
S. Wang et al. (Eds.): ER Workshops 2004, LNCS 3289, pp. 290–301, 2004.
© Springer-Verlag Berlin Heidelberg 2004

A New Dynamic Indexing Structure
for Searching Time-Series Patterns

Zi-Yu Lin1, Yong-Sheng Xue1, and Xiao-Hua Lv2

1 Department of Computer Science of Xiamen University
361005 Xiamen, China

cainiu@263.net, ysxue@jingxian.xmu.edu.cn
2 College of Information and Electron of Zhejiang University of Sciences

310018 Hangzhou, China
bowen95@sohu.com

Abstract. We target at the growing topic of representing and searching time-
series data. A new MABI (Moving Average Based Indexing) technique is pro-
posed to improve the performance of the similarity searching in large time-
series databases. Notions of Moving average and Euclidean distances are intro-
duced to represent the time-series data and to measure the distance between two
series. Based on the distance reducing rate relation theorem, the MABI tech-
nique has the ability to prune the unqualified sequences out quickly in similar-
ity searches and to restrict the search to a much smaller range, compare to the
data in question. Finally the paper reports some results of the experiment on a
stock price data set, and shows the good performance of MABI method.

1 Introduction

Time-series data are of growing importance in the field of database application, more
and more researchers are devoting themselves to developing powerful and useful data
mining tools based on time-series database. Nowadays, we can see the application of
these tools in many fields such as medicine, finance, meteorology, etc. In these appli-
cation fields, large amounts of data are constantly added to systems, for example,
MACHO project, an astronomy database, contains more than 0.5 TB data and re-
ceives a large amount of new data everyday [2].For this reason, there must be effec-
tive methods for solving problems such as representation and indexing of time-series.

Here we propose a new index mechanism—MABI (Moving Average Based Index-
ing), which is not only easy to implement but also has desirable performance. It has
great capability in pruning those unqualified time-series and can also be applied in
other fields

The remainder of this paper is organized as follows: Section 2 discusses relative
work in this field. Section 3 gives some preliminary knowledge for our method. Sec-
tion 4 presents MABI method in detail, which involves some relating definitions,
useful theorems and algorithms. Section 5 gives performance analysis. Section 6
presents our conclusions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/41374489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A New Dynamic Indexing Structure for Searching Time-Series Patterns 291

2 Related Work

R-tree is a well-known and wildly-used indexing mechanism. At the same time, some
new indexing methods with good performance are also proposed in recent years. In
[9], the authors proposed EMDF (Extended Multidimensional Dynamic index File) as
indexing structure for time-series patterns. EMDF is a multidimensional spatial file to
store and retrieve time-series patterns represented as multi-key records and is used for
preselection process which select out a small set of candidate frames from the entire
set, through this way, speedup in the pattern matching process is achieved. However,
EMDF exists some disadvantages, for example, it has to maintain pointers for dy-
namic range tables which is very large in this method. In order to avoid these defec-
tion and enhance the performance, a new improved dynamic indexing structure for
efficient handling of time-series was presented in [10]—TIP-index (TIme-series Pat-
terns index). As far as structure is concerned, these two methods are similar. A TIP-
index consists of frame identifier blocks, a dynamic region table and hierarchical
directory blocks. However unlike EMDF, TIP-index only has s single dynamic region
table which represents all dimensions. In the aspects of inserting operation and
search, TIP-index can be more efficient than EMDF, furthermore, the former can
achieve balanced performance for different types of data with special value distribu-
tion, however, the latter performs poorly when encountering such circumstances. In
[11], the authors gave a novel method called STB-index (Shape-To-Vector-index), in
which, index is formed by creating bins that contain time series subsequences of
approximately the same length, for each bin, they can quickly calculate a lower-
bound on the distance between a given query and the most similar element of the bin,
this bound allows them to search the bins in best first order and to prune some bins
from search space without having to examining the contents. Some other methods
include: vantage-point-tree index in [12], using maximum and minimum to create
index in [13], multilevel hierarchical structure based on feature of time series in [14],
etc. There are also some well-known indexing mechanism such as KD-trees[4],K-D-
B-trees[5] and Quad-trees[6], however, they cannot be applied in the field of time-
series, because time-series databases are different from traditional databases in that
the former must keep not only the value but also the time when the value is produced.

3 Preliminary

3.1 Representation of Data

For clarity we will refer to ‘raw’, unprocessed temporal data as time-series, and a
piecewise representation of a time-series as a sequence. At the same time, a “series”
will denote a time-series or a sequence. An effective representation of data is the
prerequisite for constructing a dynamic indexing mechanism with desirable perform-
ance. Here we introduce a well-known and widely-used representation method in
time-series field.

292 Zi-Yu Lin, Yong-Sheng Xue, and Xiao-Hua Lv

PAA (Piecewise Aggregate Approximation) is a method easy to understand [3]. A
time series C of length n can be represented in N dimensional space by a vector

NcccC ,..,, 21= , and we assume that N is a factor of n. The ith element of C is

calculated as follows:

∑
+−

=
i

N

n

i
N

n
ji c

n

N
c

1)1(

(1)

This simple technique is surprisingly competitive with the more sophisticated
transforms, so we take PAA as our method of data representation.

3.2 Moving Average

Moving average data are widely used in stock data analysis. Their primary use is to
smooth out short term fluctuations and depict the underlying trend of a stock. The
computation is simple, now we give the definition:

Definition 1.�For a series
→
x =[xt] (t=0,1,…,n-1), which contains n data points, its M-

l moving average is computed as follows: the mean is computed for an l-point-wide
window placed over the end of the series; this will give the moving average for point

 2/ln − ; the subsequent values are obtained by stepping the window through the

beginning of the series, one point at a time. This will produce a moving average of

length n-l+1; We can use ����
→
x � to represent the M-l moving average of

→
x .

3.3 Euclidean Distance

In the field of time series, Euclidean distance is a method used to measure the dis-

tance between two series. For two series,
→
x ={x0, x1, …, xn-1},

→
y ={y0, y1, …, yn-1},

the Euclidean distance between them is computed as follows:

 D (
→
x ,

→
y) =

2

1
1

0

2)(

 −∑

−

=

n

i
ii yx

(2)

We usually use Euclidean distance to determine whether two series are similar or

not. If D (
→
x ,

→
y) < (is a threshold set by users), then we may say that the two

series are similar.

A New Dynamic Indexing Structure for Searching Time-Series Patterns 293

3.4 Two Novel Theorems Based on Moving Average

Now we give two very important theorems.

Theorem 1.�For two sequences
→
x ={x0, x1, …, xn-1} and

→
y ={y0, y1, …, yn-1}, where

1 l n, there M-l moving average are M-l (
→
x) and M-l (

→
y) respectively, then they

must satisfy the following formula:

D (M-l (
→
x), M-l (

→
y)) D (

→
x ,

→
y)

The conditions for D (M-l (
→
x), M-l (

→
y))= D (

→
x ,

→
y) are as follows:

1 � l=1;

2 � l>1 and
→
x is identical to

→
y ;

In other circumstances, D (M-l (
→
x), M-l (

→
y)) < D (

→
x ,

→
y).

Here we call Theorem 1 “distance reducing theorem”. Due to the restriction of the
pages, we would not give the proof here.

According to Theorem 1, we can get another useful theorem.

Theorem 2. Under the same similarity criterion, if two sequences are similar, then
their M-l moving average are also similar.�

Proof: It is easy to prove. Let
→
x ={x0, x1, …, xn-1} and

→
y ={y0, y1, …, yn-1}, where

1 l n, if they are similar, then there exists D (
→
x ,

→
y) < , according to Theorem 1,

D (M-l (
→
x), M-l (

→
y)) D (

→
x ,

→
y), then D (M-l (

→
x), M-l (

→
y)) < , so M-l (

→
x)

and M-l (
→
y) are similar.

Definition 2. For a sequence s, its M_l moving average is M_l (s), Euclidean distance
between s and horizontal axis is represented as Ds, Euclidean distance between M_l
(s) and horizontal axis is DM,, DRR (Distance Reducing Rate) r between s and M_l (s)

is defined as: r = (Ds DM)/ Ds.

Here suppose there are two sequences s1 and s2, their M_l moving average are M_l

(s1) and M_l (s2), Euclidean distances between the four sequences and horizontal axis

are Ds1 , Ds2, DM1 and DM2 respectively. Let r1 denotes DRR (Distance Reducing

Rate) between s1 and M_l (s1), r2 denotes DRR between s2 and M_l (s2). We now give

the most important theorem, it is the foundation of MABI method.�

294 Zi-Yu Lin, Yong-Sheng Xue, and Xiao-Hua Lv

Theorem 3. For two sequences s1 and s2, if Ds1> , then they must satisfy the equa-

tion:
ε

ε
ε

ε
−
+×

<<
+

−×

1

11
2

1

11 22

Ds

rDs
r

Ds

rDs

Proof: Suppose the distance between s1 and s2 is less than , namely, D (s1,s2) < ,

according to triangular inequality theorem [15], we can get that Ds1 Ds2 < D (s1,s2)

and Ds2 Ds1 < D (s1,s2) , namely, | Ds1 Ds2 |< D (s1,s2) , so we can get | Ds1 Ds2 |<

; According to Deduction 1, M_l (s1) and M_l (s2) are also similar, so we get that |

DM1 DM2 |< , then | Ds1 Ds2 |+| DM1 DM2 |<2 , according to the knowledge about

absolute value we know that |a|-|b| |a-b| |a|+|b|, so we get that | (Ds1 Ds2) (

DM1 DM2)| | Ds1 Ds2 |+| DM1 DM2 |, so, | (Ds1 Ds2) (DM1 DM2)| <2 , then, |

(Ds1 DM1) (Ds2 DM2)| <2 , namely, |Ds1 × r1 Ds2 × r2|<2 , because Ds2 =

Ds1 ± , then we have |Ds1 × r1 (Ds1 ±) × r2|<2 , when Ds1 , |Ds1 × r1

(Ds1 ±) × r2|<2 must be true for all the values of distance reducing rate, when

Ds1> , then we get:
ε

ε
ε

ε
±

+×
<<

±
−×

1

11
2

1

11 22

Ds

rDs
r

Ds

rDs
,so we can get:

ε
ε

ε
ε

−
+×

<<
+

−×

1

11
2

1

11 22

Ds

rDs
r

Ds

rDs
.

Here we call Theorem 3 “DRR relation theorem”, with which we can prune
quickly those unqualified sequences when searching for similar sequences of a given
query sequence, because for a query q, if a sequence s is similar to q, it is a prerequi-
site that s and q satisfy DRR relation theorem.

4 MABI Method

MABI method makes full use of DRR (Distance Reducing Rate) relation theorem
presented above and can prune those unqualified sequences quickly, through this
way, the range of search is confined to very small area, which leads to desirable per-
formance enhancement.

4.1 Building MABI Index Tree

In MABI index tree, the nodes are classified into leaf nodes and non-leaf nodes,
moreover, non-leaf nodes include a root node and many mid nodes. The structures of
leaf nodes and non-leaf nodes are different. The structure of non-leaf node is as Fig-
ure 4.1, in which, range_node records the DRR range that the node represents, value
records the information of DRR range, node_pointer points to its son node whose
range_node is equal to value. For a leaf node, it contains only two items: range_node
and table_pointer, table_pointer points to information table T. T includes the follow-

A New Dynamic Indexing Structure for Searching Time-Series Patterns 295

ing information: r, address and euclidean, where r is a DRR, address denotes where a
sequence is stored, euclidean denotes the Euclidean distance between a sequence and
horizontal axis. The maximum number of records that T can contain is p, and these
records are arrayed in order according to r. If r of a sequence is covered by the
range_node of a leaf node, then the information of the sequence will be recorded in T
of the leaf node. When the number of records that a leaf node t contains reaches p, the
leaf node t will automatically split its DRR range into k son DRR ranges of equal
length and create k corresponding leaf nodes for these k son DRR ranges. Then the
node t will put all the information of itself into the k new leaf nodes, after this, node t
will change itself into a non-leaf node and record the information about its son nodes.

range_node

value
range_node[1]

node_pointer
value

range_node[2]
node_pointer

……
……

……
value

range_node[11]
node_pointer

Fig. 4.1. The structure of non-leaf node of MABI index tree.

In order to build index tree from a time-series, we should first transform the time-
series into a sequence with PAA algorithm, then we design a b-point-wide window
placed at the beginning of the sequence, let the window move ahead along the se-
quence one point at a time, through this way we can get many subsequences of equal
length, which will be used to build the index tree. The following algorithm in Figure
4.2 is used to insert a new subsequence s into a index tree.

4.2 Search Similar Sequences in MABI Index Tree

Here we presume that query q is a sequence got from a time-series with PAA algo-
rithm. The search process involves three steps. In the first step, We will first calculate
rq1, which is a DRR between q and M_l (q), then compute range, which is a DRR

range, range=)
2

,
2

(11

ε
ε

ε
ε

−
+×

+
−×

Dq

rDq

Dq

rDq qq
, after this, we can find all leaf

nodes whose range_node is covered by range (here if upper limit or lower limit of
range_node is covered by range, then we call range_node is covered by range), and
then select from T of these nodes those records whose r is covered by range and put
them into a set S. In the second step, we use the condition | Ds1 Ds2 |< to continue

pruning those unqualified elements from S. In the last step, we use condition D (s1,

s2) < to get the final results. The algorithm is Figure 4.3.

296 Zi-Yu Lin, Yong-Sheng Xue, and Xiao-Hua Lv

Algorithm InsertSubsequence (s, root)
Input: s; root;
begin

 pointer:=root;//locate the pointer to root
 compute Ds and r of s;

 move along the tree according to r and reach leaf node u whose
range_node covers r;
add r to table T of node u;
if the number of DRR that T contains reaches p then
 split the range_node of u into k parts of equal length;
create new k leaf nodes for the k parts;

move the information in T of u into the corresponding T of
the k leaf nodes;

recreate node u as a non-leaf node and record in it the in-
formation of its k son nodes;

endif;
end;

Fig. 4.2. Algorithm to insert a subsequence into MABI index tree.

Among the three steps, we use DRR relation theorem to prune many unqualified
sequences in the first step, and use triangular inequality theorem [15] to do pruning
job in the second step. For two sequences s1 and s2 , according to triangular inequality

theorem, we have | Ds1 Ds2 |< D (s1,s2) , so if <| Ds1 Ds2 |, then we surely have <

D (s1,s2) , and s1 and s2 have no probability to be similar. The reason we design the

second step is that the condition of | Ds1 Ds2 |< is more strict than the condition of |

Ds1 Ds2 |+| DM1 DM2 |<2 (which is the condition we use in the second step). Be-

cause DM1 and DM2 are the moving average of Ds1 and Ds2 respectively, so we have |

DM1 DM2 |< 0, where 0 is smaller than , so we say that | Ds1 Ds2 |< is more strict

than | Ds1 Ds2 |+| DM1 DM2 |<2 . But we have to point out that the first pruning

process is the critical aspect in enhancing query performance.

5 Performance Analysis

We do many experiments to get desirable results to support our new theory. Our
experiments are executed on PC with one 1.3GHz CPU and 256M RAM running
WIN XP. We download from internet the data of all the stocks in American stock
market from 1980 to 2003 (http://www.macd.cn), which contains 1,228,764 records,
then we get 10 time-series, each one contains 100,000 data points. We first transform
the 10 time-series into 10 sequences of 10,000-point length with PAA algorithm.
Here we let w=200, b=200, k=5, p=500, where w is the length of query q, b is the
width of the window placed on the sequences, k and p are defined in section 4.1.
Finally we get 9801 DRRs from every sequence. In order to show the pruning
capability of DRR relation theorem, we select one sequence as an example. For this

A New Dynamic Indexing Structure for Searching Time-Series Patterns 297

Algorithm Search(q,root,);
Input: q; root;
Output: sequences similar to q
begin

//the beginning of the first step
initialize a new queue Q;
put root into Q;
calculate M_2 (q), Dq ,range and rq1;
get an element from Q;
pointer:= the element got from Q;
while the node pointer points to is not a leaf node do
for each pointer.range_node[i] do

 if range_node[i].value is covered by range then
put range_node[i].node_pointer into Q;

 endif;
 endfor;

get an element from Q;
pointer:= the element got from Q;

endwhile;
while Q is not null do
if pointer.range_node ⊆ range then

 put into S all records in T;
//T belongs to the node that pointer

 //table_pointer points to;
 else // pointer.range_node are not completely

//covered by range
 put into S those records in T whose r is covered by range;

// T belongs to the node that pointer.
//table_pointer points to;

 endif;
get an element from Q;
pointer:= the element got from Q;

 endwhile;
 //the end of the first step
 //the beginning of the second step
 for each s∈S do
 if |Dq-s.Euclidean| > then delete s from S;
 endif;
 endfor;
 //the end of the second step
 //the beginning of the third step
 for each s∈S do
 //let ls is the sequence that s.address points to

if the Euclidean distance between ls and q is more than
 then delete s from S;

 endif;
endfor;
 //the end of the third step, get the result
end;

Fig. 4.3. Algorithm to search similar sequences.

298 Zi-Yu Lin, Yong-Sheng Xue, and Xiao-Hua Lv

chosen sequence, its DRRs are distributed in the range of 0.9×10-2~1.8×10-2 (as Fig-
ure 5.1 shows), then we get a subsequence of 200-point length as query sequence (as
Figure 5.2 shows) and calculate its DRR, the result is r=1.628×10-2, also we calculate
the Euclidean distance between q and horizontal axis, the result is Dq=101.79, then
we let = Dq/f and endow f with different values to see how the performance of DRR
relation theorem in pruning unqualified sequences changes. The experiment results
are shown in Figure 5.3.

��

���

��

��
��

��

��

	�

�

��

�	

	�

��

��

��

���

��

���

���

���

Fig. 5.1. Distribution of DRRs of the chosen sequence. The ranges are as follows: R1:

(0~1.0)×10-2, R2: (1.0~1.1)×10-2, R3: (1.1~1.2)×10-2, R4: (1.2~1.3)×10-2, R5: (1.3~1.4)×10-2,
R6: (1.4~1.5)×10-2, R7: (1.5~1.6)×10-2, R8: (1.6~1.7)×10-2, R9: (1.7~1.8)×10-2, R10:
(1.8~100)×10-2.

�

�

��

��

��

��

� �� �� �� �� ��� ��� ��� ��� ���
Fig. 5.2. The chosen query q of 200-point length.

We give in Figure 5.5 the pruning rate curve formed by changing the value of f.
From Figure 5.5, we can draw the conclusion that, the larger the value of f is, the
stronger the pruning capability is. At the same time, with the “expanding” of f, the
extent of increase in pruning capability decreases, namely, when f is relative small,
we can gain a great increase in pruning capability if we increase f a little. But when f
reaches to certain value (f = 3000, for example), we can only achieve relative little
enhancement from the increase of f.

In order to show the performance of MABI, we make it compete with sequential
scanning optimized with Branch and Bound evaluation. To enable the results more
reasonable and persuasive, we do 10 tests. In each test, we build index tree from one
of the 10 sequences, and select randomly 9 200-point-long query sequences from the
other 9 sequences, then we do search work with the index tree and the 9 query se-
quences. Finally we adopt the average of these results as our final results, which is as
Figure 5.4.

A New Dynamic Indexing Structure for Searching Time-Series Patterns 299

f 1 500 1,000 2,000
pruning

number
0 3551 5488 6538

pruning
rate

0% 36.2% 56.0% 66.7%

range

(×10-2)
-99.19~
100.81

1.226~
2.024

1.427~
1.826

1.527~
1.727

f 5,000 10,000 20,000 100,000

pruning
number

8791 9333 9521 9728

pruning
rate

89.7% 95.2% 97.1% 99.3%

range

(×10-2)
1.588~1.668 1.608~1.648 1.618~1.638 1.626~1.630

Fig. 5.3. Performance of DRR relation theorem when f has different values.

f
length of

sequence
sequential scan-
ning (second)

MABI (second)
indexing

speedup
10 100,000 980.86 287.94 5.41
500 100,000 737.84 179.96 4.10

2,000 100,000 727.67 86.38 8.42
10,000 100,000 725.19 28.43 25.51

Fig. 5.4. Performance contrast between MABI and Sequential scanning.

�

��

	�

�

��

���

�
��
��

��
��

��
��

	�
��

��
��

�
��

��
��

��
��

��
��

��
��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Fig. 5.5. Pruning rate curve.

Now we discuss a problem that whether MABI is an effective index mechanism.
As presented in [8], there are several highly desirable properties for any indexing
scheme:

• It should be much faster than sequential scanning.
• The method should require little space overhead.
• The method should be able to handle queries of various lengths.

300 Zi-Yu Lin, Yong-Sheng Xue, and Xiao-Hua Lv

• The method should be dynamic, which is to say it should allow insertions and
deletions without requiring the index to be rebuilt.

• It should be correct, i.e. there should be no false dismissals (although probabilistic
matching may be acceptable in some domains).

Our index mechanism has all the above properties except the third one. For the
moment, we take sequential scanning as our method to deal with query shorter than
w, and take the long_query_searh algorithm proposed in [11] to process query longer
than w. In the future, we will continue our work to gain a better method to deal with
this problem.

6 Conclusion

In this paper, we propose two novel theorems: distance reducing theorem and DRR
relation theorem, based on which we propose MABI index mechanism, which is easy
to implement and with little space overhead and desirable performance. However
there exists a problem in our method, MABI can not effectively process queries of
different length for the moment. We will do more work to perfect our method, at the
same time, we will apply the two novel theorems proposed here in other fields.

References

1. Welch. D. & Quinn. P (1999) http://wwwmacho.mcmaster.ca/Project/Overview/status.html
2. Chan, K. & Fu, W. (1999). Efficient time series matching by wavelets. Proceedings of the

15th IEEE International Conference on Data Engineering.
3. Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra (2000) Dimensionality reduction for

fast similarity search in large time series databases. Journal of Knowledge and Information
Systems.

4. Bently, J.L.(1975). Multidimensional binary search trees used for associative searching.
Comm. ACM, Vol.18, No.9, 1975.

5. Robinson, J.T.(1981). The K-D-B-tree : A search structure for large multidimensional dy-
namic indexes. Proc. of Intl. Conf. on Management of Data, ACM SIGMOD, 1981.

6. Finkel, R. A. and Bently, J.L.(1974). Quad Trees: A data structure for retrieval on compos-
ite keys. Acta Informatica 4,1974.

7. Agrawal, R., Faloutsos, C., & Swami, A.(1993). Efficient similarity search in sequence da-
tabases. Proceedings of the 4th Conference on Foundations of Data Organization and Algo-
rithms.

8. Faloutsos, C., & Lin, K. (1995). Fastmap: A fast algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets. In Proc. ACM SIGMOD Conf., pp
163-174.

9. Kim, Y. I., Ryu, K. H. and Park, Y.(1994). Algorithms of improved multidimensional dy-
namic index for the time-series pattern. Proc. of the 1st KIPS Spring Conf., Vol. 1, No. 1,
1994.

10. Kim, Y.I., Park, Y., Chun, J.(1996).A dynamic indexing structure for searching time-series
patterns. Proceedings of 20th International Computer Software and Applications Confer-
ence, 21-23 Aug., 1996. Pages:270–275.

A New Dynamic Indexing Structure for Searching Time-Series Patterns 301

11. Keogh, E.J., Pazzani, M.J.(1999). An indexing scheme for fast similarity search in large
time series databases. Proceedings of the 11th International Conference on Scientific and
Statistical Database Management, 28-30 Jul, 1999. Pages:56-57.

12. Bozkaya, T. and Ozsoyoglu, M. Indexing large metric spaces for similarity search queries.
ACM Transactions on Database Systems, Volume 24, Issue 3, September, 1999. Page: 361
- 404.

13. Park, S., Kim, S. and Chu, W.W.(2001).Segment-based approach for subsequence searches
in sequence databases. Proceedings of the 2001 ACM symposium on Applied computing,
2001.Page: 248–252.

14. Li, C.S., Yu, P.S., Castelli, V.(1998). A Framework For Mining Sequence Database at Mul-
tiple Abstraction Levels. In Proceedings of the 1998 ACM 7th international conference on
Information and knowledge management, 1998. Pages:267–272.

15. Shasha, D., & Wang, T. L., (1990). New techniques for best-match retrieval. ACM Trans-
actions on Information Systems, Vol. 8, No 2 April 1990, pp. 140-158.

	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Representation of Data
	3.2 Moving Average
	3.3 Euclidean Distance
	3.4 Two Novel Theorems Based on Moving Average

	4 MABI Method
	4.1 Building MABI Index Tree
	4.2 Search Similar Sequences in MABI Index Tree

	5 Performance Analysis
	6 Conclusion
	References

