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Abstract. An unsupervised learning algorithm based on topic models
is presented for lane detection in video sequences observed by uncali-
brated moving cameras. Our contributions are twofold. First, we introduce
the maximally stable extremal region (MSER) detector for lane-marking
feature extraction and derive a novel shape descriptor in an affine invariant
manner to describe region shapes and a modified scale-invariant feature
transform descriptor to capture feature appearance characteristics. MSER
features are more stable compared to edge points or line pairs and hence
provide robustness to lane-marking variations in scale, lighting, viewpoint,
and shadows. Second, we proposed a novel location-enhanced proba-
bilistic latent semantic analysis (pLSA) topic model for simultaneous lane
recognition and localization. The proposed model overcomes the limita-
tion of a pLSA model for effective topic localization. Experimental results
on traffic sequences in various scenarios demonstrate the effectiveness
and robustness of the proposed method. C©2010 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.3490422]
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1 Introduction
In modern driver-assistance systems, the environment per-
ception plays a decisive role in order to evaluate the current
traffic scene. The early and reliable detection of traffic lanes
and road users determines the ability of integrated systems
to warn the driver in dangerous situations and contributes
to road safety. Among others, video sensors are the subject
of current research in the lane-detection context, because
video sensors enable sophisticated image-processing algo-
rithms and keep the costs to an affordable limit. This paper
aims at developing an automatic algorithm for lane detec-
tion in video sequences observed by uncalibrated moving
cameras.

Detecting lanes is a challenging task owing to their vari-
ability, ambiguity, and the wide range of illumination and
scale conditions that may apply. A robust algorithm needs
to detect the circular reflector, solid lines, and segmented
line markings under varying lighting and road conditions,
and be able to deal with challenging scenarios, such as lane
curvature, worn lane marking, lane changes, and emerging,
ending, merging, and splitting lanes.

There has been active research on lane detection in the
literature, and a wide variety of algorithms of various repre-
sentation, including edge points grouping, fixed-width line
pairs, and deformable template model, have been proposed.
Generally, previous research on lane detection in video se-
quences can be classified into four categories: edge-based
methods, model-based methods, perspective transformation-
based methods, and Hough transform-based methods. Edge-
based methods detect lane markings by edge-point extrac-
tion. However, it is not possible to select a threshold that
eliminates noise edges without eliminating many of the in-
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teresting lane edge points in many road scenes. Model-
based methods often maintain an appropriate geometrical
road model and extracts lane features on the road. But it is
uneasy to use geometrical models and difficult to detect com-
plex road features. In addition, the computation is complex.
The difficulty of perspective transformation methods is the
calibration of cameras. The Hough transform algorithm has
good ability to overcome the noise, but the selection of the
parameters is difficult and the computations are very com-
plicated. In particular, Kreucher and Lakshmanan1 presented
a lane-finding in another domain (LANA) system to extract
lane markings in a frequency domain and to detect lanes
with a deformable template. The lane detection in Ref. 2
uses a sobel operator for edge detection, and to handle
fine and coarse structures, an image pyramid is constructed.
Danescu et al.3 presented an approach based on stereo cam-
eras and distance-dependent 1-D edge filters. Lane detec-
tion is done by means of a dark-light-dark (DLD) transition,
where a gradient pair must have similar magnitude but an
opposite sign. For more recent development of the field,
the interested reader can refer to the work of McCall and
Trivedi.4

Most of the previous methods are based on various ad-
ditional assumptions and need some prior information or
hypotheses.5 In this paper, we propose a generative graph-
ical model approach to recognize and localize lane mark-
ings in videos, taking advantage of the robust representation
of the bag-of-visual-words component and an unsupervised
learning algorithm. In the context of our problem, unsuper-
vised learning is achieved by obtaining lane model parame-
ters from unsegmented and unlabeled video sequences based
on topic models. We advocate the use of an unsupervised
learning setting because it opens the possibility to use the
increasing amount of available video data without the ex-
pense of detailed human annotation.
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Fig. 1 Flow diagram of the proposed algorithm.

Given a collection of unlabeled video sequences, our goal
is to automatically learn the lane models and to apply the
learned model to perform lane recognition and localization
in the new video sequences. Figure 1 shows the flow diagram
of the proposed method. To represent video sequences, we
first extract local patches using the maximally stable extremal
region (MSER) detector.6 These local patches, described by
both appearance and shape descriptor, are then clustered into
a set of visual words. Probability distributions and intermedi-
ate topics are learned automatically using probabilistic latent
semantic analysis (pLSA).7 The learned models can then be
used to recognize and localize lane markings in a novel video
sequence.

The outline of the paper is as follows. In Section 2, we
introduce the bag of visual words model for video rep-
resentation. Section 3 reviews the pLSA topic model and
its limitations in topic localization, and introduces a novel
location-enhanced topic model for simultaneous lane recog-
nition and localization. In Section 4 experimental results on
traffic sequences in various scenarios are reported. Finally,
we conclude the paper in Section 5.

2 Video Representation from Visual Words
In this section, we introduce the bag-of-visual-words model
used for video representation. First, features are extracted by
MSER detector. A modified scale-invariant feature-transform
(SIFT)8 descriptor and a novel shape descriptor defined in
local affine frames are then proposed to describe the detected
features. Finally, the visual vocabulary is built by quantizing
the descriptors and a video is represented by bag of visual
words.

The bag-of-words model is a simple assumption used in
natural language processing and information retrieval and
has been widely used in the computer vision field.9, 10 In
this work, we adopt it for video-content representation. In
general, there are three main steps for the model: (i) Extract

local features and obtain their descriptors; (ii) quantize the
descriptors into a visual vocabulary; and (iii) describe the
image or video as a collection of visual words.

First, we find a number of local patches to generate the
visual words. Candidate patches are determined by running
the MSER detector. MSER features have been shown to out-
perform other affine region detectors on a wide range of test
images in a recent evaluation.11 An extremal region is a con-
nected component of pixels that are all brighter or darker
than all the pixels on the region’s boundary. The MSER de-
tector finds extremal regions that are stable with respect to the
change of intensity thresholds and performs well on images
containing homogeneous regions with distinctive boundaries.
We rely on the stability of the MSER features to provide
repeatable closed contours and robustness to lane-marking
variation in scale, lighting, and viewpoint. Figure 2 shows
the result of the MSER detector on a frame from an on-
road traffic sequence compared to the sobel edge detector
and Hough line detector. It can be seen that MSER features
are more robust compared to edge points or line pairs for
lane-marking extraction.

Two different kinds of complementary descriptors, shape
descriptor, and appearance descriptor are then adopted to
describe the detected MSER patches (Fig. 3). In our case,
color information is discarded. Patches and descriptors are
extracted from gray-scale images for process efficiency.

2.1 Local Affine Frame on MSER
To describe the shape information in an affine invariant way,
local affine frames (LAFs) are defined on MSER patches.
Several methods for determining LAFs on a MSER can be
found in Ref. 12. We use the center of gravity (two con-
straints) of a region, the symmetric 2×2 covariance matrix
(three constraints), and dominant gradient orientation of the
contour (one constraint) to define a LAF. Each region is
represented by a closed polygon constructed from its outer
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(a) (b) (c) (d)

Fig. 2 Visual feature extraction: (a) A frame from an on-road traffic video sequence, (b) detected MSERs are shown by the yellow ellipses(subset),
(c) Sobel edge detection results, and (d) Hough line extraction results.

boundary. Once the covariance matrix is computed, the re-
gion shape is normalized so that the covariance matrix of the
resulting shape is equal to the identity matrix. Shape nor-
malization, together with the position of the center of gravity
of the region, fixes the affine transformation up to an un-
known rotation. In order to find reference orientations for the
normalized region, gradients on the outer boundary of the
region are computed and a histogram of gradient directions
is formed. The gradient votes in the histogram are weighted
with the gradient magnitude.

2.2 Shape Descriptor in Local Affine Frame
Any representation of the normalized patches in LAFs is
theoretically invariant to affine geometric transformations.
Because the region is often homogeneous with distinctive
boundaries, we propose a shape descriptor for describing
the closed contour. The shape descriptor is a histogram of
relative position between the points on region boundary and
center of gravity of the region. The procedure to obtain the
shape descriptor is as follows: (i) Extract the shape contours
of the normalized region, (ii) construct a coordinate with
the region center as its origin, the reference orientation as
the axis direction, (iii) for each contour point, compute its
relative distance ρ and angle θ to the region center, and (iv)
count the number of points falling into same bin of direction
weighted with the distance. Figure 3 shows the process of
constructing shape descriptor.

2.3 Appearance Descriptor Based on Gradient
Mirroring

Mikolajczyk and Schimd13 compare the performance of de-
scriptors computed for local interest regions, and the results
show the SIFT-based descriptors are the best. The SIFT de-
scriptor is computed by partitioning the image region sur-

rounding each detected keypoint into a 4×4 grid of subre-
gions and computing an orientation histogram of eight bins
in each subregion. Within each subregion, the gradient orien-
tation of each pixel is entered into the orientation histogram,
with weighted vote proportional to the gradient magnitude. A
normalized 128-component vector is formed by concatenat-
ing the 16 region containers. Although the SIFT descriptor
is invariant to linear changes intensity, lane markings in dif-
ferent scenarios often involve nonlinear changes. To improve
the robustness for lane-marking detection, gradient mirroring
(GM)14 for appearance descriptor construction is adopted.
GM associates antiparallel gradient directions and therefore
considers gradient directions in the interval [0, π ) instead
of [0, 2π ). After GM, eight bins in the interval [0, π ) are
used in each subregion orientation histogram computation.
The GM SIFT descriptor has the same length as the original
SIFT descriptor and is invariant to contrast reversals. Patch
content of the detected features is described using the GM
SIFT descriptor.

Normalization of the descriptors makes them robust to
contrast changes or scale changes. Local L1 and L2 norms
give comparable results. In our experiments, we use the L2
norm to perform a global normalization of the descriptor.

In order to learn the vocabulary of visual words, we con-
sider the set of shape and appearance descriptors correspond-
ing to all detected features in the training data. We used two
visual vocabularies, one for the shape descriptor defined in
LAF and one for the GM SIFT descriptor. The vocabularies
are constructed by clustering descriptors using the k-means
algorithm and Euclidean distance as the clustering metric.
The number of clusters is chosen empirically to maximize
detection performance on a manually labeled ground-truth
video sequence. The center of each clustering is defined to
be a visual word. Thus, each detected feature can be as-
signed a unique cluster membership such that a video can be

Fig. 3 Shape descriptor for MSER defined in LAF.
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represented as a collection of visual words from the visual
vocabulary.

3 Lane Detection by Topic Discovery
In this section, we first review the pLSA model and its limi-
tations in topic localization. A novel location-enhanced topic
model is then introduced for simultaneous lane recognition
and localization.

Topic models, such as pLSA7 and latent Dirichlet alloca-
tion (LDA),15 have recently been introduced as an alternative
over the simple Naive Bayes model for bag-of-words repre-
sentations. Topic models consider the bag of words as a mix-
ture of several topics. Each document has its own distribution
over topics, and each topic is represented as a distribution
over words. In text analysis, pLSA is used to discover topics
in a document using the bag-of-words document representa-
tion. In our case, we would prefer to analyze video sequences
instead of text documents; video sequences are summarized
as a set of visual words instead of text words, and we seek to
discover lane markings instead of text topics.

Following the notations used in the text-understanding
community, we have N documents containing words from a
vocabulary of size M . The corpus of text documents is sum-
marized in a M by N co-occurrence table, where n(wi , d j )
stores the number of occurrences of a word wi in document
d j . In addition, there is a latent topic variable zk associated
with each occurrence of a word wi in a document d j .

3.1 pLSA
The joint probability P(wi , d j , zk) is assumed to have the
form of the graphical model shown in Fig. 4(a). Marginal-
izing over topics zk determines the conditional probability
P(wi | d j ),

P(wi | d j ) =
K∑

k=1

P(wi | zk)P(zk | d j ), (1)

where P(zk | d j ) is the probability of topic zk occurring in
document d j , and P(wi | zk) is the probability of word wi
occurring in a particular topic zk . pLSA assumes the joint
distribution of d, w, and z can be written as

P(d, w, z) = P(d)P(z | d)P(w | z). (2)

3.2 Location-Enhanced pLSA
pLSA is known for its capability of handling polysemy and
has been successfully applied to scene categorization and
object recognition.16 However, one limitation of the pLSA

(a) (b)

Fig. 4 Graphical models. Nodes inside a given box indicate that they
are replicated the number of times indicated in the top left corner.
Filled circles indicate observed random variables while unfilled are
unobserved: (a) pLSA graphical model and (b) our location enhanced
pLSA graphical model.

model is its weakness in localizing objects.17 In order to over-
come this limitation, we propose a location-enhanced pLSA
(LE-pLSA) topic model for lane detection. The graphical
model of LE-pLSA is shown in Fig. 4(b). Let x denote the
location of a patch, for a patch in image d with appearance
w and location x, the joint distribution P(d, w, x, z) has the
form,

P(d, w, x, z) = P(d)P(z | d)P(w | z)P(x | z), (3)

where P(x | z) is a spatial distribution that models where a
patch with topic z is more likely to occur (e.g., the traffic lane
is more likely to be detected on the road rather than other lo-
cations). By including location information in the model, the
spatial ordering of visual words contributes to the discovery
of topic and helps to localizing words of certain topic. The
spatial distribution P(x | z) uses the same parameters across
all documents, and hence, it is a global location model. In
our experiments, the spatial distribution is given as a prior.

Fitting the model involves determining the topic vectors
P(w | z), which are common to all documents, and the mix-
ture coefficients P(z | d), which are specific to each doc-
ument. The goal is to determine the model that gives high
probability to the words that appear in the corpus, and a max-
imum likelihood estimation of the parameters is obtained by
maximizing the objective function

L =
M∏

i=1

N∏

j=1

P(wi | d j )
n(wi ,d j ), (4)

where P(wi | d j ) is given by Eq. (1). This is equivalent
to minimizing the Kullback–Leibler divergence between
the measured empirical distribution P̃(w | d) and the fitted
model. The model is fitted using the expectation maximiza-
tion (EM) algorithm as described in Ref. 7.

The posterior is modeled as

P(zk | xl , wi , d j ) = P(wi | zk)P(xl | zk)P(zk | d j )∑K
k=1 P(wi | zk)P(xl | zk)P(zk | d j )

.

(5)

Once each patch has been assigned to a visual word, we
can label the corresponding word wi with a particular topic by
finding the maximum of the posteriors P(zk | xl , wi , d j ) over
k. Thus, we label the regions that support the detected patch,
effectively producing a topic localization, which corresponds
to the localization of potentially lane markings.

4 Experimental Results
In this section, experimental results on real-world traffic
sequences in various scenarios are reported. Experimental
data have been acquired with the VISATTM mobile map-
ping system (MMS).18 VISAT [Fig. 5(a)] was developed at
the University of Calgary, and the system’s hardware com-
ponents include a strap-down inertial navigation system, a
dual-frequency global positioning system receiver, and mul-
tiple digital cameras [Fig. 5(b)]. In our experiments, we use
video sequences acquired from the forward-looking cameras.

The data are collected using the VISAT Station Browser
developed by Absolute Mapping Solutions Inc., Calgary,
Canada. Figure 6 shows the survey route. The original res-
olution of frames from the VISAT georeferenced video se-
quence is 1600×1200 pixels. In the experiments, all frames
are downsized to 320×240 pixels for process efficiency.
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(a) (b)

Fig. 5 (a) The VISATTM MMS van and (b) its vision system.

Fig. 6 Survey route in Calgary used in the evaluation.

Fig. 7 Most likely visual words (shown by eight examples in a row) for the two learned topics in our experiments. The first row shows words
belonging to lane category; the second row shows words belonging to background category.

Fig. 8 Selected images from the lane category (first row) and images from the background category (second row) in our data set.
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Fig. 9 ROC and RPC curves for images classification using both pLSA and LE-pLSA model fitted on the training data:
(a) ROC curves and (b) RPC curves.
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(c) (d)

(b)(a)

Fig. 10 Lane detection results using LE-pLSA model: (a) A frame from a road intersection sequence, (b) frame with the detected MSER patches
imposed, (c) patches having high probability belonging to the lane marking category, and (d) final localization results.

In the context of unsupervised lane detection, traffic lanes
and background clutter are the two topics. We have collected
ten unlabeled video sequences in different traffic scenarios
for training our model. All descriptors extracted from the
training frames are quantized into two visual vocabularies of
300 words. The EM algorithm is initialized randomly and
converges in <100 iterations. One iteration takes ∼1 s on
1600 frames from the training data with two fitted topics and
∼200 nonzero word counts per frame using our Matlab im-
plementation on a standard 2.66 GHz PC. Visual words that
are most probable for the two discovered topics are shown in
Fig. 7. Topic discovery analysis cleanly separates the patches
into different object classes. Increasing the number of topics
in background clutter will help to classify more types of ob-
jects (e.g., trees, moving vehicles, buildings, etc.). The most
likely words for a topic appear to be semantically meaningful
regions.

We use both pLSA and LE-pLSA models to fit the two
topics on the training data. To evaluate the performance of
the two models, the learned topics are used for classifying
new images. Given a new image, the unseen image is pro-
jected on the simplex spanned by the learned topic word
distributions. A categorization decision is made by select-
ing the image category that best explains the observation;
that is,

image category = arg maxk P(zk | dtest). (6)

We have collected 2200 images for the evaluation, 1200
images with lane markings (the lane category), and 1000
images without lane markings (the background category).
Some selected examples from each category are shown in

Fig. 8. In our experiments, the data set has been partitioned
into two randomly selected halves; one-half forms the train-
ing set, and the other half forms the testing set. The training
set consists of 600 randomly selected images from the lane
category and 500 randomly selected images from the back-
ground category. The rest of the images in the data set forms
the testing set for separate performance evaluation.

The receiver operating characteristic (ROC) curves and
recall precision curve (RPC) curves for the classification
experiments using both pLSA and LE-pLSA are shown in
Figs. 9(a) and 9(b), respectively. It can be seen that the pro-
posed LE-pLSA model outperforms the original pLSA model
for classification of images from the lane category. For im-
ages containing only background clutter, the performances
of the two models are similar because spatial locations of
patches belonging to the background topic cannot be mod-
eled by a prior distribution.

Figure 10 shows an example of lane-marking localization
results using the learned LE-pLSA model. Figures 10(a) and
10(b) show the original frame from a road-intersection se-
quence and the detected MSER patches. Figure 10(c) shows
the patches that have a high probability belonging to a lane-
marking category, and Fig. 10(d) is the localization results
after spatial filtering. It can be seen that most of the lane
markings are correctly detected and accurately localized in
the image.

We have tested the proposed algorithm on both on-road
video sequences and road-intersection sequences. The road-
intersection sequences are more challenging than the on-
road sequences because there are more traffic and different
kinds of lane markings at the road intersection. Some of the
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Frame 21

Frame 65 Frame 93 Frame 122

Frame 39 Frame 46 

Fig. 11 Lane detection results from the on-road sequence.

detection results from the on-road sequence are shown in
Fig. 11. Results from the road intersection sequence are
shown in Fig. 12.

Figure 11 shows lane-detection results on six frames
from the on-road sequence. Note that most near-field lane
markings are correctly detected. Far-field lane markings are
missed at frames 21, 39, and 46, as few features can be ex-
tracted from these markings. Lane markings are correctly
detected at frames 65 and 93, despite shadows and light-
ing variations. The proposed algorithm is robust to complex
shadowing, lighting changes from overpasses and tunnels,
and road-surface variations. Several false positive are de-
tected at frames 93 and 122.

Figure 12 shows detection results on three frames from
the road-intersection sequence. Several false positive are de-
tected at frames 32 and 44. The yellow lane marking at frame
44 is missed. It can be shown that our algorithm can detect
most salient lane marking at the road intersection. Through
the use of MSER features, lane markings in various shapes
can be correctly detected.

To measure the performance of lane-marking detection in
video sequences, the following parameters are used:

Recall = Nc/(Nc + Nm), Precision = Nc/(Nc + Nf ), (7)

where Nc, Nm, and N f represent the numbers of correctly de-
tected, missed and false-positive lane markings, respectively.
The statistics of lane-marking detection results are shown in
Table 1, which shows that our algorithm performs better for
the case of on-road sequence.

The proposed model can be trained offline, and thus, the
learning stage is not time critical. For online lane recognition
and localization, the algorithm processing time is closely re-
lated to different scenarios as the number of features detected
varies under different scenes. Our MATLAB implementation
of the algorithm can process ∼6 fps on a 2.66-GHz CPU for
the on-road sequences. For the road-intersection sequences,
the algorithm works a little slower because more features are
often detected in the sequences.

5 Conclusions
In this paper, a novel unsupervised learning algorithm based
on topic models is proposed for video-based lane detec-
tion. The major contributions of this paper are as fol-
lows: (i) The MSER detector is introduced for lane feature
extraction. A novel shape descriptor is derived to describe
region shapes and a GM SIFT descriptor is presented to cap-
ture appearance characteristics. (ii) A novel LE-pLSA topic
model is proposed for simultaneous lane recognition and

Frame 18 Fame 32 Frame 44 

Fig. 12 Lane detection results from the road-intersection sequence.
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Table 1 Summary results for lane markings detection.

Sequence Total
Category Frames Nc/Nm/Nf Recall Precision

On-road sequence 1380 1932/107/154 0.95 0.93

Road intersection 620 885/98/139 0.90 0.86
sequence

localization. The proposed model overcomes the limitation
of the pLSA model for effective topic localization. Experi-
mental results on real-world traffic sequences in various sce-
narios demonstrate the effectiveness and robustness of our
method.

In future research, we will attempt to improve the pro-
posed algorithm for video sequences with severe image clut-
ter and occlusions. Simultaneous detection and recognition
of other road users in videos is another future research topic.
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