
Dealing with Query Contention Issue in Real-time Data Warehouses by Dynamic
Multi-level Caches∗

Ziyu Lin∗ Dongqing Yang∗ Guojie Song‡† Tengjiao Wang∗

∗School of Electronics Engineering and Computer Science, Peking University, Beijing, China

‡State Key Laboratory of Machine Perception, Peking University, Beijing, China

cainiu@263.net;{dqyang, gjsong, tjwang}@pku.edu.cn

Abstract

The issue of query contention and scalability is the most
difficult issue facing organizations deploying real-time data
warehouse solutions. The contention between complex se-
lects and continuous inserts tends to severely limit the scal-
ability of the data warehouses. In this paper, we present
a new method called dynamic multi-level caches, to effec-
tively deal with the problem of query contention and scal-
ability in real-time data warehouses. We differentiate be-
tween queries with various data freshness requirements,
and use multi-level caches to satisfy these different require-
ments. Every query arriving at the system will be automat-
ically redirected to the corresponding cache to access the
required data, which means that the query loads are dis-
tributed to multi-level caches instead of becoming blocked
in the only one cache due to the contention between query
and update operations. Extensive experiments on several
real datasets show that our method can effectively balance
the query loads among multi-level caches and achieve de-
sirable system performance.

1 Introduction

Traditional data warehouses are updated during down-
time in a batch mode on a monthly, weekly, or at most
nightly basis. When it comes to real-time data warehouses,
however, the data from the source system needs to be con-
tinuously integrated into the data warehouses. This results
in query contention issue involved with performing OLAP
queries on changing data [6].

∗Supported by the Natural Science Foundation of China under Grant
No. 60473051 and China HP Co. and Peking University joint project
(Scalable, Real-Time and Active MPP based Data Warehouse for Telecom-
munication Industry).

†Corresponding author

There are several ways to get around this problem, in-
cluding simplifying and limiting real-time reporting, ap-
plying more database horsepower, external real-time data
cache, just-in-time information merge from external data
cache, reverse just-in-time data merge [1], real-time parti-
tions [8], active partitions [11], and so on. One of the de-
sirable methods among them is to use one external cache
isolated from the data warehouse. The external data cache
is updated continuously, and the data warehouse is updated
in batch mode with ETL tools. All those queries involving
real-time data or near real-time data are redirected to the
cache, so as to avoid the query contention problem in the
data warehouse. However, if many complex analytical re-
ports are running on the real-time cache, it is possible for
the cache to begin to exhibit the same query contention and
scalability problems that a warehouse would exhibit [1].

Here we present a new method, called dynamic multi-
level caches, to effectively deal with the problem of query
contention and scalability in real-time data warehouses.
Our method is based on the (single) external real-time data
cache [1], and can be seen as a variation of it. We differ-
entiate between queries with various data freshness require-
ments, and use multi-level caches to satisfy these different
requirements. Every query arriving at the system will be
automatically redirected to the corresponding cache to ac-
cess the required data, which means that the query loads
are distributed to multi-level caches, instead of becoming
blocked in the only one cache because of the contention be-
tween query and update operations. The multi-level caches
are updated in different length of cycles between real-time
and 24 hours, and we also introduce a ”wave-like updating
algorithm” to achieve this target. According to the statis-
tics information about the queries acquired by system, the
multi-level caches will be dynamically adjusted according
to the changing query loads so as to achieve better system
performance. We conduct extensive experiments, and the
results show that our method can effectively alleviate query
contention issue and achieve better system performance and

Seventh International Conference on Computer and Information Technology

0-7695-2983-6/07 $25.00 © 2007 IEEE
DOI 10.1109/CIT.2007.60

122

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/41374488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

scalability than the single external data cache.
The remainder of this paper is organized as follows: Sec-

tion 2 gives the detailed description of our approach. The
experimental results are reported in Section 3, followed by
the discussion of related work (in Section 4). Finally, we
give the discussion and conclusion in Section 5.

2 Dynamic Multi-level Caches

In this part, we will first give the architecture of real-
time data warehouse with multi-level caches, followed by
the description of the wave-like updating against the caches,
and then we will discuss how to answer a query with the
data from the caches. Finally, we will present in detail the
dynamic adjustment of the multi-level caches.

2.1 The architecture of real-time data
warehouse with multi-level caches

Figure 1 shows the architecture of real-time data ware-
house with multi-level caches. For this architecture, it is
necessary to resolve the problems such as data modeling,
data integrating and data merging.

Data modeling. In our method, no special data model-
ing is required in the data warehouse. The external data
cache databases are generally modeled identically to the
data warehouse, but typically contains only the tables that
are real-time. The data modeling approach used here is di-
mension modeling (star schema), in which fact and dimen-
sion tables are used for representing data. All the caches
use the same fact and dimension tables, but are updated in
different cycles.

Data integrating. Here data integrating task is accom-
plished through two different ways, namely, batch loading
and real-time loading. Batch loading is used to load data
in batch mode into the data warehouse on a nightly basis.
CDC (Change Data Capture) [3] technology is used here to
continuously trickle-feed the changing data from the source
system into the external data caches.

Data Warehouse

Cache-n

.

.

.

Cache-2

Cache-1q1

q2

qn

q

. . .

OLTP Systems

C
D
C

E
T
L

J
I
M

OLAP Server

BST: Reports and GraphsBST: Reports and Graphs

Report

KPI

Analysis

Data
mining

Figure 1. The architecture of real-time data
warehouse with multi-level caches

Data merging. Many analyses may need both (near)
real-time data in the external caches and historical data in
the data ware house, which means that there must exist a
mechanism to seamlessly combine these two types of data
for the use of OLAP tools. Here this job is done by JIM
(Just-in-time Information Merge) system [1].

2.2 Wave-like updating of the multi-level
caches

Definition 1.Version : Let D be a dataset. A version of D,
denoted by V(D), is a snapshot of D at a specific instant t.

Definition 2.Freshness Level : Freshness level is used
to represent the currency extent of D, which is denoted
by F(D). For two versions of D, V1(D) and V2(D), if
F(V2(D))> F(V1(D)), we say that V2(D) is older than
V1(D). Also, for a query Q, F(Q) denotes the requirement
of Q on the freshness level of data.

For the datasets C1, C2,...,Cn in the multi-level caches,
Ci contains all information that has been integrated into
Level-i Cache. F(Ci) reflects the currency extent of Ci.
Specially for C1, which is updated in real-time, F(C1) is al-
ways equal to 0, which means C1 contains real-time data all
the time. Also, there is a relationship between these caches,
i.e. F(C1)< F(C2)<...< F(Cn).

Now we discuss the updating against the caches. In
our method, every level of cache Ciis accompanied with a
queue qi, which contains all the data that is to be integrated
into the cache Ci. The data in the queues are in fact logical
change records (LCRs) [11], which will be dequeued from
the queues and applied to the caches. Every level of cache
is updated in different cycles. For example, C1 is updated in
real-time, C2 every 5 minutes, C3 every 30 minutes, C4 ev-
ery 1 hour, and so on. In this way, the data from the source
system arrives at Level-1 Cache first, then Level-2 Cache,
then Level-3 Cache, ... , and finally the last cache (Level-n
Cache). This process is just like the movement of a wave,
and therefore we call it ”wave-like updating”.

Figure 2 shows the algorithm for the updating against
Level-1 Cache. q1 contains all the continuously arrived data
from the source system, which will, on one hand, be inte-
grated into Level-1 Cache, and on the other hand go ahead
into q2 for the purpose of updating against Level-2 Cache.

Figure 3 shows the algorithm for the updating against
Level-i Cache, where 2 ≤ i ≤ n. A little bit different from
the updating against Level-1 Cache, in which all the data in
q1 is directly and totally integrated into Level-1 Cache, the
data in qi (2 ≤ i ≤ n) has to be preprocessed before being
integrated into Level-i Cache. The preprocessing typically
involves the deleting of the older version of certain data so
as to preserve the most recent data.

123

Input: input data queue q1

input data queue q2

the dataset C1 in the Level-1 Cache
Output: the updated C1 and q2

1. while (q1 is not empty)
2. d = q1.pop();
3. integrate d into C1;
4. q2.put(d);
5. return C1,q2

Figure 2. The algorithm for the updating of
Level-1 Cache

Input: input data queue qi

input data queue qi+1

updating cycle Ti

the dataset Ci in the Level-i Cache
Output: the updated Ci and qi+1

1. while (Ti begins)
2. while (qi is not empty)
3. d = qi.pop();
4. put d into the set M ;
5. if (dold ∈ M)

/*dold is a version of d, and F(dold)>F (d)*/
6. delete dold from M ;
7. for (each m ∈ M)
8. integrate m into Ci;
9. qi+1.put(m);
10. return Ci,qi+1

Figure 3. The algorithm for the updating of
Level-i Cache (2 ≤ i ≤ n)

2.3 Answering queries with the data from
the multi-level caches

When a query arrives, it does not need to know where the
real-time data locates and how to access it. In our method,
the JIM system [1] will automatically get the real-time part
of the required data from the multi-level caches and effec-
tively combine it together with the historical part to satisfy
the query’s requirement. What a query needs to do is only
to declare its requirement on the freshness level of data, ac-
cording to which the system may decide which cache to be
used to best serve the query.

For a query Q with freshness level requirement F(Q),
in order to select from the multi-level caches an appropriate
one to serve it, we must in the first place get the qualified
version of D for Q, which is defined as follows:

Definition 3.Qualified Version: Let D be a dataset, and
V1(D), V2(D),..., Vn(D) are different versions of D,
where Vi(D)⊆Ci, and Ci is the dataset in the Level-
i Cache. Suppose there is a query Q ,and D is the dataset
involved in Q, we say that Vi(D) is a qualified version of

D for Q, only if F(Vi(D))≤F(Q). A set containing all the
qualified version of data for Q is called a ”qualified version
set” of Q, which is denoted by π(Q). The version with the
largest value of F in π(Q), is called ”default version” for
Q, which is denoted by V∗(D).

Example 1: Suppose F(Q) = 60 min, F(V1(D)) = 0 min,
F(V2(D)) = 10 min, F(V3(D)) = 30 min, F(V4(D)) = 60
min, F(V5(D)) = 4 hours, and F(V6(D)) = 8 hours. Then
we will have π(Q) = {V1(D), V2(D), V3(D), V4(D)} and
V∗(D) = V4(D).

Theorem 1.Let D be the dataset involved in a query Q,
V1(D), V2(D),..., Vn(D) are different versions of D,
where Vi(D)⊆Ci, and Ci is the dataset in the Level-
i Cache. If Vi(D) ∈ π(Q) (0≤ i ≤n), there must exist
Vm(D) ∈π(Q), where 0≤ m ≤i-1. �

It is easy to prove this theorem, so we here just give an
example to explain it.

Example 2: Suppose F(V1(D)) = 0 min, F(V2(D)) = 10
min, F(V3(D)) = 30 min, F(V4(D)) = 60 min, F(V5(D))
= 4 hours, and F(V6(D)) = 8 hours. If V3(D)∈π(Q), then
there must exist V2(D) ∈π(Q) and V1(D) ∈π(Q).

After getting π(Q), we are now faced with the task of
selecting an appropriate version of D from π(Q). The se-
lected version is the one with the highest version priority,
which is defined as follows:

Definition 4.Version Priority: Let D be the dataset in-
volved in a query Q, and V1(D), V2(D),..., Vn(D) are
different versions of D, where Vi(D)⊆Ci, and Ci is the
dataset in the Level-i Cache. Version priority of Vi(D), de-
noted by P(Vi(D)), represents the appropriateness extent
of Vi(D) to be used to answer Q.

Initially, there is a relationship between different ver-
sions of D, i.e., P(V1(D))< P(V2(D)) < ... <
P(Vn(D)). However, P(Vi(D)) is also influenced by many
factors. For example, if the Level-i Cache is undergoing up-
dating or is overloaded, P(Vi(D)) will have a smaller value.

Figure 4 shows the algorithm for answering a query with
the data from the multi-level caches. In Figure 4, line1 to
line 6 are related to the process of specifying qualified ver-
sions of the data involved in a query. Line 3 and line 4 are
based on Theorem 1, which helps to get π(Q) quickly. Line
7 to line 12 show the process of specifying and adjusting
the priority values of the qualified versions.

2.4 Dynamic adjustment of the multi-
level caches

In our method, the system will dynamically adjust the
multi-level caches according to the statistics information
about the distribution of query loads in a day. In the mean-
time, although the number of online caches can change ac-

124

Input: a query Q
freshness level requirement F(Q)

Output: the dataset D for Q

1. S= φ;
2. k = n; /*n is the number of caches*/
3. while (F (Vi(D))> F(Q))
4. k = k + 1;
5. for (i = 1; i ≤ k; i + +)
6. S = S ∪ {Vi(D)};
7. for (each Vi(D) ∈ S)
8. if (Ti begins and i �= 1)

/*Ti is the updating cycle of Ci, and Vi(D))⊆ Ci*/
9. P(Vi(D))=P(Vi(D))-1;
10. for (each Vi(D)) ∈ S)
11. if (Level − i Cache is overloaded or offline)

/*Vi(D)) is in Level − i Cache*/
12. P(Vi(D))=P(Vi(D))-1;
13. D = Vi(D) with the largest P in S;
14. return D;

Figure 4. The algorithm for answering queries
with the data from the multi-level caches

cording to the distribution of query loads, the number of
online caches and offline caches together is determined by
the number of predefined ”reference updating cycle” in the
system, which is defined as follows:

Definition 5.Reference Updating Cycle: Reference updat-
ing cycles are predefined updating cycles that can be used
by the caches. Every cache must select one from reference
updating cycles as its updating cycle. A reference updating
cycle is denoted by T ∗.

Reference updating cycles need to be defined accord-
ing to the statistics information about the freshness require-
ment of data within the organization. For example, we
may predefine 5 reference updating cycles: T ∗

1 = 0min,
T ∗

2 =10min, T ∗
3 =30min, T ∗

4 =60min, T ∗
5 =4hours.

Therefore, there will be 5 levels of caches in the system.
Meanwhile, making decision on which level of cache to

be online and which level of cache to be offline, is based
on the query loads distribution information. However, we
must note that the same amount of queries may bring dif-
ferent burden to various level of caches. For example,
100 complex queries every minute may have little influence
on the cache with T ∗ =8Hours, but will block the cache
with T ∗ =0 (being updated in real-time). So we introduce
”query load adjusting coefficient” to get the ”adjusted query
load”, which is more useful and reasonable as the basis of
cache adjusting.

Definition 6.Query Load Adjusting Coefficient: Query
Load Adjusting Coefficient λ of a cache C, is a predefined
value to be used to reflect the extent of influence on the
query execution time brought by the updating against C.

The larger the value of λ is, the more the influence is on
the query execution. λ = 1 means that updating against
C has nearly no influence on the query operation upon C.
The values of λ may not be specified precisely sometimes,
then approximate values manually defined according to ex-
perience are also helpful if they reflect the influence level
difference between caches. For example, we here define the
λ of the above 5-level caches as follows:

T 0min 10min 30min 60min 4hours
λ 1.2 1.15 1.1 1.05 1

Table 1. Query load adjusting coefficient λ for
different updating cycle T

Definition 7.Adjusted Query Load: The adjusted query
load for reference updating cycle T during certain time
period t is defined as follows:

L(T) =
m∑

i=0

λ|Di|

where Di is the data involved in query Qi, |Di| means the
size of Di, λ is the query load adjusting coefficient, and m
is the amount of queries satisfying F(V∗(Di))=T during
time period t.

Figure 5 shows the algorithm for the dynamic adjustment
of the multi-level caches. In Figure 5, line 3 to line 7 show
the process of shutting down those caches that are seldom
accessed so as to save the system resource. Also, we need
to move some query load from the overloaded cache to the
other qualified cache. Line 8 to line 17 perform such load
balancing job.

3 Empirical Study

In this section, we report the performance evaluation of
our method. The algorithms are implemented with C++.
All the experiments are conducted on 4*2.4GHz CPU (dou-
ble core), 32G memory HP Proliant DL585 Server running
Windows Server 2003 and Oracle 10g.

We use TPC benchmark TPC-H(http://www.tpc.org) to
get the required datasets in our experiment. With the help
of Streams Components provided by Oracle 10g, it is easy
to capture the change data in the data source and send it to
the destination queue, from which it is dequeued to be in-
tegrated into the data caches. We get the required query
sets by the following steps. First, we define four refer-
ence updating cycles T ∗

1 =0, T ∗
2 =10min, T ∗

3 =30min, and
T ∗

4 =60min. Also we here define four query sets QS1, QS2,
QS3 and QS4. Second, we suppose that the freshness level
requirements of the queries in the four query sets are equal
to T ∗

1 , T ∗
2 , T ∗

3 and T ∗
4 respectively. Third, we generate a lot

of queries for every query set.

125

Input: reference updating cycles array T ∗[m]
/*m is the number of reference updating cycles*/
adjusted query load array L[m]
/*L[i] is the adjusted query load in T ∗[i]*/
the number of caches n

Output: operation array P [n] for the multi-level caches
/*P [i] =1 means let Level-i Cache be online*/

1. for (i=0; i < m; i++)
2. P [i] =1;
3. for (i=0; i < m; i++)
4. if((L[i]< δlow) and (L[i − 1] +L[i]< δhigh))
5. P [i] =0;
6. L[i − 1] = L[i − 1] +L[i];
7. L[i]=0;
8. for (i=0; i < m; i++)
9. if(L[i]> δhigh)
10. k = i;
11. stop = false;
12. while (stop == false)
13. if (L[k − 1]< δhigh)
14. P [i] =1;
15. stop = true;
16. else
17. k = k − 1;
18. return P [n];

Figure 5. The algorithm for cache updating

Experiment 1: In this experiment, we want to compare
the query performance of our method with that of the tra-
ditional single cache method when under various amount
of concurrent queries. Here we construct three query sets
S1, S2 and S3, each of which is composed of the queries
from QS1, QS2, QS3 and QS4. The percent of the queries
from QSi to the overall queries in Si is shown in Table 2.
During the whole experiment, there are 50 updates every
second occurring in the data source. Also on the side of the
caches, there are a lot of concurrent queries running against
them. We will change the amount of concurrent queries
from 5 to 100. Figure 6 shows the test results about the
query execution time under different conditions, in which,
SC-S1 represents the queries from S1 running against a sin-
gle cache, and MC-Si reflects the queries from Si running
on the multi-level caches. From the test result, we can see
that the multi-level caches method is more scalable than the
traditional single cache method.

QS1 QS2 QS3 QS4

S1 80% 10% 10% 0
S2 40% 20% 20% 10%
S3 10% 30% 30% 30%

Table 2. Query sets composition

Experiment 2: In this experiment, we want to com-
pare the query performance of our method with that of the
traditional single cache method when under various updat-

ing frequency in the data source. The query sets are just
the same as those used in Experiment 1, but we now fix
the amount of concurrent queries at the value of 100, and
change the frequency of updates against the data source
from 10 updates every second to 50 updates every second
so as to see the changing of query execution time. Fig-
ure 7 shows the test results, from which we can get that
multi-level caches method can better deal with the query
contention issue than the single cache method.

Experiment 3: In this experiment, we want to compare
the confliction rate of our method with that of the tradi-
tional single cache method when under various updating
frequency in the data source. We here define confliction rate
r as c1/c2, where c1 is number of queries conflicting with
the updates, and c2 is the total number of queries arriving at
the caches. The query sets are also the same as those used
in Experiment 1, and we now fix the amount of concurrent
queries at the value of 100. We change the frequency of up-
dates against the data source from 10 updates every second
to 80 updates every second so as to see the changing of con-
fliction rates. From the experimental results in Figure 8, we
can observe that muli-level caches plays an important role
in the reduction of confliction rate.

10 20 30 40 50 60 70 80 90 100

0

100

200

300

400

500

600

tim
e

(s
ec

)

number of queries

 SC-S1
 MC-S1
 MC-S2
 MC-S3

Figure 6. Query execution time under differ-
ent conditions

10 20 30 40 50
0

100

200

300

400

500

tim
e

(s
ec

)

number of updates per second

 SC-S1
 MC-S1
 MC-S2
 MC-S3

Figure 7. Query execution time under differ-
ent updating frequency

10 20 30 40 50 60 70 80
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

co
nf

lic
tio

n
ra

te

number of updates per second

 SC-S1
 MC-S1
 MC-S2
 MC-S3

Figure 8. Confliction rates comparison

126

4 Related Work

To date, there has been many desirable methods pro-
posed to enhance the query execution performance and
scalability for the traditional data warehouses. Parallelism
[9] can be used for major performance improvement in
large data warehouses (DW) with performance and scala-
bility challenges. Also, because too many accesses to large
amount of detailed data in the data warehouse will undoubt-
edly deteriorate the problem of query contention and scal-
ability, query cache [5, 10] and materialized views [7] may
be used to answer queries without the need to access large
amount of detailed data in the data warehouse.

However, the methods above for the traditional data
warehouses are not sufficient when it comes to the real-time
data warehouses. External real-time data cache [1] is a way
to avoid the query contention in real-time data warehouses.
The external data cache is updated continuously, and the
data warehouse is updated in batch mode with ETL tools
on a nightly basis. In [8], Kimball proposes ”real-time par-
tition” subject to special rules for update and query, which
is a special partition that is physically and administratively
separated from the conventional static data warehouse ta-
bles. Therefore, the static part of the data warehouse is
only used for query instead of updating, which eliminates
the query contention on the data warehouse. However, it is
possible for both real-time cache and real-time partition to
begin to exhibit the same query contention, and scalability
problems that a warehouse would exhibit, if many complex
analytical reports are run on them [1]. Active partitions [11]
enable queries to work with constant data snapshots. Active
partition is a separate partition in the data warehouse, and
it is either offline or not visible to all user queries when up-
dates are occurring. At a certain predefined interval, typi-
cally once every few minutes, the system renames the active
partition so it may be merged with the data warehouse ta-
bles. However, it can not provide true real-time data.

There are also many other ways such as simplifying and
limiting real-time reporting, applying more database horse-
power, just-in-time information merge from external data
cache, and reverse just-in-time data merge [1].

5 Discussion and Conclusion

In this paper, we have revisited the query contention and
scalability issue. We proposed a method called dynamic
multi-level caches to resolve such issue in the field of real-
time data warehouses. With this method, we can take full
advantage of the different freshness requirements of various
queries and allocate the query loads into the corresponding
cache so as to greatly avoid the occurrence of many queries
being blocked in the only one cache. Extensive experiments

show that our method can achieve desirable system perfor-
mance in the real-time data warehouse environment.

In future, we will apply our theory in the field of mo-
bile communication, so we plan to investigate the business
requirement in the real world so as to define the reference
updating cycles in a manner that may better satisfy the busi-
ness requirements.

References

[1] J. Langseth. Real-Time Data Warehousing: Chal-
lenges and Solutions. DSSResources.COM, 2004.

[2] S. S. Conn. OLTP and OLAP data integration: a re-
view of feasible implementation methods and archi-
tectures for real time data analysis. In: SoutheastCon,
2005. Proceedings. IEEE. pages 515-520, 2005.

[3] I. Ankorion. Change Data Capture-Efficient ETL for
Real-Time BI. Article published in DM Review Mag-
azine, January 2005 Issue.

[4] T. Thalhammer and M. Schrefl. Realizing active
data warehouses with off-the-shelf database technol-
ogy. software-Practice & Experience, ACM, 32(12),
pages 1193-1222, 2002.

[5] A. N. Saharia and Y. M. Babad. Enhancing data ware-
house performance through query caching. ACM SIG-
MIS Database. Vol:31(3), pages 43-63, Jun., 2000.

[6] H. Michael. Real Time Data Warehouse: The Next
Stage in Data Warehouse Evolution. DM Review, 2003

[7] J. Goldstein and P. A. Larson. Optimizing queries us-
ing materialized views: A practical, scalable solution.
In: Proc. SIGMOD, Vol 30(2), pages 331 - 342, 2001.

[8] R. Kimball. Real-time Partitions. In
Intelligent Enterprise. February, 2002.
http://www.intelligententerprise.com/020201.

[9] P. Furtado. Experimental evidence on partitioning in
parallel data warehouses. In:Proceedings of the 7th
ACM international workshop Data warehousing and
OLAP, Nov. 2004, Washington, DC, USA, pages 23-
30, 2004.

[10] J. Shim, P. Scheuermann and R. Vingralek. Dy-
namic Caching of Query Results for Decision Sup-
port Systems. In:Proceedings of the 11th International
Conference on Scientific on Scientific and Statistical
Database Management. pages 254-263, Jul., 1999.

[11] R. Gadodia. Right in Time. Inteligent Enterprise.7.
pages 26-44. 2004.

127

