
An Algorithm for Computing Attribute Reducts
Based on Graph Search Strategy

Minghui Shi, Changle Zhou, Fei Chao, Min Jiang
Department of Cognitive Science, Xiamen University, Fujian, China
Fujian Key Lab of the Brain-like Intelligent System, Fujian, China

Xiamen, China
smh@xmu.edu.cn; playtide@gmail.com; academic mail@126.com

Abstract—Attribute reducts can discover previously unknown,
non-trivial and useful abstractions from the data in large databas-
es. However, many methods for finding attribute reducts from
large data sets always meet a difficult problem of combination
explosion. To overcome the problem and find some attribute
reducts with high efficiency, the algorithm CARHS was proposed.
The basic idea of CARHS is: 1) transform the problem into an
equivalent one that searches paths, from which attribute reducts
can be easily derived, from a graph; 2) employ high efficient
heuristic rules during the course of depth-first search on the
graph. By means of the heuristic rules, those paths that would
not derive attribute reducts could be blocked as early as possible,
furthermore, for those paths that would derive the same attribute
reduct, only one of them could complete the course of search,
and the others could be blocked as early as possible. Thus some
attribute reducts could be found by CARHS with high efficiency
even when dealing with huge data sets. The transformation of
the problem, novel concepts, the heuristic search rules, and the
algorithm CARHS were illustrated in detail by some examples.
At last, The experiment on three classic UCI data sets showed
the effect of the heuristic search rules and the efficiency of the
algorithm CARHS.

Index Terms—attribute reduct, data mining, reduct discerni-
bility graph, machine learning

I. INTRODUCTION

In recent years, there are more and more huge data available
to be processed by machine learning technologies. Knowledge
acquisition from the data in large databases has become
possible and has realistic significance. On the one hand, po-
tential knowledge that human experts haven’t known could be
mined out automatically. On the other hand, the past experts’
knowledge could be examined, verified, or even revised.

However, mining useful information from original data is
often difficult or time-consuming, especially for huge data
sets. Attribute reduct, which is one of the core subjects of the
rough set theory [1], provides an an efficient way to discover
potential, unknown, non-trivial and useful abstractions from
the data in large databases. The goal of attribute reduct is
to transform high dimensional data into low dimensional one
by removing redundant attributes while keeping the useful
information invariant. Although attribute reduct doesn’t direct-
ly find knowledge, it conduces to delete the redundant data
and reduce the computational complexity of the subsequent
methods for knowledge discovery. Thus it has become one
of focus topics in the fields such as data mining, knowledge
discovery and machine learning.

So far, there are several methods for computing attribute
reducts that are based on discernibility matrix [2], information
entropy [3], positive region [4], genetic algorithm [5], etc.
These methods can efficiently process some data sets and get
a few attribute reducts. However, when dealing with huge data
sets or computing more attribute reducts, they always meet a
problem of combination explosion, which is called a NP-hard
problem [6].

To find attribute reducts from huge data with high efficiency,
in [7], we proposed an approach based on graph search
strategy. Although [7] did not provide a complete algorithm, it
indeed pointed out a meaningful direction: one can transform
the problem of computing attribute reducts into the graph
search problem.

Based on the past work [7], the algorithm CARHS was
proposed in this paper. CARHS first constructs a reduct
discernibility graph (RDG), then searchs those paths in RDG
from which attribute reducts can be directly derived. CARHS
employs four heuristic search rules: Member Exclusive, Friend
Dissuade, Barrier-layer Block, Stranger Join. It has been
proofed that during the depth-first search with these heuristic
rules, those paths that are useless to derive attribute reducts
can be blocked as early as possible, while for those paths
that may derive the same attribute reduct, only one of them
can complete the course of search, that is, the others can
be blocked as early as possible. This ensures CARHS can
compute attribute reducts with high efficiency even when
dealing with huge data sets.

The following are organized as follows. In section 2, some
novel and important concepts are systematically introduced.
Then the principle to compute attribute reducts as well as its
main difficulty when dealing with large data sets are discussed
in section 3. To overcome the difficulty, the heuristic search
rules are developed and the algorithm CARHS is presented
in section 4. Section 5 provides an example to illustrate the
algorithm CARHS and the heuristic search rules. To examine
the algorithm CARHS, in section 6, CARHS is applied to deal
with three classic UCI data sets [9]. Section 7 summarizes the
whole paper.

II. CONCEPTS

In this section, we provide some examples to illustrate some
basic concepts of rough set theory [1], and illustrate some

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia IJCNN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/41373835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TABLE I
AN EXAMPLE OF INFORMATION SYSTEM (DECISION SYSTEM)

a b c d

u1 1 2 3 1
u2 2 3 3 2
u3 1 3 2 1
u4 2 1 1 2

novel concepts, most of which are proposed in our past work
[7], that is important for understanding the following content.
Information system

In rough set theory, Information system can be presented
by a table as Tab. I, and can be defined as: IS = (U,A, V, f),
where U = {u1, u2, · · · , un} is a set of objects; A is a set of
attributes;V =

⋃
ai∈A Vai , where Vai is the domain of ai; f

is an information function, f : U ×A→ V .
For example, in Tab. I, U = {u1, u2, u3, u4}, A =

{a, b, c, d}, Va = Vd = {1, 2}, Vb = Vc = {1, 2, 3},
V = {1, 2, 3}.
Decision system

Decision system is also an information system, however, its
attribute set A may be divided into a condition attribute set C
and a decision attribute set D, which can determine the main
characteristic (class) of objects. So a decision system may be
denoted by DS = (U,C ∪D,V, f).

In order to simplify the discussion and the implementation,
in this paper we mainly discuss the decision system with
discrete values and only one decision attribute, which is
denoted by DS = (U,C ∪ d, V, f).

This simplification would not decrease the significance for
general information systems, since 1) a general information
system can always be treated as a decision system, if one
attaches it an additional decision attribute according to the
practical purpose; 2) although the range of f is continuous
in general, continuous values can be transformed into discrete
values by some discretization methods; 3) if there are more
than one decision attribute in the decision attribute set D, one
can always transform them into one decision attribute [8].

In the following, a decision system DS = (U,C ∪ d, V, f)
also can be understood as a classification system, in which the
values of d determine the classes that objects belong to, and
Tab. I is treated as a decision system with only one decision
attribute d.
Discernibility attribute, discernibility attribute set

Let DS = (U,C ∪ d, V, f), where U = {u1, u2, · · · , un},
C = {a1, a2, · · · , am}, and let ui ∈ U, uj ∈ U, ui 6= uj , a
condition attribute ak ∈ C is a discernibility attribute with
respect to ui and uj if f(ui, ak) 6= f(uj , ak) and f(ui, d) 6=
f(uj , d).

For example, in Tab. I, attribute c is a discernibility attribute
with respect to u1 and u4 since f(u1, c) 6= f(u4, c) and
f(u1, d) = f(u4, d), but c is not a discernibility attribute with
respect to u1 and u2 since f(u1, c) = f(u2, c), and is not a dis-
cernibility attribute for u1 and u3 since f(u1, d) = f(u3, d).

TABLE II
AN EXAMPLE OF DISCERNIBILITY MATRIX

u1 u2 u3 u4

u1 φ

u2 {a,b} φ

u3 φ {a,c} φ

u4 {a,b,c} φ {a,b,c} φ

Discernibility attribute set DAS(ui, uj) is defined as:

DAS(ui, uj) ={
φ f(ui, d) = f(uj , d)

{ak : ak ∈ C, f(ui, ak) 6= f(uj , ak)} f(ui, d) 6= f(uj , d)

For example, in Tab. I, DAS(u1, u2) = {a, b}, but
DAS(u1, u3) = φ since f(u1, d) = f(u3, d).

For ease of observation and understanding, one can list all
discernibility attribute sets of DS into a matrix M(DS) such
as Tab.II, which is referred to as discernibility matrix in some
papers. Tab. II only displays its lower triangular part, since
discernibility matrix is always symmetrical.
Core attribute

A condition attribute a is a core attribute if there exists
DAS(ui, uj) = {a}. That is, DAS(ui, uj) has only one
attribute a, which is necessary to discern ui and uj , and is
too important to be removed for keeping the classification
information of the DS invariant.
Family of discernibility attribute set

Family of discernibility attribute set of DS is the set of
discernibility attribute sets and defined as:

F (DS) = {DAS(ui, uj) : 1 ≤ i ≤ n− 1, i ≤ j ≤ n}

According to Tab.II, one can easily find

F (DS) = {{a, b}, {a, c}, {a, b, c}} (1)

Absorbable and non-absorbable discernibility attribute set
Let Fi ∈ F (DS) , if there exists Fj ∈ F (DS), and Fj ⊂

Fi, then Fi is absorbable, else Fi is non absorbable.
For example, in Eq.(1), let F1 = {a, b}, F2 = {a, c}, F3 =
{a, b, c}, then F3 can be absorbed by F1 and F2, while F1

and F2 are non-absorbable.
Reduct family of discernibility attribute set

Reduct family of discernibility attribute set RF (DS) is a
set removing all absorbable discernibility attribute set from
F (DS).

For example, from Eq.(1), we get

RF (DS) = {{a, b}, {a, c}} (2)

Discernibility Subgraph
Let DS = (U,C ∪ d, V, f), F (DS) = {F1, F2, · · · , Fl}

Fi ∈ F (DS), Fj ∈ F (DS), 1 ≤ i < j ≤ l, Fi =
{ai1, ai2, · · · , ais}, Fj = {aj1, aj2, · · · , ajt}, let us assume
Fi and Fj also represent sets of vertices in a graph (that is,
vertices are marked by the names of corresponding discerni-
bility attributes in Fi and Fj). If it does not cause confusion,
we use marks (attributes’ names) to represent vertices.



Discernibility subgraph with respect to Fi, Fj is a directed
complete bipartite graph as shown in Fig.1, and is denoted by
DSG(Fi, Fj).

For Eq.(1), DSG(F1, F2), DSG(F2, F3) and DSG(F1, F3)
are shown in Fig.2(a), Fig.2(b), Fig.2(c) respectively.

It should be noted that different vertices may be marked by
the same attribute name. For example, in Fig.2(b), there are
two vertices marked by the same attribute name c, but they
are different vertices.
Reduct discernibility subgraph

Let DS = (U,C ∪ d, V, f), RF (DS) = {F1, F2, · · · , Fl}
Fi ∈ RF (DS), Fj ∈ RF (DS), i 6= j, Fi =
{ai1, ai2, · · · , ais}, Fj = {aj1, aj2, · · · , ajt}, reduct Dis-
cernibility subgraph with respect to Fi, Fj is a directed
complete bipartite graph similarly as disernibility subgraph,
and is denoted by RDSG(Fi, Fj).

For Eq.(2), RDSG(F1, F2) is shown in Fig.2(a).
Reduct discernibility graph

Let DS = (U,C ∪ d, V, f), RF (DS) = {F1, F2, · · · , Fh},
reduct discernibility graph (RDG) of DS is defined as:
RDG(DS) =

⋃
RDG(Fi, Fj),where Fi ∈ RF (DS), Fj ∈

RF (DS), 1 ≤ i ≤ h−1, j = i+1; RDG(DS) is also denoted
by RDG(DS) = (V (RDG), E(RDG)), simply denoted as
RDG(DS) = (V,E), where V is the set of vertices, E is the
set of edges.

For Eq.(2), RDG(DS) is shown in Fig.2(a), where
RDG(DS) has only two layers since RF (DS) has only two
members. In general, RF (DS) has more than two members,
and RDG(DS) has more than two layers. Fig.3 shows a bit
more complicate RDG that has four layers.
Complete path, Complete path set, Uncomplete path

Let G is a RDG(DS), a complete path of G is a path
that passes through each layer once and only once. Complete
path set of G is a set containing all complete paths in G and
denoted by CPS(G).

Fig. 1. Disernibility subgraph

Fig. 2. Examples for DSG, RDSG and RDG.

Fig. 3. An example of reduct discernibility graph

TABLE III
TOTAL PATHS WITH SEARCH PROCESS AND RESULTS

No. path extend course attribute reduct

1 (a,a,d,b) a
I−−→ a

II−−→ d←↩ I© –

2 (a,a,d,d) a
I−−→ a

II−−→ d
I−−→ d {a,d}

3 (a,a,e,b) a
I−−→ a

II−−→ e←↩ IV© –

4 (a,a,e,d) a
I−−→ a

II−−→ e←↩ IV© –
5 (a,d,d,b) a←↩ I© –
6 (a,d,d,d) a←↩ I© –
7 (a,d,e,b) a←↩ I© –
8 (a,d,e,d) a←↩ I© –
9 (b,a,d,b) b←↩ III© –

10 (b,a,d,d) b←↩ III© –
11 (b,a,e,b) b←↩ III© –
12 (b,a,e,d) b←↩ III© –

13 (b,d,d,b) b
II−−→ d

I−−→ d
I−−→ b {b,d}

14 (b,d,d,d) b
II−−→ d

I−−→ d←↩ I© –

15 (b,d,e,b) b
II−−→ d←↩ I© –

16 (b,d,e,d) b
II−−→ d←↩ I© –

17 (c,a,d,b) c←↩ III© –
18 (c,a,d,d) c←↩ III© –
19 (c,a,e,b) c←↩ III© –
20 (c,a,e,d) c←↩ III© –

21 (c,d,d,b) c
II−−→ d

I−−→ d←↩ I© –

22 (c,d,d,d) c
II−−→ d

I−−→ d
I−−→ d {c,d}

23 (c,d,e,b) c
II−−→ d←↩ I© –

24 (c,d,e,d) c
II−−→ d←↩ I© –

I : ME II : SJ III : FD IV : BLB

Uncomplete path is an uncomplete (intermediate) state of an
complete path during the depth-first search course on a RDG.

For example, the second column of Tab.III lists all compete
paths in Fig.3. Let path P = (a, a), then P is an uncomplete
path because it is an uncomplete state of a complete path such
as (a, a, d, b).
Attribute set of a path

Let G is a RDG(DS), Let P is an uncomplete or a
complete path of G, attribute set of P is a set containing
all attributes that mark its nodes, and denoted by AttSet(P ).

For example, let P is the first path in Tab.III, i.e., P =
(a, a, d, b), then AttSet(P ) = {a, b, d}.



Absorbable complete path, non-absorbable complete path,
Reduct complete path set

Let G is a RDG(DS), a complete path Pi ∈ CPS(DS) is
an absorbable complete path if there exists another complete
path Pj ∈ CPS(DS) satisfying AttSet(Pj) ⊂ AttSet(Pi),
otherwise, PI is a non-absorbable complete path.

For example, let P1 and P2 are the first path and the
second path in Tab.III respectively, i.e., P1 = (a, a, d, b),
P2 = (a, a, d, d), then P1 is an absorbable complete path since
AttSet(P1) ⊂ AttSet(P2), while P2 is a non-absorbable
complete path since there is no path P satisfying AttSet(P ) ⊂
AttSet(P2).

Reduct complete path set of G is a set only containing
non-absorbable complete paths CPS(G), and denoted by
RCPS(G).
Member set, member

During the course of depth-first search on a RDG, let P is an
uncomplete path, its member set is a set of vertices marked by
the names of attributes in AttSet(P ), and denoted by MS(P ).
Any vertex in MS(P ) is called a member of P .

For example, in Fig.3, let P = (a, a, d) is an uncomplete
path, then MS(P ) includes all vertices denoted by a or d since
AttSet(P ) = {a, d}, that is, both of the vertices denoted by
d in the second layer and the last layer are the members of P .
Friend set, friend

During the course of depth-first search on a RDG, let
P = (v1, v2, . . . , vi, vi+1, . . . , vn) is an uncomplete path or
a complete path, friend set of P denoted by FS(P ) is a
set of vertices, which join FS(P ) according to the following
recursive method:

1) if P = (v1), then FS(P ) includes vertices having the
same mark (attribute name) as the brother nodes of vertex v1;

2) let Pi = (v1, v2, . . . , vi), and Pi+1 =
(v1, v2, . . . , vi, vi+1), if vi+1 /∈ MS(Pi), then FS(Pi+1)
is the union of FS(Pi) with the sets of vertices that have
the same mark as the brother nodes of vertex vi+1, else
FS(Pi+1) = FS(Pi).

Any vertex in FS(P ) is called a friend of P .
For example, let P1 = (b), P2 = (b, a) are uncomplete

paths in Fig. 3, then FS(P1) includes vertices marked by a
or c, FS(P2) includes vertices marked by a, c or d.
Stranger

Let P is an uncomplete path, a vertex is a stranger of P if
it is neither a member nor a friend of P .

For example, in Fig.3, let P1 = (c) is an uncomplete path,
then FS(P1) includes vertices denoted by a or b, and the
vertex marked by attribute d in the second layer is a stranger
of P1; let P2 = (c, d) is an uncomplete path, then FS(P2)
is the union of FS(P1) with the set of vertices denoted by
a, and the vertex marked by attribute e in the third layer is a
stranger of P2. It should be noted that the vertex marked by d
in the third layer is not a stranger of P2 since it is a member
of P2.
Barrier-layer

During the course of depth-first search on a RDG, let P is
an uncomplete path, Barrier-layer of P is a layer in which

every vertex is a friend of P .
For example, in Fig.3, let P = (c, a) is an uncomplete path,

then the last layer is its barrier-layer since each vertex in the
last layer is belong to FS(P ).

III. PRINCIPLE & PROBLEM

In this section, we illustrate the principle for computing at-
tribute reducts from a decision system, and analyze its problem
when dealing with huge decision systems. This problem will
be overcome in section IV.

From the viewpoint of classification, condition attributes
that are not in DAS(ui, uj) is useless to discern ui and uj
since they have the same values on ui and uj . Furthermore,
condition attributes in DAS(ui, uj) are equivalent: one can
remain any one of them and remove others while keeping the
classification information about ui and uj invariant.

To formally represent this observation, we use
the disjunction of condition attributes, which act as
boolean variables, in DAS(ui, uj). For example, let
DAS(ui, uj) = {a1, a2, . . . , ak}, then the disjunction is
∨ a : a ∈ DAS(ui, uj) or a1 ∨ a2 ∨ . . . ∨ ak.

Since F (DS) includes all DAS(ui, uj), where ui and
uj are different objects in the decision system. From the
viewpoint of classification, one can combine each one attribute
from each member of F (DS) so as to simplify the decision
system while keeping its classification information invariant.
Let F (DS) = {F1, F2, . . . , Fk}, we use the following con-
junction normal form to formally represent this observation.

k∧
i=1

∨
a : a ∈ Fi (3)

For example, corresponding to F (DS) in Eq.(1), Eq.(3) is

(a ∨ b) ∧ (a ∨ c) ∧ (a ∨ b ∨ c) (4)

Obviously, by the absorption rule p ∧ (p ∨ q) = p, Eq.(4)
can be simplified to Eq.(5).

(a ∨ b) ∧ (a ∨ c) (5)

Let RF (DS) = {RF1, RF2, . . . , RFl}, since RF (DS)
has removed all absorbable discernibility attribute set from
F (DS), Eq.6 is just the simplification form of Eq.(3).

l∧
i=1

∨
a : a ∈ RFi (6)

That is to say, one can directly obtain the simplification form
of Eq.(3) from RF (DS). Thus, corresponding to RF (DS) in
Eq.(2), Eq.(6) is just Eq.(5).

Eq.(6) can be transformed into a equivalent disjunction nor-
mal form. If the disjunction normal form has been simplified
according to the absorption rule p∨(p∧q) = p, then the set of
attributes in each conjunction can maintain the classification
information of DS invariant without needing other attributes,
that is to say, this set is just a attribute reduct of DS. In this
way, all of attribute reducts can be derived from the disjunction
normal form.



TABLE IV
REDUCT OF TAB.I

a d

u1 1 1
u2 2 2
u3 1 1
u4 2 2

For Eq.(5), its equivalent disjunction normal form is

a ∨ (a ∧ c) ∨ (a ∧ b) ∨ (a ∧ c) (7)

Eq.(7) can be simplified to a according to the absorption rule.
Thus {a} is a attribute reduct of DS. That is, one can use only
one condition attribute a to keep the classification information
of DS invariant without needing other attributes.

So Tab.I can be reduct into Tab.IV while keeping the
classification information invariant. That is, in Tab.I, any
object ui ∈ U can be correctly classified just according to
attribute a without needing other attributes.

This also can be easily verified by observation since Tab.I
and Tab.IV are very simple. From Tab.IV, one can easily find
the classification rule: if f(ui, a) = 1 then f(ui, d) = 1; if
f(ui, a) = 2 then f(ui, d) = 2. These rules are also true in
Tab.I, although it is more difficult to find them from Tab.I.

For a huge data set, however, it would be very difficult
to find and verify classification rules, and it would become
very necessary to compute its attribute reducts, because 1) by
remaining attributes in a attribute reduct and removing other
ones, redundant data for classification could be removed from
an decision system; 2) efficient information could be more
easily mined out from the reduct decision system.

From the discussion above, one can summerize a method
for computing attribute reduct that includes three basic steps:

Step 1: compute RF (DS) and creating a conjunction nor-
mal form, such as Fig. (6);

Step 2: transform the conjunction normal form into a dis-
junction normal form, such as Fig. (7);

Step 3: simplify the disjunction normal form and attaining
the attribute reducts from its conjunction.

However, step 2 may meet a problem of combination ex-
plosion when the RF (DS) is big. For example, assume a
RF (DS) has 6 members, and each member has 9 attributes,
after transformation in step 2, in the disjunction normal form,
the number of conjunctions is 69, which is more than ten
million.

We try to solve this key problem by means of RDG(DS).
Let G is a RDG(DS). In fact, there exists a one-by-one
mapping relation between complete paths in CPS(G) and
conjunctions in the disjunction normal form created in step 2.
For example, let P = (a1, a2, . . . , al) ∈ CPS(G) is one
of complete paths in G, then a1 ∧ a2 ∧ . . . ∧ al is one of
conjunctions in the disjunction normal form created in step 2.

Furthermore, it is easy to find that there exists a one-by-one
mapping relation between complete paths in RCPS(G) and
conjunctions in the disjunction normal form created in Step 3.

Thus, according to step 3, attribute reducts may be attained
by RCPS(G) . For example, let P = (a1, a2, . . . , al) ∈
RCPS(G), then a1 ∧ a2 ∧ . . . ∧ al is one of conjunctions in
the disjunction normal form created in step 3, and AttSet(P )
is a attribute reduct of DS.

From the discussion above, it can be concluded that one
complete path in RCPS(G) corresponds to one attribute
reduct of DS, and all complete paths in RCPS(G) corre-
sponds to all attribute reducts of DS. Thus to get attribute
reducts of DS, we only need to find out RCPS(G).

To find out RCPS(G), the basic method is: find out
CPS(G) at first, then get RCPS(G) by removing all ab-
sorbable paths from CPS(G).

Obviously, this method also meet the same problem of
combination explosion since the size of CPS(G) is very large
when G is big. For example, assume G has 9 layers, and each
layer has 6 attributes, the size of CPS(G) is 69, which is
more than ten million.

To avoid the problem of combination explosion, the algo-
rithm CARHS is proposed in the next section, which may get
some attribute reducts by finding out some complete paths in
RCPS(G) while it may avoid the problem of combination
explosion and even doesn’t need know CPS(G).

IV. HEURISTC RULES & ALGORITHM

As discussed in section III, let G is a RDG of a decision
system DS, then one complete path in RCPS(G) corresponds
to one attribute reduct of DS. In this section, to find out some
complete paths in RCPS(G) while avoiding the problem of
combination explosion, the algorithm CARHS is proposed
based on depth-first search on RDG(DS) with heuristic
search rules.

These heuristic search rules have intuitive names: Member
Exclusive (ME), Friend Dissuade (FD), Barrier-layer Block
(BLB), and Stranger join (SJ).

ME: Member Exclusive
During the course of depth-first search, let P is an uncom-

plete path, if there is a vertex v in the next layer satisfying
v ∈MS(P ), then P will extend through the vertex and don’t
extend through other vertices in the same layer. That is, vertex
v has the exclusive right over other vertices in the same layer.
If there are several vertices in the next layer that are members
of P , then the one at the most left has the exclusive right.

FD: Friend Dissuade
During the course of depth-first search, let P is an uncom-

plete path, if vertex v in the next layer satisfies v ∈ FS(P ),
then P will not extend through the vertex. That is to say, any
vertex that is a friend of P will dissuade P .

BLB: Barrier-layer Block
During the course of depth-first search, let P is an uncom-

plete path, if there exists a barrier-layer of P , then P will
not continue to extend. That is to say, any barrier-layer of P
will block the search of P .

It seems that BLB is just a trivial result of FD. However, in
some cases BLB can significantly improve the search, because
one can prejudge whether there exists a barrier-layer of an



uncomplete path. If there exists a barrier-layer of a path, this
path can be blocked as early as possible before it reaches the
barrier layer so as to improve search efficiency.

SJ: Stranger join
During the course of depth-first search, let P is an uncom-

plete path, if there is no barrier-layer in any following layer
and no any member of P in the next layer, then P may pass
through its stranger in the next layer.

When the depth-first search on RDG(DS) employs these
heuristic rules, it has been proofed that: 1) all absorbable
complete paths in CPS(G) must be blocked during the course
of search; 2) the complete paths that don’t be blocked must be
non-absorbable complete paths in CPS(G), i.e., must be in
RCPS(G); 3) the complete paths that don’t be blocked must
be different from each other.

Based on these heuristic search rules above and the principle
in section III, the algorithm CARHS, presented in Fig.4, is
proposed to compute attribute reducts of a decision system. It
includes four sub processes:
1) compute RF (DS) by the algorithm CRFDAS (see Fig.5);
2) construct RDG(DS) based on RF (DS);
3) search on RDG(DS) with heuristic depth-first strategy;
4) output results.

The algorithm CRFDAS is proposed as part of the algorithm
CARHS. CRFDAS can directly compute RF (DS) without
needing compute F (DS) or discernibility matrix M(DS),
although the concept of RF (DS) is based on the latter two.
Thus CRFDAS can reduce the time complexity and the space
complexity of CARHS.

Since the algorithm CARHS employs all of these heuristic
rules (ME, FD, BLB, and SJ) (see Fig.4), it has high search
efficiency, and all the members in its output set ARS must be
attribute reducts.

In the next section, by means of a simple example, the
algorithm CARHS is illustrated in detail. In section VI, to
examine its capability and efficiency, the algorithm CARHS
is applied to three classic data sets from UCI database [9].

V. EXAMPLE

In this section, by means of a simple example, we illustrate
the basic procedure of the algorithm CARHS.

Let RF (DS) = {{a, b, c}, {a, d}, {d, e}, {b, d}}, Fig. 3
shows the corresponding reduct discernibility graph
RDG(DS).

Tab. III clearly presents the total paths of RDG(DS)
(Fig. 3), the course of the depth-first search with heuristic
rules, and the attribute reducts attained.

From Tab. III, one can conveniently observe and understand
the detail of the search course and the result of each path. The
first column shows the number of each complete path in Fig. 3.
The second column shows the nodes through which each path
passes. The third column shows the depth-first search course
of each path with the heuristic rules. The character over “→”
denotes the heuristic rule supporting the search step, while
the character on the right of “←↩” denotes the heuristic rules
blocking the search step. For instance, a I−−→ a indicates that

Algorithm: CARHS
// compute attribute reducts based on heuristic search.

Input: DS = (U,C ∪ d, V, f)
Output: ARS //ARS: attribute reduct set
Initial: ARS = φ
Begin
1) Compute RF (DS) by algorithm CRFDAS shown in Fig.5.
2) Construct RDG(DS) based on RF (DS).
3) Search on RDG(DS) with heuristic depth-first strategy:

Let P is an uncomplete path, the heuristic depth-first search
strategy is:

Step 1 (BLB):
if there exists a barrier-layer of P , then

go to step 4; // P is blocked by a barrier-layer
else

go to step 2;
Step 2 (ME):

examine the vertex v in the next layer from left to right:
if v ∈MS(P ), then

P will not extend through other vertices in the layer;
P = P + v; // ME: P extends through v
go to step 2;

else
go to step 3;

Step 3 (FD & SJ):
examine the current vertex v in the next layer:
if v ∈ FS(P ), then

if v is the last vertex in the next layer, then
go to step 4; // FD: P is blocked by v

else
v=the direct right brother of v;
go to step 3;

else
P = P + v; // SJ: P extends through v
if P is a complete path, then

ARS = ARS +AttSet(P );
go to step 4;

else
compute FS(P );
go to step 1;

Step 4:
Finish this time of searching, and try other paths.

4) output ARS.
End.

Fig. 4. Algorithm CARHS

the search can pass from the node a in the current layer to the
node a in the next layer, according to the heuristic rule I, i.e.,
Member Exclusive, while d←↩ I© indicates that the search is
blocked to the next layer according to the heuristic rule I, that
is, there exists another node in the next layer that is a member
of the uncomplete search path (d). The fourth column shows
the attribute reducts attained from each path, and “-” means
this path can not reach the last layer, that is, it is blocked



Algorithm: CRFDAS
// compute reduct family of discernibility attribute set

Input: DS = (U,C ∪ d, V, f), where U = {u1, u2, · · · , un}
Output: RF (DS)
Initial: RF (DS) = φ
Begin

For i = 1 to n− 1
For j = i+ 1 to n

absorbed := false;
For each R ∈ RF (DS)

if (R ⊆ DAS(ui, uj))
absorbed := true
break;

if (DAS(ui, uj) ⊂ R)
RF (DS) = RF (DS)−R

End
if not absorbed

RF (DS) = RF (DS) +DAS(ui, uj)
End

End
return RF (DS)

End

Fig. 5. Algorithm CRFDAS

in some earlier layer due to a heuristic rule, and no attribute
reduct can be attained from this path.

In Tab. III, it is no coincidence that the attribute reducts
attained in this example are different from each other. In fact,
this can be ensured by the algorithm CARHS, and it is one of
the main reasons why CARHS is high efficient.

However, there are some aspects that should be clarified:
1) In this example the attribute reducts attained are all

minimal. However, it is not always true. That is, CARHS can
ensure the results must be attribute reducts, but cannot ensure
they are minimal attribute reducts;

2) CARHS cannot ensure attain all attribute reducts. For
example, in fact, {a, b, e} is a attribute reduct in this example,
however, it cannot be attained by CARHS since path 3 and
path 11 are blocked by the heuristic rules BLB and FD
respectively;

3) From Tab. III, although the heuristic rule BLB appears
to be not worthy of mention, in fact, sometimes it is very
important and efficient in processing some large data sets
that have RDGs with much more layers. This can be easily
observed from the following experiments on the UCI data sets.

VI. EXPERIMENT

To examine the capability and efficiency of the algorithm
CARHS, from the famous UCI learning database [9] we
select three classic data sets as the test data sets. The three
data sets are: Zoo (data 1); Soybean small (data 2); Pok-
er hand training true (data 3). All of them are numerical and
no missing value data sets. For instance, Tab. V shows a part
of data 1.

CARHS has been implemented with C language, and run
on a T7100 1.8G CPU. Tab. VI shows the attribute reducts and
the core attributes of the three data sets attained by CARHS.
Although the core attributes set of data 2 is φ, one can also
find that attribute 23 and 35 are very important attributes since
they are included in much of the attribute reducts sets attained.

Tab. VII shows the number of the objects, the number of
the attributes, the number of the layers, the number of paths in
the RDG, and the running time. It should be noted the running
time includes the time of constructing the reduct discernibility
graph and the time for the depth-first search.

From Tab. VII, one can find some significant facts:

1) For data 1 and data 2, the running time is less than
0.04 seconds, and for data 3, the running time is less than
100 seconds although it has more than twenty thousands of
objects. So CARHS may be used to find attribute reducts for
large data sets.

2) Although data 1 and data 2 have much less objects than
data 3 does, they have much more paths in their RDGs. The
main reason is that data 1 and data 2 have much more RDG
layers than data 3 does. That is, the number of total path
mainly depends on RDG rather than the number of objects.
More objects does not mean more total paths in RDG.

3) Although data 1 and data 2 have much more paths in
their RDGs than data 3 does, they need much less running
time. The main reason is that the construction of RDG
consumes most part of running time, while the search course
on RDG is very quick and efficient even when the total path
is greater than 1× 1096. This further verifies the efficiency of
the algorithm CARHS.

To examine the effect of the different heuristic rules, Tab.
VIII shows the contribution rates of each heuristic rule. The
contribution rate of a heuristic rule is the rate of branches,
which are cut out during the depth-first search according to
the heuristic rule, on the total path of RDG. From Tab. VIII,
one can further recognize the importance of the heuristic rules:
1) Member Exclusive always has more contribution rate than
the other rules; 2) The effect of Friend Dissuade cannot be
neglected in general; 3) Although Barrier-layer Block seems
useless for some data sets such as data 2 and data 3, it is very
important for some data sets such as data 1.

TABLE V
PART DATA OF ZOO.

Values of sixteen attributes Class

0 0 1 · · · 1 0 0 4
1 0 1 · · · 0 6 1 6
1 0 1 · · · 0 6 0 6
0 1 1 · · · 0 2 0 2
0 0 1 · · · 0 6 0 6
0 1 1 · · · 0 2 0 2
1 0 0 · · · 0 4 0 1



TABLE VI
ATTRIBUTE REDUCTS AND CORE ATTRIBUTES.

Data set attribute reduct core attribute

data 1 {3,6,8,9,11,13}; {3,6,8,9,12,13};
{3,6,8,11,13,14}; {3,6,8,12,13,14}.

{6,13}

data 2 {22,23}; {12,21,35}; {4,12,23,35};
{1,6,23,35}; {8,12,23,35};
{2,12,23,35}; {2,12,23,25};
{12,23,25,35}; {12,23,28,35};
{1,5,10,12,23}; {1,10,12,23,35};
{1,5,10,23,35}.

φ

data 3 {1,2,3,4,6,8,10}; {1,2,4,5,6,8,10};
{1,2,4,6,7,8,10}; {1,2,4,6,8,9,10}.

{2,4,6,8,10}

data 1: Zoo; data 2: Soybean small; data 3: Poker hand training true.

TABLE VII
NUMBER OF RDG LAYER, TOTAL PATH AND RUNNING TIME.

Data set objects attributes RDG
layers

total path time
(s)

data 1 101 17 14 1.17× 1010 0.015
data 2 47 36 99 1.80× 1096 0.031
data 3 25010 11 9 144 90.901

data 1: Zoo; data 2: Soybean small; data 3: Poker hand training true.

VII. CONCLUSION

To compute attribute reducts from a decision system, the
algorithm CARHS was proposed in this paper. CARHS is
based on the concept of reduct discernibility graph (RDG).
Once the RDG is created, the problem of computing attribute
reductions is transformed into the one to look for non-
absorbable complete paths in the RDG. Since the total path
of RDG is always too huge to be examined one by one,
four heuristic rules (ME, FD, BLB, SJ) are developed and
employed in CARHS. These heuristic rules can ensure that
every absorbable complete path may be blocked as early as
possible, and all of the complete paths in the search result
are necessary for computing attribute reduct. Thus CARHS
may find several attribute reducts with high efficiency while
avoiding the problem of combination explosion, which is the
key problem of other algorithms such as in [2]-[6].

Compared with our past work in [7], there are several
highlights in this paper. First, to construct RDG, the algo-
rithm CRFDAS, as part of the algorithm CARHS, has been
proposed. CRFDAS can directly compute reduct family of
discernibility attribute set without needing compute family of
discernibility attribute set or discernibility matrix, although
the concept of the former is based on the latter two. So

TABLE VIII
CONTRIBUTION RATE OF HEURISTIC RULES FOR CUTTING BRANCHES.

Data set Member Exclusive Friend Dissuade Block layer Block

data 1 45.3% 24.2% 30.5%
data 2 85.7% 10.7% 3.6%
data 3 70.7% 29.3% 0

data 1: Zoo; data 2: Soybean small; data 3: Poker hand training true.

CRFDAS not only can reduce its own time complexity and
space complexity, but also can increase the efficiency of
the algorithm CARHS. Second, the heuristic rules Stranger
Join has been developed, so that the algorithm CARHS can
be completed; Third, all of the novel concepts have been
illustrated by some simple examples in this paper so that they
can be more easily understood than in [7]. Fourth, a novel
description method in Tab. III has been developed to describe
the course of heuristic depth-first search. In this special way,
one can easily understand and analysis the algorithm CARHS,
the role of the heuristic rules, and the reason why a path can
pass through a node or be blocked. Finally, the algorithm
CARHS is applied to three classic data sets from the UCI
database [9]. The experiment shows that CARHS can be
applied to compute attribute reducts very quickly for large
data sets even with ten thousands of objects. The contribution
rates of the different heuristic rules are also compared with
each other in this experiment.

The experiment also reveals several future research direc-
tions: 1) since the construction of RDG consumes most part
of time, we can deeply research on it to shorten the running
time; 2) since the heuristic rule Friend Dissuade is too strong
to possibly block some useful paths, we may develop other
heuristic rules so as to avoid missing any attribute reduct, and
further find the minimal attribute reducts; 3) since CARHS can
be applied only to information systems with numerical and no
missing value, an information system with non-numerical and
missing value should be transformed to the one with numerical
and no missing value, so the transformation may be added as a
preliminary step of CARHS to expand its scope of application.

ACKNOWLEDGMENT

This work was partly supported by the Natural Sci-
ence Foundation of Fujian Province of China (Grant No.
2010J01346 and 2010J05142), the National Natural Sci-
ence Foundation of China (Grant No. 60975076 and
61003014/F020101).

REFERENCES

[1] Z. Pawlak. ”Rough sets”. International Journal of Information and Com-
puter Science. 1982, (11), pp. 341-356.

[2] Wong SKM, W. Ziarko W, ”On optimal decision rules in decision tables,”
Bulletin of Polish Academy of Sciences, 1985, 33(11/12), pp. 693-696.

[3] Wang GY, Yu H, Yang DC, ”Decision table reduct based on conditional
information entropy,” Chinese Journal of Computers, 2002, 25(7), pp.
759-766.

[4] Yang M, Ni WW, Sun ZH.,”Novel model for minimal attributes reduc-
tions,” Journal of Southeast University (Natural Science Edition), 2004,
34(5), pp. 604-608 (in Chinese with English abstract).

[5] Zhu JH, Li HB, Pan F., ”Knowledge-reduction based on GA and fuzzy-
rough set,” Computer Emulation, 2007, 24(1), pp. 89,119 (in Chinese
with English abstract).

[6] A. Skowron, C. Rauszer, R. Slowinski. ”Intelligent dicision support hand-
book of applications and advances of the rough sets theory”, Dordrecht:
Kluwer Academic Publishers, 1992, pp. 331-362.

[7] Minghui Shi, Fei Chao, Min Jiang, et al. ”Approach to Computing
Attribute Reductions for Decision System Based on Heuristic Graph
Search”, International Conference on Intelligent Computing and Intel-
ligent Systems (ICIS2011), 2011, pp. 636-639.

[8] Walczak B, Massart D.L., ”Rough sets theory,” Chemometrics and
Intelligent Laboratory Systems 1999, pp. 47: 1-16.

[9] ftp://ftp.ics.uci.edu/pub/machine-learning-databases/


