1. The Lorentzian widths were fixed to the values
previously determined; 120 meV for both 1σg and 1σu [13]. The Gaussian widths were fixed



4804 X-J Liu et al

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

C
ro

ss
se

ct
io

n
ra

tio
σ g

/ σ
u

76543210

Electron momentum (a.u.)

N2 K shell vibrationally resolved
/ Measured v = 0
/ Measured v = 1
RPA v = 0
RPA v = 1
Cohen-Fano

500 600 700 800 900 1000
Photon energy (eV)

Figure 2. Comparison of experimental cross section ratios with ab initio calculations. Open and
full symbols: previous [11–13] and present experiments, respectively.

to the values obtained from the separate measurements. The 1σg–1σu splitting of the v′ = 1
vibrational components was 97 meV [12]. The vibrational spacings were also fixed to 298 meV
for 1σg and 300 meV for 1σu [12]. The position of the 1σu v′ = 0 component and the intensities
of the individual vibrational components were treated as fitting parameters. The partial cross
section ratios of σg/σu for the photoionization of the 1σg and 1σu shells corresponding to the
0 → 0 and 0 → 1 vibrational transitions are extracted from the fitting and are plotted in
figure 2 as a function of the photoelectron momentum k = √

2E, with E being the kinetic
energy of the photoelectron in atomic units. (Atomic units are used throughout the paper
unless otherwise indicated.) The results of previous measurements [11–13] are also included
in the figure. The peak structure appears at k � 1 au. It corresponds to the σ ∗ shape resonance
as discussed in detail in [11]. In the region of 1.5 < k < 6.5 au, the ratios exhibit the
oscillatory structure. This oscillatory structure is the CF interference pattern.

3. Ab initio calculations

3.1. Methodology

The accurate calculation of the photoionization cross section in the extended photon energy
region has been performed using the RPA method developed earlier in [19, 20] for diatomic
molecules. As usual, it is implied that the Born–Oppenheimer approximation is valid. As the
first step, the Hartree–Fock ground and excited state wavefunctions of a diatomic molecule
are calculated from the self-consistent equations
−�2

2
− Z1

r1
− Z2

r2
+

n∑
j=1

aij Jjj (r)


 ϕi(r) −

n∑
j=1

bij Jji(r)ϕj (r)

= εiϕi(r) +
n∑

j=1

εijϕj (r), i � n, (1)
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where n is the number of occupied orbitals. The functions Jji(r) are defined as the integrals

Jji(r) ≡ J [ϕj (r), ϕi(r)] =
∫

ϕ∗
j (r

′)|r − r′|−1ϕi(r′) dr′. (2)

They describe the exchange interaction when i 	= j and the direct interaction when i = j .
The values of off-diagonal energy parameters εij are determined from the orthogonalization
condition ∫

ϕ∗
j (r)ϕi(r) dr = 0. (3)

Below we consider only the case of closed-shell molecules. Then system (1)–(3) is solved with
the coefficients aij = 2, bij = 1 to find a usual set ϕi(r) of the ground state wavefunctions. For
the excited state wavefunctions of the discrete and continuous spectrum, several procedures
have been proposed. One of them corresponds to the frozen core HF (FCHF) approximation
in which the photoelectron is moving in the field of a singly charged ion constructed from the
ground state wavefunctions with one electron absent from the ionized shell. Another possibility
corresponds to the relaxed core HF (RCHF) approximation [21] in which the photoelectron
wavefunction is calculated in the field of a singly charged ion obtained by solving the self-
consistent HF equations for the ion. From numerous calculations it is known that the relaxation
effect is important, but on the other hand the RCHF approximation overestimates the relaxation
effect. Therefore it was proposed in [22] to use the fractional charge RCHF approximation in
which system (1)–(3) is solved with the coefficients expressed through the fractional parameter
ze (0 < ze < 1),

ai ′i ′ = 2(1 − ze), bi ′i ′ = 1 − ze,

aii ′ = 2 − ze, bii ′ = 0.5(2 − ze), i 	= i ′,
ai ′j = 2, bi ′j = 1, j 	= i ′,

(4)

to determine a set of relaxed core HF wavefunctions ϕR
i (r). We consider ze as a free parameter

which is found from the condition to reproduce correctly the experimental data. The FCHF
approximation corresponds to ze = 0, while the standard RCHF method [21] corresponds
to ze = 1. In this paper we accepted ze = 0.7, which gives a correct position of the σ ∗

shape resonance [11]. The excited state wavefunctions are found as solutions of the following
equation,
−∇2

2
− Z1

r1
− Z2

r2
+

n∑
j=1

afjJ
R
jj (r)


ϕf (r) −

n∑
j=1

bfjJ
R
fj (r)ϕ

R
j (r)

= εf ϕf (r) +
n∑

j=1

εfjϕj (r), (5)

where f > n, JR
jj (r) ≡ J

[
ϕR

j (r), ϕR
j (r)

]
, J R

fj (r) ≡ J
[
ϕf (r), ϕR

j (r)
]
,

afj = 2, bfj = 1, j 	= i ′; af i ′ = 1, bf i ′ = −1. (6)

Index i ′ corresponds to the ionized shell. The off-diagonal energy parameters provide the
orthogonalization of the excited state wavefunction to the ground state wavefunctions,∫

ϕ∗
f (r)ϕi(r) dr = 0. (7)

The fractional charge in our method is used only in calculating the wavefunctions which create
the Hartree–Fock potential in equation (5).

The photoionization parameters are defined using the photoelectron orbital ψ
(−)
k (r) with

the incoming-wave boundary condition. Here k is the electron momentum and r is its
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coordinate. The partial wave expansion of this orbital in the molecular frame is given as usual
[23, 22] by

ψ
(−)
k (r) =

∑
lm

(i)l fεlm(r)Y ∗
lm(�k), (8)

where ε = k2/2 is the photoelectron energy, �k denotes the spherical angles of vector k,
functions fεlm(r) satisfy equation (5) and have the asymptotic

fεlm(r)|r→∞ ∼
(

2

πk

)1/2 1

2ir

(
Ylm(�r) eiϑ(r) +

∑
l′

Yl′m(�r)S
∗
ll′m e−iϑ(r)

)
(9)

with ϑ(r) = kr + k−1 ln 2kr − πl/2. They are normalized to the energy δ-function. Within
the Born–Oppenheimer approximation the partial photoionization cross section is presented
as

σ(ω) =
∑
l,m

σlm(ω) = 4

3
π2αa2

0ω
∑
l,m

∑
µ

|〈fεlm(r)|dµ|i〉|2. (10)

Here ω is the photon energy, α is the fine structure constant, a0 is the Bohr radius, |i〉 means
the initial (ground) state of the molecule, and dµ are the spherical projections of the dipole
operator

dµ =
√

4π/3rY1µ(�r). (11)

The rotational motion is here neglected. The method of calculation of the continuum
wavefunctions fεlm has been described earlier [19]. It is worth noting that the cross section in
equation (10) is the one averaged over molecular orientations and integrated over the direction
of the photoelectron emission.

As the next step, we are looking for the dipole matrix elements in the RPA by solving
the corresponding RPA equation, without calculating explicitly the wavefunctions in the RPA
[24, 19].

To take into account the vibrational motion, the calculations described above have been
performed for several fixed internuclear distances R giving a set of dipole matrix elements
dlm(ω,R) ≡ 〈fεlm(r) |dm| i〉 for each photon energy ω. To obtain the matrix element for
vibrationally resolved transition, dlm(ω, v, v′), the values dlm(ω,R) were multiplied by the
corresponding initial and final vibrational state wavefunctions, χ(i)

v (R) and χ
(f )

v′ (R), and
integrated over the internuclear distance R,

dlm(ω, v, v′) =
∫

χ
(f )

v′ (R)dlm(ω,R)χ(i)
v (R) dR. (12)

We used the Morse potential vibrational wavefunctions (see [25] for details) in the same way
as was done in [26]. Assuming that in the initial state only the ground vibrational level
v = 0 is populated, we integrated over R using nine points around the equilibrium distance
R = 2.068 au of the ground state with step 0.05 au. The equilibrium internuclear distances for
the 1σg and 1σu molecular ion states and the anharmonicity constants of the Morse potential
were taken from [27].

3.2. Comparison with experiments

In general, the interference modulation is expected to be relatively small. The effect is
stronger for the ratio of the photoionization cross sections of the gerade and ungerade core
levels (see the discussion below). Therefore figure 2 shows the ratios of the cross sections for
the v = 0 → v′ = 0 and v = 0 → v′ = 1 vibrational transitions measured experimentally
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Figure 3. The partial photoionization cross sections σl,λ of the 1σg → εσu transitions for three
partial waves l = 1, 3, 5 and λ = 0 for the first two vibrational transitions 0 → 0 (thick lines) and
0 → 1 (thin lines) calculated in the RPA.

and calculated in the RPA. It should be noted that the experimental ratios for the photon
energies above 460 eV were obtained for electron emission parallel to the electric vector while
the theoretical results are those after integrating over the direction of the electron emission.
However, the calculated values of the anisotropy parameters β are close to the limiting value
2 in the high energy region and thus the present comparison is verified. The ratios are shown
as a function of the photoelectron momentum k in order to display clearly the oscillations.
At low momenta k < 1.5 au the ratios are defined by the σ ∗ shape resonance, and only
at k > 1.5 au the CF oscillations become apparent. There is a good qualitative agreement
between our theory and the experiment for both vibrational transitions. The theoretical
maxima in the σ ∗ shape resonance (at the photoelectron momentum 0.9 au) are lower than the
experimentally observed ones. This is connected with some overestimation of the magnitude
of the correlationally induced maximum in the 1σu partial cross section in the RPA as was
discussed in [11].

The measured interference modulations of the ratios σg/σu for the 0 → 0 and 0 → 1
vibrational transitions approximately coincide in phase, but the oscillations are about different
average values. This is explained by the difference between the Franck–Condon factors for
the 0 → 1 and 0 → 0 transitions for the 1σg and 1σu shells, respectively. The corresponding
ratio of the Franck–Condon factors for the 1σg shell is substantially smaller than for the 1σu

shell (see figure 5 in [11]).

3.3. Origin of the interference modulation

The RPA calculation gives the possibility of studying the origin of the interference
modulation. Since the vibrationally resolved calculations are time consuming, for a qualitative
understanding of the phenomenon it is sufficient to study the cross sections without vibrational
resolution obtained at the equilibrium internuclear distance. We also checked that the role
of many-electron correlations at high energies is small; therefore in many cases we restricted
our calculations by the RCHF approximation for k > 3 au. Vibrationally unresolved partial
cross sections for the 1σg → εlσu and 1σg → εlπu transitions for different partial waves
up to l = 11 have been already presented in figure 2 of [13]. To demonstrate how the
vibrational motion influences the interference modulation we show in figure 3 the partial cross
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Figure 4. The partial photoionization cross sections σl,λ of the 1σu → εlσg (a) and 1σu → εlπg
(b) transitions for different partial waves up to l = 12 calculated in the RPA (at k � 3 au) and the
RCHF (at k > 3 au) approximation. The corresponding sums of all partial waves, σ� and σ� are
also shown.

sections σl,λ for the 1σg → εlσu transitions for the first three partial waves l = 1, 3, 5 and
for the first two vibrational transitions 0 → 0 and 0 → 1. The 0 → 0 transitions give a
predominant contribution to the cross section, and the corresponding results are rather close
to the vibrationally unresolved data published in [13]. This proves that for a qualitative
study of the interference modulation one can restrict consideration by the vibrationally
unresolved calculation. The partial cross sections for the 0 → 1 transitions behave similarly
to the corresponding 0 → 0 transitions but are about one order of magnitude smaller and
modulations are shifted somewhat to lower momenta. This shift is different for different partial
waves.

In figure 4 we show the cross sections for the 1σu → εlσg and 1σu → εlπg transitions
for different partial waves up to l = 12. The total cross sections for the σ and π channels,
σ� and σ�, are also shown there. Like the 1σg case (see [13]) these figures demonstrate that
the interference modulation is connected mainly with the onset of transitions to the states
of increasing orbital angular momentum at increasing photon energies. This was mentioned
already in the pioneering work of Cohen and Fano [1]. However, in reality the picture is more
complicated due to the existence of Cooper-like minima in every partial cross section. Let us
consider the σ channels in more detail. At k ∼= 0.9 au in the σ channels with l = 0, 2, 4 there
are the correlational maxima appearing due to the channel interaction between the σ → σ

transitions of the 1σg and 1σu shells [11, 20]. The next two maxima in figure 4(a) at k ∼= 3.1 au
and k ∼= 6.8 au are formed mainly by two consecutive maxima of the l = 4 partial wave. The
last maximum shown in the figure at k ∼= 10 au is formed by the l = 6 partial contribution.
The maxima of the l = 0 and l = 2 partial contributions at these momenta are basically
filling the minima of the l = 4 partial contribution and do not give any visible maxima in
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Figure 5. The cross sections σ� and σ� for the 1σu shell.

the total cross section σ� . For the 1σu → εlπg transitions (see figure 4(b)) the situation
is simpler because the maxima after the first Cooper-like minima are too small to give an
important contribution and the interference modulation is more directly related to the onset
of contributions of different partial waves. However, even in this case there is no simple
correspondence between the sequential interference maxima and the sequential onsets. In
particular, the consecutive maxima at k ∼= 1.4, 5 and 9 au are formed mainly by the onset of
the l = 2, l = 4 and l = 8 partial waves, respectively, while the onset of the l = 6 partial
wave does not produce a maximum.

It is important to note that the interference modulation of the σ� cross section is much
smaller in magnitude as compared to the modulation of the σ� cross section and is in antiphase
with it. This is illustrated in figure 5 for the 1σu shell. As a result, the modulation of the total
cross section for the 1σu shell (that is, σ� + 2σ�) coincides in phase with the modulation of
the σ� cross section and is smaller in magnitude (see figure 7).

The main difference between the 1σg and 1σu shells is connected with the symmetry of
these states. From the dipole selection rules it follows that only odd partial waves contribute
to the photoionization of the 1σg shell, and only even partial waves to the 1σu shell. Since
the interference modulation is mainly connected with the onset of transitions to the states
of increasing orbital angular momentum l at increasing photon energies, the different parity
of the photoelectron partial waves for the 1σg and 1σu shells causes the shift of interference
modulation for these shells by π . In other words, the interference modulations for the 1σg and
1σu shells are in antiphase as illustrated in figure 6 for the corresponding σ� cross sections. Due
to this, the cross section ratio 1σg/1σu observed experimentally and shown in figure 2 is greatly
enhanced. Similar CF oscillations have been discovered earlier in the non-dipole parameters
for the 1σg and 1σu shells characterizing the angular distribution of photoelectrons from the
K-shell of N2 [28]. Another consequence of this behaviour is that the sum of the contributions
from the 1σg and 1σu shells shown in figure 7 does not display any interference modulation
whatsoever at photoelectron momenta k > 3 au. Therefore it is crucially important to resolve
the contributions of the 1σg and 1σu shells for observing the YDSE effect in molecules where
these shells are filled. At lower momenta k < 2.5 au the σ ∗ shape resonance destroys the
regular CF oscillations as is clearly displayed in figure 6.
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4. Analysis based on multiple scattering theory

4.1. Cohen–Fano two-centre interference

Let us turn our attention to the high energy region, where both the experimental and ab initio
calculations show clearly the CF interference pattern. To give insights into the physics, we will
investigate the high energy asymptotic of the wavefunction of the fast photoelectron. For that,
it is reasonable to begin with the plane wave approximation that gives us immediately the CF
formula. The CF result is a key reference point in our theory. The plane wave approximation
will be improved in the next subsection, taking into account the scattering of the photoelectron
by surrounding atoms.
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When the homonuclear diatomic molecule is shined by an x-ray photon it is core-ionized
from the well-defined quantum state

1σg,u = 1s1 ± 1s2√
2

, (13)

which is a coherent superposition of 1s levels (holes), localized in different atoms with
coordinates R1 and R2. In such a Young’s double-slit experiment, the two atoms in a
homonuclear diatomic molecule play the role of slits which emit coherently phase shifted
electronic waves ∝ exp(ık · R1) and ∝ exp(ık · R2). When an electron with momentum
k is ejected from delocalized coherent gerade and ungerade core electron states (13), the
interference of waves emitted coherently from indistinguishable atoms (holes) leads to an
intrinsic YDSE interference pattern in the cross section of the K-shell photoinization

σg,u(ω) ∝ 1
2 |eık·R1 ± eık·R2 |2 = 1 ± cos(k · R), (14)

which depends on the parity of the core orbital, k and internuclear radius vector R = R1 −R2.
Molecules are randomly oriented in gas phase. The orientational averaging of the cross section
(14) results in the Cohen–Fano interference pattern [1]

σg,u(ω) = σ (0)
g,u (ω) (1 ± χCF(k)) , χCF(k) = sin kR

kR
, kR � 1 (15)

where the cross section of the photoionization of a single atom σ (0)
g,u (ω) ∝ (e · k)2 by an x-ray

photon with the polarization vector e is different in general for 1σg and 1σu shells, except in
the high energy region where σ (0)

g (ω) ≈ σ (0)
u (ω).

From equation (15), the σg(ω)/σu(ω) ratio can be given by

σg(ω)

σu(ω)
= γ

1 + χCF(k)

1 − χCF(k)
, (16)

where γ = σ (0)
g (ω)

/
σ (0)

u (ω) and χCF is given by equation (15). It is worth noting that γ ≈ 1
in the high energy region kR � 1.

The dash-dotted line in figure 2 is the interference pattern calculated by equation (16).
Apparently, the phase of the interference pattern is shifted from both the experimental and
ab initio ones. We note also that the CF formula neglects the nuclear motion. In other
words, the internuclear distance between the two atoms is fixed. The experimental and ab
initio interference patterns in the cross section ratio σg(ω)/σu(ω) are significantly different for
0 → 0 and 0 → 1 vibrational transitions, as seen in figure 2.

4.2. Multiple scattering theory

We shall now derive the expression for the photoionization cross section in the high energy
region

kR � 1 (17)

taking into account the scattering of an ejected electron by surrounding atoms. We use the
multiple scattering (MS) theory in the muffin-tin (MT) approximation [35]. This technique
is nicely suited for fast electrons because the fast electron feels only an atomic core with
the size k−1 times smaller than the atomic radius. In other words, the MS theory in the MT
approximation becomes strict in the limit (17). To get the photoionization cross section

σg,u(ω) ∝ |〈1σg,u|e · r|ψk〉|2, (18)

we need wave ψk inside the muffin-tin (MT) sphere of the n (= 1, 2) th atom

ψk(r) =
∑
lm

Rl(E, rn)Y
∗
lm(r̂n)B

(n)
lm , n = 1, 2, (19)
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where Rl(E, rn) is the radial wavefunction inside of the MT sphere, rn = r − Rn is the
electronic coordinate relative to the coordinate of the nth atom, Rn, the spherical function
Ylm(r̂n) depends on the unit vector r̂n = rn/rn. According to equation (19) the cross section∣∣∑

m em

(
B

(1)
1m ±B

(2)
1m

)∣∣2
is the sum of two one-centre contributions and of the interference term

σg,u(ω) ∝ |d(ω)|2



∣∣∣∣∣
∑
m

emB
(1)
1m

∣∣∣∣∣
2

+

∣∣∣∣∣
∑
m

emB
(2)
1m

∣∣∣∣∣
2

± 2 Re
∑
mm1

emB
(1)
1me∗

m1
B

(2)∗
1m1


 , (20)

where d(ω) is the transition dipole moment of atomic photoionization. Wave B
(n)
1m incident on

the nth MT sphere consists of the plane wave harmonic and the wave scattered by the n′ atom
towards atom n,

B
(n)
lm = 4πıl

[
Ylm(k) eık·Rn +

eıkR

R
Ylm(R̂nn′)Fnn′

]
, n′ 	= n. (21)

Here Rnn′ = Rn − Rn′ , R = R21. In the high energy limit, the effective amplitude of electron
scattering from the n′ th atom towards the nth atom of a diatomic molecule obeys multiple
scattering (MS) equation [36]

Fnn′ = f (n′)(θ [Rnn′ , k]) eık·Rn′ + f (n′)(π)
eıkR

R
Fn′n, (22)

where θ [k1, k] is the angle between k1 and k. The partial scattering amplitudes f
(n)
l with the

scattering phase δn
l form the total amplitude of electron scattering by the nth atom according

to the Faxén–Holtsmark formula [37]

f (n)(k̂′ · k̂) = 4π
∑
lm

f
(n)
l Y ∗

lm(k′)Ylm(k), f
(n)
l = e2ıδn

l − 1

2ık
. (23)

Multiple scattering equations (22) can be solved explicitly to give

Fnn′ = 1

κ

{
f (n′)(θ [Rnn′ , k]) eık·Rn′ + f (n′)(π)

eıkR

R
f (n)(θ [Rn′n, k]) eık·Rn

}
, n′ 	= n. (24)

where

κ = 1 − f (1)(π)f (2)(π)
e2ıkR

R2
. (25)

In the high energy region the backscattering amplitude is small compared with bond length,
(|f (π)|/R)2 � 1. This means that

κ ≈ 1. (26)

Due to this, only scattering events up to double scattering contribute to amplitude B
(n)
lm (see

figure 8):

B
(n)
lm = 4πıl

[
eık·Rn

{
Ylm(k̂) +

e2ıkR

R2
Ylm(R̂nn′)f (n′)(π)f (n)(θ [Rn′n · k])

}

+
eıkR

R
Ylm(R̂nn′)f (n′)(θ [Rnn′ · k]) eık·Rn′

]
, n′ 	= n. (27)

The substitution of this result into equation (20) gives immediately the cross section of
photoionization of fixed-in-space molecules. However, this expression is rather lengthy.
Due to this we will go directly to our main goal: the photoionization of randomly oriented
molecules.
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A1

B1

C1

A2

B2

C2

Figure 8. (An) No scattering. (Bn) Single scattering. (Cn) Double scattering. One-centre
photoionization: |An + Bn + Cn|2. The two-centre interference: Re{(A1 + B1 + C1)(A2 + B2 +
C2)

∗}.

4.3. Photoionization of randomly oriented molecules

Let us now focus our attention on the important case of randomly oriented molecules. Before
writing down the expression for the cross section (see equations (20) and (27)) averaged over
molecular orientations, we would like to mention some important points used in such an
averaging. First of all, we use the stationary phase approximation∫

dR̂ eık·R�(R̂) = 2π

ıkR
(eıkR�(k̂) − e−ıkR�(−k̂)) + O

(
1

(kR)2

)
, (28)

and the Faxén–Holtsmark partial wave expansion of the atomic scattering amplitude (23).
During averaging procedure the forward scattering amplitude, Imf (0), appears. This first-
order term is cancelled by the second-order contribution due to the optical theorem

4π

k
Im f (0) =

∫
dk̂|f (θ)|2 dθ. (29)

We also skip the index of the atom (f (n)(θ) → f (θ), δ
(n)
1 → δ1), due to the symmetry of the

molecule.
So the averaging over R̂ results in the following formula for the photoionization cross

section,

σg,u(ω) = 3σ0(ω)

[
(e · k)2

(
1 − 1

kR2
Im(f (π) eı2(kR+δ1))

)

+
1

2
(1 − 3(e · k)2)

σtr(k)

4πR2
± (e · k)2

kR
sin(kR + 2δ1)

]
, (30)

where the terms up to the second order over the scattering amplitude, f (θ), are taken into
account. Here we introduced the transport cross section related to the viscosity coefficient

σtr(k) = 2π

∫ π

0
|f (θ)|2 sin3 θ dθ, (31)

which is usually small compared with the total cross section of electronic scattering. The
second term in equation (30) is quenched when the photoelectrons are collected from the
entire solid angle, 4π .

The first two terms on the right-hand side of equation (30) arise from the first two
terms in equation (20) and they describe one-centre photoionization of two atoms. The last
term in equation (30), similar to the CF formula (15), describes the two-centre interference of
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indistinguishable ionization channels. The scattering correction for the one-centre contribution
is small, because in the high energy region (17)

|f (π)|
R

� 1,
σtr(k)

R2
� 1. (32)

So, finally, the photoionization cross section turns out to be surprisingly simple,

σg,u(ω) = σ (0)
g,u (ω) (1 ± χ(k)) . (33)

This equation coincides with the CF formula (15) except the interference factor

χ(k) = sin(kR + 2δ1)

kR
, (34)

which shows that the electron scattering shifts the CF interference pattern (15). The physical
origin of this phase shift is the two-centre interference of the free wave (A1) and single
scattered wave (B2) shown in figure 8.

We have arrived at our key results: the electron scattering that is negligibly small in the
one-centre term photoionization of (30) is enhanced anomalously due to the two-centre or
YDSE interference. Indeed, contrary to the small scattering amplitude (32), phase δ1 is large
and strongly depends on k in the entire range of the photoelectron energies.

We apply equations (33) and (34) to the nitrogen molecule N2. Both gerade and ungerade
core levels are occupied in N2. Due to this, in the x-ray photoionization profile of nitrogen the
core shell consists of two spectral lines 1σg → ψk and 1σu → ψk with the relative intensities

σg(ω)

σu(ω)
= γ

1 + χ(k)

1 − χ(k)
. (35)

4.4. Determination of the scattering phase

To compare the experimental data with the theory (equations (34) and (35)), we use the
following approach. We first take the sum over the vibrational components for the experimental
spectra and obtain the ratios as shown in figure 9. Following Teo and Lee [31], we use a
quadratic approximation for the phase shift:

2δ1 = a + bk + ck2. (36)

One can estimate values a = −4.8, b = −1.15 and c = 0.069 au via interpolation of ab
initio estimates for the scattering phases 2δ1(k) for C and O [31]. γ in equation (35) can be
assumed to be 1. The resulting cross section ratio is shown in figure 9 by the dash-dotted line.
The agreement with the experiment is improved in comparison with the original Cohen–Fano
approach but it is still far from being fair.

We can obtain the improved value of the scattering phase 2δ1(k) using a least-squares
fitting of equations (34) and (35) to the experimental ratios as shown in figure 9, regarding
a, b and c in equation (36) as fitting parameters. The resulting values via the fitting
are a = −5.2 ± 0.6, b = −1.6 ± 0.4, c = 0.09 ± 0.05 au. The fitting also results in
γ = 1.04 ± 0.04, in reasonable agreement with the expected value γ = 1. This result is
shown in figure 9 by the solid line. Now the agreement with the experiment is rather good.
Since this method describes only the high energy region, the variation of the cross section ratio
at low photoelectron momenta below 2 au governed by the shape resonance is not reproduced
in this theory.

For comparison, we show in figure 9 also the RPA result without the vibrational resolution
which corresponds to the sum of two vibrational transitions shown separately in figure 2. The
RPA result is in a reasonable agreement with the experiment at all photoelectron momenta
studied.
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Figure 9. Ratios of 1σg and 1σu partial photoionization cross sections of N2 summed over
the vibrational components. Open and full circles—previous [11–13] and present experiments,
respectively. Dotted line—the Cohen–Fano formula; dash-dotted line—the present modified
Cohen–Fano formula with ab initio scattering phase; solid line—fitted curve by the present modified
Cohen–Fano formula regarding the scattering phase as a fitting function; dashed line—the RPA
calculation. See the text for further details.

5. Conclusion

We studied experimentally and theoretically the interference modulation in the vibrationally
resolved photoelectron spectra of the 1σg and 1σu shells of the N2 molecule in the photon
energy range from the threshold up to 1 keV. We demonstrated that the ratios of the 1σg

to 1σu photoionization cross sections display the interference modulation that is caused by
coherent photoemission from the two N atoms and is an analogue of Young’s double-slit
experiment. The calculations in the random phase approximation (section 3) reproduce
the experimental data reasonably well. A detailed analysis of the partial cross sections in
RPA has been performed neglecting the vibrational splitting. This analysis showed that the
modulation is connected with the onset of transitions to the states of increasing orbital angular
momentum which occurs at increasing photon energies as was mentioned by Cohen and Fano
[1]. Evidently, the interference phenomena in the N2 molecule, due to the presence of two
K-shells of different symmetry, gerade and ungerade, are more complex as compared to the
case of the H2 molecule considered originally in [1]. We demonstrated that the interference
modulations for the 1σg and 1σu shells are in antiphase. It is explained by the dipole selection
rules according to which only odd and even partial waves contribute to the photoionization
from the gerade and ungerade K-shells, respectively. The calculations also demonstrate that
the main contribution to these modulations comes from the σ → σ transitions. The coherence
between the two waves originating from two different N atoms breaks down when the spectral
resolution is not sufficient to resolve the gerade and ungerade doublet. In other words, the
photoionization cross section does not display any interference pattern when the spectral
resolution is not sufficient.

Another important point is that both our experimental and ab initio calculations display
considerable deviation from the Cohen–Fano formula. To explain this disagreement, we
derived an analytical formula for the interference pattern in the high energy region using
multiple scattering theory (section 4). We show that the Cohen–Fano interference pattern is
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shifted by twice the phase of the photoelectron scattering by the neighbouring N atom. The
newly obtained formula for the interference pattern is in a good agreement with the results
of our experiments at high energies. An interesting point is that the electron scattering that
is negligibly small in the one-centre term photoionization is enhanced anomalously due to
the two-centre interference. The shift of the Cohen–Fano interference pattern gives a new
opportunity to measure directly the scattering phase of the photoelectron, which is needed in
different applications, for example, in the EXAFS studies of the molecular structure.
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[10] Hergenhahn U, Kugeler O, Rüdel A, Rennie E E and Bradshaw A M 2001 J. Phys. Chem. A 105 5704
[11] Semenov S K et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 375
[12] Ehara M et al 2006 J. Chem. Phys. 124 124311
[13] Semenov S K et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 L261
[14] Kukk E et al 2005 Phys. Rev. Lett. 95 133001
[15] Ohashi H et al 2001 Nucl. Instrum. Methods A 467–468 529
[16] Ohashi H et al 2001 Nucl. Instrum. Methods A 467–468 533
[17] Tanaka T and Kitamura H 1996 J. Synchrotron Radiat. 3 47
[18] Shimizu Y et al 2001 J. Electron Spectrosc. Relat. Phenom. 63 114
[19] Semenov S K, Cherepkov N A, Fecher G H and Schönhense G 2000 Phys. Rev. A 61 032704
[20] Semenov S K and Cherepkov N A 2002 Phys. Rev. A 66 022708
[21] Lynch D L and McKoy V 1984 Phys. Rev. A 30 1561
[22] Semenov S K, Cherepkov N A, Jahnke T and Dörner R 2004 J. Phys. B: At. Mol. Opt. Phys. 37 1331
[23] Dill D and Dehmer J L 1974 J. Chem. Phys. 61 692
[24] Amusia M Ya and Cherepkov N A 1975 Case Studies At. Phys. 5 47
[25] Hergenhahn U 2004 J. Phys. B: At. Mol. Opt. Phys. 37 R89
[26] Semenov S K, Cherepkov N A, De Fanis A, Tamenori Y, Kitajima M, Tanaka H and Ueda K 2004 Phys. Rev.

A 70 052504
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[41] Kempgens B, Köppel H, Kivimäki A, Neeb M, Cederbaum L S and Bradshaw A M 1997 Phys. Rev. Lett. 79 3617

http://dx.doi.org/10.1103/RevModPhys.53.769
http://dx.doi.org/10.1021/ja00505a003
http://dx.doi.org/10.1103/PhysRevA.64.012504
http://dx.doi.org/10.1103/PhysRevA.72.023414
http://dx.doi.org/10.1103/PhysRevB.58.2216
http://dx.doi.org/10.1103/PhysRevA.49.4378
http://dx.doi.org/10.1103/PhysRevLett.79.383
http://dx.doi.org/10.1016/S0370-1573(99)00003-4
http://dx.doi.org/10.1103/PhysRevLett.79.3617

	1. Introduction
	2. Experimental details
	3. Ab initio calculations
	3.1. Methodology
	3.2. Comparison with experiments
	3.3. Origin of the interference modulation

	4. Analysis based on multiple scattering theory
	4.1. Cohen--Fano two-centre interference
	4.2. Multiple scattering theory
	4.3. Photoionization of randomly oriented molecules
	4.4. Determination of the scattering phase

	5. Conclusion
	Acknowledgments
	References

