
Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Copyright © 2010 American Scientific Publishers
All rights reserved
Printed in the United States of America

Journal of
Computational and Theoretical Nanoscience

Vol. 7, 246–253, 2010

3D DNA Self-Assembly Model for
Graph Vertex Coloring

Minqi Lin1�∗, Jin Xu2, Dafang Zhang1, Zhihua Chen3, Xuncai Zhang3,
Zhen Cheng3, Yufang Huang3, and Yanbiao Li1

1Laboratory of Dependable Systems and Network, College of Software, Hunan University, Changsha, 410082, China
2School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China

3Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

DNA self-assembly technology has brought novel inspirations to the development of DNA comput-
ing. Diversified computational models based on DNA self-assembly have been used to solve various
NP problems. In this paper, a 3D DNA self-assembly model is presented to solve the Graph Vertex
Coloring problem. With the capacity of DNA molecules in massive parallel computation, the model
can simulate a non-deterministic algorithm and solve the problem in linear time: �(n). The number
of distinct tiles used in the model is �(k2), where k is the size of the color set. For the vertex
3-coloring problem, the model requires only 22 types of distinct tiles. Our work makes a significant
attempt for exploring the computational power of 3D DNA self-assembly.

Keywords: Vertex Coloring, 3D DNA Self-Assembly, Non-Deterministic Algorithm, DNA
Computing.

1. INTRODUCTION

The graph vertex coloring problem can be simply described
as follow: color for all the vertices of a graph, such that
no adjacent vertices are assigned with the same color. It is
a difficult combinatorial optimization problem involved in
many fields, such as timetabling, scheduling, circuit laying
and storage. As a famous NP-complete problem, it has not
been solved effectively by traditional algorithms.
Since the seminal work of Adleman on the Hamilton

path problem (HPP),1 the field of DNA based comput-
ing has experienced a flowering growth. Diverse DNA
computing methods have been demonstrated to solve the
graph vertex coloring problem or its equivalences. In
1995 Adleman discussed the 3-colorability problem in the
restricted model.2 Then, Bach improved the computing
model developed by Adleman and gave a more general
model of DNA algorithms,3 which decreased the time com-
plexity of the 3-coloring problem. Liu and Jin discussed
the graph coloring problem with DNA algorithms based
on surfaces.4�5 Wang described a DNA sticker algorithm
for vertex-coloring problem by converting the problem
into vertex-independent sets problem and vertex-partition
problem.6 Sun constructed a new-style pre-hairpin probe,
with which the solution space of the problem is reduced.7

Yang gave a solution of graph vertex coloring problem

∗Author to whom correspondence should be addressed.

implying the multi-separation techniques,8 with less exper-
iment steps and less DNA codes.
However, most of the approaches described above

implements the computation by performing a series of bio-
chemical reactions on a set of DNA molecules, which
require human interventions in each step. Thus, one diffi-
culty with such methods for DNA computing is the num-
ber of laboratory procedures, each time consuming and
error-prone, growing with the size of the problem.
In this paper, we propose a 3D DNA self-assembly

model for graph vertex coloring problem. The basic idea
is to exploit the massive parallelism possible DNA opera-
tions in order to emulate a non-deterministic system that
solves the problem in linear time. In fact, the innumerable
self-assembled DNA molecules exhaust all the possible
coloring schemes, and eliminate the non-solutions gradu-
ally along with the growth of self-assembly, but not the
experimental operations, which result in a reduction of the
manual intervention and error rate. As the analysis shows
that our model can be achieved by a constant number of
tile types in a linear time and polynomial space.

2. DNA BASED SELF-ASSEMBLY

Self-assembly is a ubiquitous and autonomous process in
which small objects combine together to form lager com-
plexes without any human interventions. Because of its

246 J. Comput. Theor. Nanosci. 2010, Vol. 7, No. 1 1546-1955/2010/7/246/008 doi:10.1166/jctn.2010.1355



Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Lin et al. 3D DNA Self-Assembly Model for Graph Vertex Coloring

nature biochemical properties, DNA molecule has been
accepted to be the emphasis of self-assembly research.
DNA based self-assembly technology has been widely
applied in many fields such as nanofabrication, molecu-
lar circuit and supermolecular material. Another significant
application is to use the DNA self-assembly structures
to perform parallel universal computations. Actually, the
DNA computing method by which Adleman solved the
HPP implied the idea of self-assembly. In his method,
the DNA molecules representing all possible paths through
the target graph were assembled by DNA hybridization in
a single step. However, the problem is that only simple
computations can be performed with linear self-assembly.
Winfree then discussed several string tile models for DNA
computing by self-assembly.9 Mao firstly implemented the
XOR calculation experimentally by assembling the one-
dimensional DNA three-triple molecule.10

In order to solve more complicated problems, more
effective computational system based on DNA self-
assembly is developed. As an extension for the tilling
theory of Wang tiles,11 the Tile Assembly Model (TAM)
was firstly proposed by Winfree in 1996,12 which used
a DNA structure with four sticky ends to be a “Wang
tile” in the square. Later, Lagoudakis give an example
of 2D self-assembly for the Satisfiability problem.13 Also
with the TAM, Brun implemented the adding and multi-
plying operation,14 based on which, he developed a model
for the SubSetSum problem.15 In his model, the distinct
tile types became a constant “49”. Based on a similar
model, he gave a solution for the Satisfiability problem,
still with a constant number of distinct tile types.16 Com-
paring with Lagoudakis’ model, Brun’s model seems to be
more advanced.
Also, the computational power of 3D self-assembly

model was not ignored. Jonoska firstly implied the 3D
DNA structure into the process of computing.17 In his
model, a computational problem was converted into a
3D graph problem. That is, the solution of the problem
is determined from the 3D graphs, which were formed
by vertex building blocks consisting of branched junc-
tion molecules. He presented the construction procedures
for the 3-SAT and 3-vertex-colorability. As an upgrade of
TAM, Reif introduced a type of 3D polyhedron tile for par-
allel prefix computation in his local parallel self-assembly
model,18 the tile design is given in Figure 1(a).
Along with these theoretical self-assembly model

for computation, diversified DNA self-assembly struc-
tures were produced in laboratories, owing to the
well-established biochemistry used to manipulate DNA
molecule. In 1998, Winfree designed 2D DNA crystals
using the DNA double-crossover molecule.19 In 2008,
Yin demonstrated the method of programming the self-
assembly pathway,20 by which the self-assembly process
can be designed according to the target DNA structures.
In the same year, Crocker proposed a method to assemble

(a)

(b)

Fig. 1. Examples of 3D self-assembly. (a) A type of 3D polyhedron
tile. (b) A cube structure self-assembled by gold spheres with long DNA
strands covalently grafted onto their surfaces.

a cube structure through the transient pairings of comple-
mentary DNA strands,21 the cube he designed is shown
in Figure 1(b). He’s research demonstrated the symmet-
ric supramolecular polyhedra fabricated by hierarchical
self-assembly of DNA.22 As we can see that the experi-
mental research on self-assembly has been extended from
2D to 3D.

3. 3D DNA SELF-ASSEMBLY MODEL FOR
GRAPH VERTEX COLORING

2D self-assembly structures have shown comparative
computational capability theoretically and experimentally.
However, as Winfree demonstrated that the self-assembly
of double crossover molecules into 2D sheets or 3D
solids is theoretically capable of universal computation,
and 3D self-assembly augments computational power.23

As the development of biochemical technique and further
understanding of self-assembly phenomenon, diverse 3D
self-assembly structures were fabricated in laboratories.
The feasibility of computational model based on 3D self-
assembly is becoming evident. In this section, we focus

J. Comput. Theor. Nanosci. 7, 246–253, 2010 247



Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

3D DNA Self-Assembly Model for Graph Vertex Coloring Lin et al.

on the graph vertex coloring problem and do some explo-
ration on algorithmic modeling by 3D DNA self-assembly
structure.
Here, we introduce a non-deterministic algorithm for

graph vertex coloring, which ensured that, with certain
non-deterministic choice, the appropriate scheme of ver-
tex coloring could be obtained. By separating the adjacent
information and coloring information, we get the input of
the algorithm. And then, two referenced table: the adja-
cent table and the coloring table, were imported to indicate
the inputs and assist designing the components of self-
assembly. At last, the non-deterministic algorithm is simu-
lated by the self-assembly model based on the components
we design.

3.1. Problem Description

For better illustration, we give a formal description of the
graph vertex coloring problem:
Given a simple undirected graph G with vertices set

V �G� and edges set E�G�, to find the coloring function
f : V �G�→ �1�2� � � � � k�, which denotes a mapping from
vertex to the color set, and satisfies that: ∀Euv ∈ E�G�,
u� v ∈ V �G�, f �u� �= f �v�. It is called the graph vertex
k-coloring problem.
Here, for the definiteness of our researching objective,

we consider the case in which k = 3 and the color set is
{r, b, y}, where r denotes red, b denotes blue and y denotes
yellow, namely, the graph vertex 3-coloring problem. Nev-
ertheless, it is obvious that our model works in cases when
k is other values.

3.2. Modeling Preparation

There are some preparative works to do before we imple-
ment the self-assembly model. At first, we introduce a
non-deterministic algorithm for vertex coloring. Then, two
referenced tables are employed to represent the inputs of
the non-deterministic algorithm.

3.2.1. Non-Deterministic Algorithm

To solve this problem, we introduce the non-deterministic
algorithm for vertex coloring, described as follow:
Non-Deterministic Algorithm�G� f �:

(1) For each Vi ∈ V �G� {
(2) Color for Vi : f �i�→{r, b, y}
(3) Check all Euv ∈ E�G� if exist (i = u∨ i = v)

and f �u�= f �v�.
(4) Break and return failure
(5) }
(6) If all Vi ∈ V �G� are colored
(7) Return success and output f �G�
(8) Else return failure

A non-deterministic algorithm implies that there are
some non-deterministic choices at some steps of the

algorithm (like an oracle would tell what the right
choice is). Although most of these choices directly output
a failure, while the times of choosing turn into infinite,
there must be a certain choice that will result in a return of
success. The high memory density and massive parallelism
of DNA computing endow the ability of making simulta-
neous choices in a unit time and space, which guarantees a
result meeting the restriction of the algorithm. Notice that
step 2 is the non-deterministic step.
As we can see that the input of the non-deterministic

algorithm includes two parts: G, denotes the graph infor-
mation, f denotes the coloring mapping. Thus, we employ
two referenced tables to represent these inputs, as well as,
to assist self-assembly modeling. The detailed illustrations
are given in the following two sections.

3.2.2. Adjacent Table: Ta

According to the graph theory,24 a graph with n vertices
corresponds to an n× n matrix, indicating all the edges
of the graph, called adjacent matrix. The following is an
adjacent matrix of an n-vertices graph.⎡

⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · · · ·
· · · · · · · · · · · ·
an1 · · · · · · ann

⎤
⎥⎥⎥⎥⎥⎦

Since that we only consider the simple undirected graph,
it is taken for granted that, the main diagonal and upper
triangle part of the matrix remain blank, the variable aij in
the under triangle part take a value among {0, 1}.
For example, a graph G0, as is presented in Figure 2, it

can be described in form of adjacent matrices as follow:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
1 1

1 0 1

1 0 0 1

1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

61

2

3 4

5

Fig. 2. A graph of 3-coloring.

248 J. Comput. Theor. Nanosci. 7, 246–253, 2010



Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Lin et al. 3D DNA Self-Assembly Model for Graph Vertex Coloring

Table I. Ta of G0.

1 2 3 4 5 6

1 1
2 1 2
3 1 1 3
4 1 0 1 4
5 1 0 0 1 5
6 1 0 0 0 1 6

Table I presented an equivalence form to the above
matrix. The first row and column of the table, as well as
the cells in the main diagonal, represent the vertices of the
graph. Cells in the under triangle part denotes the adjacent
status of vertices. If two vertices are connected by an edge,
the corresponding cell in the table will take a value “1”;
otherwise, there will be a value “0”. For instance of G0,
there is an edge between V2 and V3, thus the cell (3, 2)
takes the value “1”.

3.2.3. Coloring Table: Tc

As an adjacent table can completely indicates the vertex
set and edge set of a simple undirected graph, a coloring
table is used for implying a coloring scheme, which meets
the restriction that the two vertices of each edge being
assigned with different colors. For the same example of G0

In Figure 1, its 3-coloring scheme “rbybyb” is presented
in Table II.
Similarly, the first row and column of Tc, as well as

the cells in the main diagonal, represent the vertex set of
the graph. Cells in the lower triangle part denote the color
values of the vertices in their rows and columns. Take
cell (3, 2) for example, while the V2 is assigned with b
(blue), and V3 is assigned with y (yellow), therefore, the
cell (3, 2) takes a value of “by” (no sequence between
b and y). Apparently, a coloring table uniquely implies a
vertex coloring scheme.
Consequently, the vertex coloring problem is converted

to be as follow: given Ta of a graph, to find a Tc whose
sells take a value of different colors on condition that the
value of Ta’s cells in the same position is 1. With well
designed self-assembly model, the problem can be solved
with facility.

Table II. Tc of G0.

1 2 3 4 5 6

1 1
2 rb 2
3 ry by 3
4 rb bb yb 4
5 ry by yy by 5
6 rb bb yb bb yb 6

(a) (b)

Fig. 3. (a) Molecular model of 3D DNA tile. (b) Hexahedron model
abstracted from the molecular model.

3.3. Design of 3D DNA Tiles

Complexes consisted of multiply DNA strands with
unpaired ends of DNA strands sticking out can attach
themselves with other complexes having the Watson-Crick
complementary sticky end. With the logical equivalence
between DNA sticky ends and Wang tile edges, these com-
plexes are used to simulate the Wang tiles, called DNA
tiles. These tiles can stick with one-another to assemble
into complex superstructures, through this process they can
compute in a way similar to Wang tiles.
Unlike the square tile in the 2D self-assembly model,

in order to process the self-assembly in 3D space, the
DNA tiles should be DNA structures with six sticky ends.
Figure 3(a) shows the molecular model of such a struc-
ture. The tile can be abstracted as a hexahedron with labels
on its surfaces. Each label indicates a particular kind of
sticky end. Two sticky ends that can match and ligate cor-
respond to identical labels. Each tile can have any from
1 to 6 labels. Non-labeled surfaces indicate non-sticky
ends. Figure 3(b) shows a hexahedron tile with labels on
all its surfaces.
Formally, the DNA tile can be denoted by a 6-tuple

(�X , �−X , �Y , �−Y , �Z, �−Z) ∈ �6, in which the six vari-
ables indicate the labels on the six surfaces of the hexahe-
dron. Each surface correspond to one of the directions of
x� y� z axis and their inverses directions in the Cartesian
coordinate system. For instance, the hexahedron in Figure
3(b) is denoted by (b, &, y, r, 1, 0).
It’s unnecessary to list all the possible tiles in our

design. Instead, we give the value scope of the variables
in the 6-tuple. If a variable is not referred, it means that
the surface is not labeled. With the two referenced tables:
Ta and Tc we get the following tiles.

3.3.1. Adjacent Tiles

(�Z = �0� 1�), include two subtypes, taking the information
whether the vertices are adjacent or nonadjacent.
Figure 4(a) shows the two subtypes of the adjacent tiles,

the hexahedron with “0” in its top surface represents the
cells with value 0 in Ta, while the hexahedron with “1”
in its top surface represents the cells with value 1 in Ta.
These two tiles can form into different structures indicating
different adjacent information from different graphs.

J. Comput. Theor. Nanosci. 7, 246–253, 2010 249



Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

3D DNA Self-Assembly Model for Graph Vertex Coloring Lin et al.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Design of hexahedron tiles: (a) Adjacent tiles. (b) Coloring pass tiles. (c) Coloring check tiles. (d) Coloring input tiles. (e) Coloring output
tiles. (f) Coloring boundary tiles.

3.3.2. Coloring Pass Tiles

(�X = �−X = {r, b, y}, �Y = �−Y ={r, b, y}, �−Z = {0}),
include six subtypes, representing the cells in Tc. Cells in
the same position in Ta take the value 0.
Figure 4(b) shows the six subtypes of the coloring pass

tiles. On their bottom surfaces are all label “0”, the labels
on the side surfaces represent the color values in Tc. Their
top surfaces are painted with colors corresponding to the
labels, each with a square blank being left in the center.

3.3.3. Coloring Check Tiles

(�X = �−X = {r, b, y}, �Y = �−Y = {r, b, y}∧�X �= �Y ,
�−Z = {1}), include three subtypes, representing the cells
in the Tc. Cell in the same positions in Ta take the value 1.

Figure 4(c) shows the three subtypes of the coloring
check tiles. On their bottom surfaces are all label “1”, the
labels on other surfaces represent the color values in Tc,
their top surfaces are painted with colors corresponding to
the labels, and each with a round blank being left in the
center.
And yet, the tiles are not enough for assembling, some

more tiles are required to input the color value to the
assembly and output the final coloring scheme.

3.3.4. Coloring Input Tiles

(�X = �Y = {r, b, y}, �−X = �−Y = {#},�−Z = {i}), include
three subtypes. They can determine the color of each ver-
tex and input them into the assembly.
Figure 4(d) shows the three subtypes of the coloring

input tiles. On their bottom surfaces are all label “i”, the
labels on the back surfaces are “#”, and labels on the front
surfaces are color values.

3.3.5. Coloring Output Tiles

(�X = {r, b, y}, �Y = �−Y = {&}, �−Z = {o}), include three
subtypes. They can output the final coloring scheme.

Figure 4(e) shows the three subtypes of the coloring
output tiles. On their bottom surfaces are all label “o”, the
labels on the right-back and left-front surfaces are “&”,
and labels on the left-back surfaces are color values.

3.3.6. Coloring Boundary Tiles

(�Z = {i,o}), (�X = {&}), (�X = �Y = {#}), (�X = �Y =
{&}, �−Z = {o}, �Z = {SS}), include five subtypes. They
can control the growing direction of the self-assembly.
Figure 4(f) shows the five subtypes of the coloring

boundary tiles. The above two tiles are labeled with “i” or
“o” on their top surfaces. Below them, the left first tile is
labeled with “#” on its two front surfaces, the left second
tile is labeled with “&” on its right-front surface, and the
left third tile is labeled with “o” on its bottom surface,
“&” on its two back surfaces and “SS” on its top surface.

3.4. The Process of Self-Assembly

From the design of the DNA tiles, we can see that there are
tiles with one labeled surfaces, two labeled surfaces, four
labeled surfaces and five labeled surfaces. In order to make
the assembling more organized, we import a mechanism
to instruct the assembling.
A strength function g:

∑×∑→ R is considered such
that mismatched surfaces have no interaction strength and
matching surfaces have positive strengths.

g����
′
�=

{
1 if � = �

′

0 otherwise

A tile may be added to an assembly if the summed
strength of its interactions with its neighbors exceeds a
threshold, called temperature. The variable comes from the
anneal temperature of DNA hybridization. In our model,
the temperature is a constant 3, thus, only tiles that match
up to three surfaces can be assembled in position.

250 J. Comput. Theor. Nanosci. 7, 246–253, 2010



Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Lin et al. 3D DNA Self-Assembly Model for Graph Vertex Coloring

Fig. 5. Seed configuration of 3D self-assembly.

3.4.1. Seed Configuration

The process of self-assembling start from the seed config-
uration, which is a DNA structure constructed artificially
beforehand, carrying the information of the problem to be
solved.
In our problem, the seed configuration is made up of

the adjacent tiles and the coloring boundary tiles, carrying
the adjacent information of the graph to be colored.
Figure 5 shows the seed configuration of the 3D self-

assembly model. Through appropriate placement of every
tile, we get the adjacent information of G0. In addition,

(a) (b)

(c) (d)

Fig. 6. A successful self-assembly. (a) The first step of assembling, the coloring input tiles are assembled randomly. (b) The second step of assembling,
begin to check the coloring scheme. (c) The step before the end of the assembling, when coloring check is finished. (d) The end of the assembling,
a successful self-assembly with proper coloring scheme is presented.

some coloring boundary tiles are posited around in order
to let the growth of self-assembly run smoothly.
Once the seed configuration is constructed, the self-

assembly is ready to grow. Before that there is a fact worth
to be noticed. While assembling, a tile can be rotated
arbitrarily which might result in a situation that a surface
in x-axis is attached to a surface in y-axis with identical
labels on their surfaces.

3.4.2. Successful Self-Assembly

The growth of self-assembly follows the flow of the non-
deterministic algorithm. Figure 6(a) shows the first step
of assembling, each vertex of G0 is assigned with a color
non-deterministically, and this process can be achieved in
a unit time during assembling.
The details are, the coloring input tile (�X = �Y =

{r}, �−X = �−Y = {#}, �−Z = {i}) is attached to the first
(left to right) “i” tile which represents V1 in G0, with
“i,” “#” and “#” matched on deferent surfaces. Analo-
gously, the coloring input tile (�X = �Y = {b} ∧ �−X =
�−Y = {#} ∧�−Z = {i}) are attached to the second, fourth
and sixth coloring entrance tile which represent in V2� V4

and V6 in G0, the coloring input tile (�X = �Y = {y},
�−X = �−Y = {#}, �−Z = {i}) are attached to the third and
fifth coloring entrance tile which represent V3� V5 in G0.

J. Comput. Theor. Nanosci. 7, 246–253, 2010 251



Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

3D DNA Self-Assembly Model for Graph Vertex Coloring Lin et al.

And then, the color assignment must be checked
whether there exist any vertices that being assigned with
the same colors to its adjoining vertices.
Take the position of vertices pair 12 for example, labels

on the contiguous surfaces are “1”, “r” and “r”, thus only
the coloring check tile (�X = �−X = {r}, �Y = �−Y = {b},
�X �= �Y �∧��−Z = {1}) can be attached here. Figure 6(b)
shows the first step of coloring check, it’s noticed that the
vertices pairs: {12, 23, 34, 45, 56} are checked simulta-
neously. In the mean time, two coloring output tiles are
assembled in position.
Subsequently, the vertices pairs sets, {13, 24, 35, 46},

{14, 25, 36}, {15, 26}, {16} are processed at different steps
each is achieved in a unit time. Figure 6(c) shows the
assembly which has finished coloring check in five steps.
Lastly, the “SS” tile (�X = �Y = {&}, �−Z = {o}, �Z =

{SS}) is attached to the surfaces labeled with “&”, “&” and
“o”, which means the accomplishment of the entire self-
assembling. The terminal state is shown in Figure 6(d),
from which an appropriate coloring scheme “rbybyb” is
obtained.

3.4.3. Unsuccessful Self-Assembly

Not all the possible color assignments satisfies the restric-
tion of vertex coloring, actually, a majority of them result
in a failure finally. The improper coloring scheme can be
detected at a certain step of the assembling.
Figure 7 presents an instance of unsuccessful self-

assembly. As we can see that at the position with a red
“×” marked on the top, three are labels “r”, “r” and “1”
close-by. Seems that a tile (�X = �−X = �Y = �−Y = {r},
�−Z = {1}) may fits here. Unfortunately, there are no such
tile in our design, hence, the self-assembly is not going to
grow any more.

3.5. Complexity Analysis

The complexity of our 3D DNA self-assembly model is
considered in terms of computation time, computation
space and the number of distinct tiles.25�26

Fig. 7. An unsuccessful self-assembly.

3.5.1. Computation Time

According to the growing trend of the assembly,
the computation time can be compute as follows,
T =	�n+2�=	�n�.

3.5.2. Computation Space

The space taken for each assembly is the volume of
the assembly, which is easy to compute as follows:
S =	��n+1�2+4�n+1�+2�=	�n2�.

3.5.3. Number of Distinct Tiles

The types of distinct tiles include all the subtypes in our
design. Totally, there are 2 subtypes of adjacent tile, sub-
types of coloring pass tile, C1

2 ×C1
k subtypes of coloring

check tile, C2
k subtypes of coloring input tile C1

k subtypes
of coloring output tile, 5 subtypes of coloring boundary
tile. In sum, it is, N = 2+C1

2 ×C1
k +C2

k +C1
k +C1

k +5 =
	�k2�. In case k = 3�N = 2+2×3+3+3+3+5= 22.

4. CONCLUSIONS

Benefit from the high memory density and massive par-
allelism, DNA computing is provided with unexampled
dominance in solving difficult problems, especially for
NP-complete problems.
The 3D DNA self-assembly model in our study can be

viewed as a kind of extension from 2D TAM. Concern-
ing the graph vertex 3-coloring problem, we separate the
adjacent information and coloring information of vertices
in a graph into different tilling plane, so as to reduce the
complexity of DNA tiles. As a result, we get the solution
with a constant number of tile types: 22, in linear time
	�n� and polynomial space 	�n2).

While the 3D self-assembly model augments the com-
putational power, it bring tough challenges to biochemical
technique. So far, we cannot valid our model experimen-
tally, that is what we are going to work on in the future.

Acknowledgments: We thank Zuoxin Gan for help-
ful discussion and acknowledge the support by the
National Natural Science Foundation of China (Grant Nos.
60803113).

References

1. L. M. Adleman, Science 266, 1021 (1994).
2. L. M. Adleman, DIMACS: Series in Discrete Mathematics and

Theoretical Computer Science, American Mathematical Society 122
(1996), p. 1.

3. E. Bach, E. Glaser, A. Condon, and C. Tanguay, Proceedings,
Eleventh Annual IEEE Conference on Computational Complexity,
Philadelphia (1996), p. 290.

4. Y. Liu, J. Xu, L. Pan, and S. Wang, J. Chem. Inf. Comput. Sci.
42, 524 (2002).

252 J. Comput. Theor. Nanosci. 7, 246–253, 2010

http://www.ingentaconnect.com/content/external-references?article=0036-8075(1994)266L.1021[aid=199567]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.524[aid=8125718]
http://www.ingentaconnect.com/content/external-references?article=0095-2338(2002)42L.524[aid=8125718]


Delivered by Ingenta to:
University of Southern California

IP : 128.125.76.3
Sun, 20 Nov 2011 06:10:30

R
E
S
E
A
R
C
H

A
R
T
IC

L
E

Lin et al. 3D DNA Self-Assembly Model for Graph Vertex Coloring

5. X. Jin and G. Liu, Computer and Communications 21, 6 (2003).
6. S. Wang, W. Liu, and J. Xu, Systems Engineering and Electronics

27, 568 (2005).
7. C. Sun, X. Zhu, W. Liu, and J. Xu, Computer Engineering and

Applications 42, 58 (2006).
8. Y. Yang, A. M. Wang, and J. Ma, Fourth International Conference

on Natural Computation, Washington (2008), p. 547.
9. E. Winfree, T. Eng, and G. Rozenberg, Lecture Notes in Computer

Science 2054, 63 (2001).
10. C. Mao, T. H. LaBean, J. H. Reif, and N. C. Seeman, Nature 407,

493 (2000).
11. H. Wang, Tech. J 40, 1 (1961).
12. E. Winfree, DNA Based Computers 199, 199 (1996).
13. M. G. Lagoudakis and T. H. LaBean, Proceedings, the 5th DIMACS

Workshop on DNA Based Computers, Cambridge 54 (2000),
p. 141.

14. Y. Brun, Proceedings of the 4th Foundations of Nanoscience: Self-
Assembled Architectures and Devices, FNANO07, Snowbird, UT,
USA (2007).

15. Y. Brun, Theoretical Computer Science 395, 31 (2008).
16. Y. Brun, Journal of Algorithms 63, 151 (2008).

17. N. Jonoska, S. A. Karl, and M. Saito, BioSystems 52, 143
(1999).

18. J. H. Reif, Proceedings, DNA Based Computers III: DIMACS Work-
shop, Providence (1999), p. 217.

19. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Nature
394, 539 (1998).

20. P. Yin, H. M. T. Choi, C. R. Calvert, and N. A. Pierce, Nature
451, 318 (2008).

21. J. C. Crocker, Nature 451, 528 (2008).
22. Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, and C. Mao,

Nature 452, 198 (2008).
23. E. Winfree, X. Yang, and N. C. Seeman, Proceedings, DNA Based

computers II, Providence (1999), p. 191.
24. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications,

Macmillan, London (1976).
25. P. W. K. Rothemund and E. Winfree, Proceedings, Thirty-Second

Annual ACM Symposium on Theory of Computing, Portland (2000),
p. 459.

26. L. Adleman, Q. Cheng, A. Goel, and M. D. Huang, Proceedings,
Thirty-Second Annual ACM Symposium on Theory of Computing,
Crete (2001), p. 740.

Received: 24 March 2009. Accepted: 26 May 2009.

J. Comput. Theor. Nanosci. 7, 246–253, 2010 253

http://www.ingentaconnect.com/content/external-references?article=0028-0836(2008)452L.198[aid=9072418]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(2000)407L.493[aid=5228434]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(2000)407L.493[aid=5228434]
http://www.ingentaconnect.com/content/external-references?article=0304-3975(2008)395L.31[aid=8739872]
http://www.ingentaconnect.com/content/external-references?article=0196-6774(2008)63L.151[aid=9072421]
http://www.ingentaconnect.com/content/external-references?article=0303-2647(1999)52L.143[aid=8125695]
http://www.ingentaconnect.com/content/external-references?article=0303-2647(1999)52L.143[aid=8125695]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(1998)394L.539[aid=2820966]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(1998)394L.539[aid=2820966]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(2008)451L.318[aid=9072420]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(2008)451L.318[aid=9072420]
http://www.ingentaconnect.com/content/external-references?article=0028-0836(2008)451L.528[aid=9072419]
http://www.ingentaconnect.com/content/external-references?article=0302-9743(2001)2054L.63[aid=9072422]
http://www.ingentaconnect.com/content/external-references?article=0302-9743(2001)2054L.63[aid=9072422]

