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Abstract—In smooth support vector machine (SSVM), the 
plus function must be approximated by some smooth function, 
and the approximate error will affect the classification ability. 
This paper studies the smooth approximation to the plus function 
by piecewise polynomials. First, some standard piecewise 
polynomial smooth approximation problems are formulated. 
Then, the existence and uniqueness of solution for these problems 
are proved and the analytic solutions are achieved. The 
comparison between the results in this paper and the previous 
ones shows that the piecewise polynomial functions in this paper 
achieve better approximation to the plus function. 
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I.  INTRODUCTION 
In 2001, Lee and Mangasarian [1] proposed a smooth 

support vector machine (SSVM) model to solve classification 
problems, which was a strongly convex minimization without 
any constraints. Lee and Mangasarian pointed out that SSVM 
achieved the same classifying accuracy as the ordinary 
classification methods did, and additionally, it was much faster 
than the successive overrelaxation (SOR) algorithm [2], the 
sequential minimal optimization (SMO) algorithm [3] and 
SVMlight [4] particularly. Thus, SSVM is especially suitable for 
the classification problem with large size.  

In SSVM, the plus function +)(x , which is defined as  
},0max{)( ii xx =+ , ni ,,2,1 "= ,                     (1) 

must be approximated by some smooth function. The integral 
of sigmoid function for neural networks was adopted as the 
smooth function in [1], which is inherited from the works of 
Chen & Mangasarian [5] [6].  

In 2005, Yuan, Yan and Xu [7] made use of piecewise 
polynomial to smoothly approximate the plus function, and 
obtained a polynomial smooth support vector machine 
(PSSVM) model. It was shown in [7] that PSSVM is better 
than SSVM in approximate error, classifying ability, 
computational stability and expansibility. The smooth 
functions in [7] (piecewise polynomials) are different from 
that in Chen and Mangasarian’s work, and it originates from 
the polynomial interpolation theory. This class of smooth 
functions is very attractive because of the excellent 
characteristics of polynomial interpolation. It has been showed 

in [7] that the piecewise polynomials achieved the better 
approximation to the plus function than the integral of sigmoid 
function did. Two approximate solutions, obtained by trail and 
error method, were provided in [2]. To improve the 
classification performance of SSVM, it is important to reduce 
the approximate error to the plus function. However, without a 
systematic method, it is very difficult to find more possible 
solutions with less approximate errors. Thus, in this paper, we 
first formulate the standard piecewise polynomial smooth 
approximation problems by the 2-norm measurement of error 
function, and then give its analytic solution by using the 
interpolation method. The comparison between the results in 
this paper and that in [7] shows that the piecewise polynomial 
functions in this paper approximate the plus function better 
than that in [7], no matter what measurement, 2-norm or 
infinity-norm, of error function is adopted. 

The rest of the paper is organized as follows. A brief 
introduction to SSVM and PSSVM is given in Section II. In 
Section III,we formulate some standard interpolation problems 
for the piecewise polynomial approximation to the plus 
function under some given smooth level; the existence and 
uniqueness of the solution for these problems are proofed, and 
the analytic solutions are achieved. The comparison between 
the results in this paper and those in [2] are carried out in 
Section Ⅳ . Finally, some conclusions and discussions are 
given in SectionⅤ. 

II. SSVM AND PSSVM 
We consider the problem of classifying m points in the n-

dimensional real space nR , represented by the m×n matrix A. 
We can get a m×m diagonal matrix D with ones or minus ones 
along its diagonal, according to the membership of each 
point iA in the class 1 or –1. For this problem, the standard 
support vector machine is given by the following: for some v>0 
, 
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where 1
G

is the vector in which all elements are 1, w is the 
normal vector to the bounding planes: 
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andγ determines their location relative to the origin. The first 
plane above bounds the class 1 points and the second plane 
bounds the class -1 points. If the two classes are linearly 
separable, then the slack variable y=0; otherwise, the two 
planes bound the two classes with a “soft margin”, determined 
by a nonnegative slack variable y, such as 

1≥+− i
T ywx γ ,   for iA=Tx  and 1Dii = ,  

1−≤−− i
T ywx γ ,  for iA=Tx  and 1Dii −= . 

  In (2), the 1-norm of the slack variable y is minimized with 
weight v. In our smooth approach, the square of 2-norm of the 
slack variable y is minimized with weight v/2 instead of the 1-
norm of y. Additionally, the distance between the planes (3) is 
measured in the (n+1)-dimensional space of ];[ γw by 

   2];[/2 γw .  
Thus, a modified SVM problem is yielded:  
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It was shown in [2] that the model (4) has strong convexity 
and has little or no effect on model (2). As a solution of model 
(4), y will be given by 

+−−= ))1(1( γ
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AwDy  ,                               (5) 
where the function +⋅)(  is the plus function as (1). Replacing y 
by (5) in (4), we can convert the SVM model (4) into an 
equivalent SVM as follows:  
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which is a strongly convex minimization problem without any 
constraints, and thus, will have an unique solution. However, 
the objective function in (6) is not differentiable which 
precludes the use of many effective solving methods, for 
example, famous Newton method. We thus apply some 
smoothing techniques as in [5],[6], and obtain a general 
smooth support vector machine (SSVM) by replacing +⋅)( with 
some smooth function ),( kf ⋅ ( k is a positive constant): 
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As some particular cases, the smooth function in [1] is the 
integral of sigmoid function  

0),1log(),( 1 >++= − kexkxf kx
k ;                   (8) 

the smooth functions in [7] are the piecewise polynomial 
functions  
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which are respectively the first-order and second-order 
continuously differentiable. 

     When )(⋅f is replaced with piecewise polynomial smooth 
function, the model (7) is called as a polynomial smooth 
support vector machine (PSSVM). It is shown in [7] that 
PSSVM performs better than SSVM in approximate error, 
classifying ability, computational stability and expansibility. 

III. BEST PIECEWISE POLYNOMIAL SMOOTH 
APPROXIMATION TO THE PLUS FUNCTION 

In this section, we select the 2-norm of error function 
between the piecewise polynomials and the plus function as 
the measurement of approximate error. By this measurement, 
some standard approximation problems are formulated under 
given smoothing level. Then, the existence and uniqueness of 
solution for these problems are proofed and the analytic 
solutions are achieved. 

A. The Statements for the Approximation Problem 
 

By minimizing the 2-norm of error function, we define the 
piecewise polynomial smooth approximation problems to the 
plus function under first-order smoothing level and second-
order smoothing level as Problem 1 and Problem 2 
respectively. 
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and )(4 xL  is a any polynomial function whose degree isn’t 
over 4. 

Problem 2:  
p
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and )(6 xL  is a any polynomial function whose degree isn’t 
over 6. 

B. The Solutions for Problem 1 and Problem 2 
Theorem 1. There exists a unique solution 

)(4 xL = )()1( 16
3
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Proof:  From the conditions 
0),(),( 11 =−′=− kpkp kk , 

We can set  
)(4 xL = )()1( 22 cbxaxkx +++ . 

So we have 
)(4 xL′ = )2)23(4)(1( 2 bkcxakbkaxkx +++++ . 

From the conditions 
1),(,),( 111 =′= kpkp kkk , 

we have 
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From (11) and (12), we have 
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if ],[ 11
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Substituting a,c in )(xQ with (13),we can derive out 
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Now )( pR  is a function about b, set 
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Set )(bR′ =0, we have 1792/609=b . 
From (13), we gain 
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609−= , 1
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Because 1792/609=b > 8/1 , which doesn’t satisfy (14), it is 
not a solution for Problem 1. 
Noticing that  

)(bR′ <0, if 1792/609<b ,  
R(b) is a strict monotonously decreasing function in ,(−∞ 1/8]. 
Hence there exist an unique solution 8/1=b , which 
minimizes R(b), 
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Substitute a,b,c to )(4 xL , we gain 

)(4 xL = )()1( 16
3

8
12

16
12

kxkxkx ++−+ , 
3

1008
11)( −= kpR .  

The proof is finished.                               □ 

Theorem 2. There exists a unique solution 
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which doesn’t satisfy (19), it is not a solution for Problem 2. 
Noticing that 

if 2
3 1222.0 ka < , )( 3aR′ <0,  

)( 3aR  is a strict decreasing function in ],( 2
32
1 k−∞ . Hence 

there exist an unique solution, 2
32
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Hence we can gain 

)(6 xL = )3()1( 52323
32
1

kxkxxkkx ++−+ , 

=)( pR 30064.0 −k . 
The proof is finished.                               □ 

IV. THE COMPARISON OF APPROXIMATE ERRORS 
Now we compare our piecewise polynomial smooth 

functions with that in [7], under 2-norm and infinity-norm 
respectively. We denote the optimal solution of Problem 1 and 
Problem 2 as ),(1 kxp and ),(2 kxp respectively. 

A. The Comparison under 2-norm Measurement 
For the first-order smooth piecewise polynomial 

approximation, we can easily see that the function ),(1 kxf  in 
[7] is a feasible solution of Problem 1 when 

1
4
1,0,0 −=== kcba . 

For ),(1 kxf , we have =)( 1fR 3
40
1 −k , while for the optimal 

solution ),(1 kxp  in this paper, 

)( 1pR = 3
1008

11 −k , 
which is 43.65% of )( 1fR . Hence ),(1 kxp  is better 
than ),(1 kxf .  

Remark 1: From the proof of Theorem 1, it is easily seen 
that all feasible solutions of Problem 1 for 8/10 ≤< b  achieve 
less approximate error than ),(1 kxf does. 

For the second-order smooth piecewise polynomial 
approximation, the function ),(2 kxf  in [7] is also a feasible 
solution of Problem 2 when 
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For ),(2 kxf , we have =)( 2fR 3129100.0 −k , while for the 

optimal solution ),(2 kxp in this paper, )( 2pR = 30064.0 −k , 
which is about 58.65% of )( 2fR . Hence ),(2 kxp is better 
than ),(2 kxf . 

     Remark 2: From the proof of Theorem 2, it is easily seen 
that all feasible solutions of Problem 2 for 2

32
1

30 ka ≤<  
achieve less approximate error than ),(2 kxf does. 

B. The Comparison under Infinity-norm Measurement 
For the comparison between piecewise polynomial 

functions in this paper and those in [7] under infinity-norm 

measurement, we must firstly analyze the characteristics of 
),(1 kxp and ),(2 kxp . 

Theorem 3. ),(1 kxp  satisfies that 
1)  ),(),(0 11 kxfkxp ≤≤ ; 

2)  if ∈x ],[ 11
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Proof: 
1) Case kx 1−<  or kx 1> :  

  It is obviously true that ),(),(0 11 kxfkxp ≤≤ . 

Case kx 1
k
1 ≤≤− :  

From Theorem 1,we have ),(1 kxp ≥ 0. Now proof  
),(1 kxp ),(1 kxf≤ . 

 In fact, 
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It results in that 
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),(1 kxp  increases monotonously in ]/1,/1[ kk− . 

3) If kx 1−< ,or kx 1> , or 0k
1 <≤− x , it is evident 

that ),(1 kxp +≥ )(x . 
If kx 10 ≤≤ , set xxLxkxpxQ −=−= + )()(),()( 41 ,  
then 

0)(1)2()1()( 12
4
1 =′≤−−+−=′

kQkxkxxQ . 
( 0)( ≥′′ xQ∵ ), which indicates that )(xQ  decreases 
monotonously in [0,1/k]. 
Hence 0)()( 1 =≥ kQxQ , that is,  

if kx 10 ≤≤ , then ),(1 kxp +≥ )(x . 
4)     From 2) and 3), we have at once 
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The proof is finished.                               □ 

Theorem 4. ),(2 kxp satisfies that 
1) ),(),(0 22 kxfkxp ≤≤ ; 
2) ),(2 kxp  increases monotonously in ]/1,/1[ kk− ; 
3) ),(2 kxp +≥ )(x ; 
4) kxkxp 32

5
2 )(),( =− ∞+ . 



         

Proof: 
1) Case kx 1−< or kx 1> :  

It is obviously true that ),(),(0 22 kxfkxp ≤≤ . 
Case kx 1

k
1 ≤≤− :  

From Theorem 2, we have ),(2 kxp ≥ 0. 
Now proof ),(2 kxp ),(2 kxf≤ . 
In fact 
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3)  If kx 1−< ,or kx 1> , or 0k
1 <≤− x , it is obviously true 

that ),(2 kxp +≥ )(x . 
If kx 10 ≤≤ , set +−= )(),()( 2 xkxpxQ ,  
then 

1)893()1()( 223
16
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⇒  
0)()( 1 =′≤′ kQxQ ( 0)( ≥′′ xQ∵ ), 

which indicates that )(xQ  decreases monotonously in 
[0,1/k]. 
Hence 0)()( 1 =≥ kQxQ , that is,  

if kx 10 ≤≤ , then ),(2 kxp +≥ )(x . 
4)  From 2) and 3), we have at once 
    kx

kpxkxpxkxp 32
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The proof is finished.                               □ 

In [7], 

kxkxf 4
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1 )(),( =− ∞+ , kxkxf 16
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whereas in this paper, 
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3
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Figure1. The comparisons when k=10 

It is clear that the infinity-norm errors for ),(1 kxp , ),(2 kxp in 
this paper are respectively 3/4 and 5/6 of the results in [7], all 
better than that in [7]. 

We also notice that ),(1 kxp = ),(2 kxf . It indicates that the 
optimal solution of Problem 1 achieves the second-order 
smoothing level. In another word, ),(1 kxp  achieves the higher 
smoothing level than that it is requested. For the statement ‘the 
degree of polynomial )(4 xL  is not over 4’ in Problem 1, it is 
interesting whether there exists some piecewise polynomial, 
except for ),(1 kxf , which has the degree less than 4 and 
satisfies the constrained conditions of Problem 1. From (13), 
the answer is no. Thus, ),(1 kxf  is the only feasible solution for 
Problem 1 with the degree of polynomial function below 4. 
Similarly, ),(2 kxf is the only feasible solution of Problem 2, in 
which the degree of polynomial function is less than 6. 

The comparison between the results in this paper and the 
results in [7] is described in Fig.1, where k=10 and f1(x), f2(x), 
p1(x), p2(x) stand respectively for ),(1 kxf , ),(2 kxf , ),(1 kxp , 

),(2 kxp . 

Ⅴ. CONCLUSIONS AND DISCUSSIONS 
In this paper, we formulate the standard piecewise 

polynomial smooth approximation problems to the plus 
function. In the proof of the existence and uniqueness of the 
solution for these problems, their analytic solutions are 
obtained. By the comparison between our results with the 
results in [7], we claim that the piecewise polynomials in this 
paper achieve a better approximation performance than [7]. 

The piecewise polynomial smooth approximation to the 
plus function, which is of higher smoothing level, can be 
carried out according to the method in this paper. But it should 
be noticed that the polynomial must be nonnegative. 
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