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Abstract. Breast cancer is one of the leading causes of mortality among 
women, and the early diagnosis is of significant clinical importance. In this pa-
per, we describe several linear fusion strategies, in particular the Majority Vote, 
Simple Average, Weighted Average, and Perceptron Average, which are used 
to combine a group of component multilayer perceptrons with optimal architec-
ture for the classification of breast lesions. In our experiments, we utilize the 
criteria of mean squared error, absolute classification error, relative error ratio, 
and Receiver Operating Characteristic (ROC) curve to concretely evaluate and 
compare the performances of the four fusion strategies. The experimental re-
sults demonstrate that the Weighted Average and Perceptron Average strategies 
can achieve better diagnostic performance compared to the Majority Vote and 
Simple Average methods. 

1   Introduction 

Breast cancer is one of the leading forms of cancer diagnosed among women in the 
United States [9]. The latest surveillance investigation indicates this type of cancer 
accounts for an estimated 32% incidence rate and an estimated 15% mortality rate in 
2005, ranking second only to lung carcinoma [9]. The most common and palpable 
signs of cancer are lumps or masses detected in the breast, and the benign masses are 
frequent in a majority of cases [12]. Studies have shown that early diagnosis by means 
of breast imaging, including digital mammography, ultrasound imaging, and magnetic 
resonance imaging (MRI), could help prognosis and increase therapeutic options [4]. 
In this paper, we are considering the binary classification problem of distinguishing 
benign or malignant breast lesions. In order to improve the biopsy yield ratio, tech-
niques and systems are being developed for computer-aided diagnosis, to effectively 
assist radiologists and physicians in screening and diagnosis [1]. 

Recently, artificial neural networks have been applied to classifying mammo-
graphic masses for early-stage breast cancer detection and diagnosis [21], which 
would help reduce the number of unnecessary surgical biopsies. Artificial neural 
networks, with the properties of experience-based learning and generalization ability, 
are regarded as one of the emerging computational technologies for solving complex 
problems that might not have a tractable solution provided by traditional methods. 
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However, when given a complex data set, different neural classifiers typically pro-
vide diverse generalizations by determining different boundaries. The variety of per-
formance would be dramatically influenced by a number of factors, including differ-
ent network architectures, learning styles (supervised or unsupervised), network archi-
tecture (the number of layers and hidden nodes involved, type of activation functions, 
and degree of connectivity), training parameters (weights initialization, learning rates, 
and training epochs), and so forth. 

Previous research showed that an ensemble of neural networks may significantly 
improve the generalization capability of an intelligent system [10], [18]. Other than 
solely toiling over the training data toward an expected generalization, a group of 
Component Neural Networks (CNNs) could work collectively with given fusion 
strategies to ameliorate the classification capability, and then hopefully solve an entire 
complex problem. The ensembles of neural networks can be divided into two main 
categories: Generative and Nongenerative methods [11]. The Generative methods 
generate a series of CNNs whose training sets are determined by the performance of 
former ones (e.g. Boosting [5]), or based on the bootstrap sampling data sets (e.g. 
Bagging [2]). The Nongenerative ensembles combine their well-devised CNNs to 
comprehend the entire problem and drive a comprehensive decision with the fusion 
strategies. The research focus has recently been shifted from practical applications of 
ensembles towards investigating why ensembles and fusion strategies may work so 
well and in which situations some methods may outperform the others [14], [23]. In 
the following sections, we will focus on the Nongenerative ensemble methods in the 
context of distinguishing between malignant and benign breast lesions. 

The rest of this paper is organized as follows. Section 2 and Section 3 describe the 
optimal Multilayer Perceptron (MLP) architecture selection and several linear fusion 
strategies applied in our experiments. Section 4 presents the empirical results of breast 
cancer diagnosis. Section 5 discusses some technical details of linear fusion strategies. 
Conclusion and directions for the future work are presented in Section 6. 

2   Optimal MLP Architecture Selection Based on Regularization 

The implementation of the optimal MLP architecture selection in our work contains 
two steps: First, search the minimum risks associated with a series of MLP structures 
based on parameter regularization and cross-validation; later select the optimal MLP 
architecture according to the dynamics of the minimum-risk ranking. 

Interpreted as a nonlinear system, a MLP maps the input features x, P N×∈ℜx  by fol-
lowing the rule: ( , )O x w , P M×∈ℜO . Referring to Hornik et al. [8], we consider the 

MLP with N input nodes, K hidden nodes in only one hidden layer, and M output nodes 
(herein denoted as (N-K-M) architecture.) Let ,k mw  be the weight between m-th output 

node and k-th hidden node, and ,n kw  be the weight between the k-th hidden node and n-
th input node. The MLP architecture is selected by minimizing a scalar risk function 

( , )R w λ , which is the sum of a performance-loss function ( )E w , and a complexity-cost 

function ( )C w  parameterized by a linear regularization vector λ , i.e., 

T( , ) ( ) ( )R E C= +w λ w λ w  (1) 



 Breast Cancer Diagnosis Using Neural-Based Linear Fusion Strategies 167 

where the parameter λ  represents the relative importance of the complexity-cost in 
respect of the performance-loss.  

For regression and signal processing problems, the loss function is normally meas-
ured by mean squared errors between the expected targets tp and the estimated outputs 
over training patterns, i.e., 
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where ( )pe w  denotes the error between the expected targets and estimated outputs. 

There are some complexity regularization methods, well-known as Weight Decay 
[7] and Weight Elimination [19]. Here we only consider the Weight Decay proposed 
by Hinton et al. [7]. In the Weight Decay, the complexity cost is defined as squared 
norm of the synaptic weights, including the input-to-hidden and hidden-to-output 
weights. Thus the regularization term in the risk function is 

[ ] [ ]

2 22T T
, ,

T T2 2 T T
, , , , , ,

( )

, , , ,

NK N K KM K M

NK KM N K K M NK KM N K N K K M K M

C λ λ

λ λ λ λ

⋅ = ⋅ = +

⎡ ⎤ ⎡ ⎤= ⋅ = ⋅ ⋅ ⋅⎣ ⎦⎢ ⎥⎣ ⎦

λ w λ w w w

w w w w w w

 
(3) 

For architecture selection purpose, the Cross-Validation approach [3], [16] is em-
ployed to validate the optimal network architecture with the best-performance pa-
rameter estimates. Normally, data for regression and classification problems may 
involve a training set and a testing set, and in the L-fold cross-validation method, all 
the available training set of P patterns would be randomly split into L disjoint subsets 
of approximately equal size, i.e. 

1 V
L l
lP P== ∪  and 

V V: i ji j P P∀ ≠ = ∅∩ . Training and 

validation are repeated for a total of L trials, in the l-th iteration using the subset 

V\ lP P  for training and the other subset 
V
lP  for validation. The performance-loss of L-

fold cross-validation is estimated by the average of validation mean squared errors: 
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Using the second order information during regularization [3], the parameter vector 
λ  would converge through the gradient descent path of the network risk: 

( 1) ( )
V ˆ( )i i η+ = − ⋅∇ Γλλ λ w  (6) 

where is 0η >  is the convergence update rate. Note that during the i-th iteration the 

synaptic weights ŵ  (or to be explicitly written as ˆ ( )w λ ) is an implicit function of 
( )iλ , since λ  could only be optimized after the settlement of synaptic weights ŵ . In 

case of linear regularization, the gradient of the cross-validation error is 
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Following the differential chain rule, the gradient vector of the cross-validation er-
ror can be derived:  

( )
T

V Vˆ ˆ( ) ( )
ˆ ( )

l l l ll
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∂ ∂ ∂
w ww

w λ
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where Tl∂ ∂w λ  is the derivative matrix of synaptic weights. To get this derivative 

matrix, we consider the Taylor expansion of scalar risk function around ( )iλ : 
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where ( )( )io −λ λ  represents a high-order small value which could be ignored when 

estimated. Note that when regularization parameter vector λ  meets the optimal scene 
(i.e. both the gradient of the cross-validation error and network risk cannot be updated 
further), derived from (9), we have  
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Combining (1), (3), (4), and (7), we may develop  
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Finally, substituting (11) into (8) gives  
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where 2 T
V ˆ ˆ( ) ( , )l lH R= ∂ ∂ ∂w w λ w w is the Hessian matrix of the risk function, and 

V ˆ( )l lE∂ ∂w w  could be estimated during training over the validation subset. 

3   Linear Fusion Strategies for Combining Neural Classifiers 

There are several Non-generative neural networks fusion strategies that have proved 
to be effective in improving the classification performance [10], [22]. In general, 
they can be differentiated into two styles: Fixed and Trained rules [15]. Fixed rules, 
e.g. Majority Vote (MV) [18] and Simple Average (SA) [14], do not need any train-
ing phase in the fusion. Trained rules, on the other hand, like Weighted Average 
(WA) [15] and Perceptron Average (PA) [22], require a learning phase to initialize 
and adjust fusion parameters. For the MV fusion, the class which receives the larg-
est number votes among the CNNs is chosen as the consensus or majority decision. 
For the SA and WA fusions, the CNNs are linearly combined to form an overall 
decision. In this investigation, we use the both fixed and trained fusion methods to 
effectively improve performance of multiple classifier systems for breast cancer 
diagnosis. 
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Simple Average (SA). For the SA fusion, the outputs of the independently trained 
CNNs are assumed to be scalar-valued and then linearly combined with the equal 
fusion coefficients to form an overall output. Assume a fusion combines the outputs 
of total K CNNs, with normalized fusion coefficients αk, and we have 

1
ˆ( ) ( , ), 0
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=
= ⋅ ≥∑x O x w  (13) 
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kk
k Kα

=
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where ˆ( , )k pO x w  denotes the output of the k-th CNN for a given p-th input pattern 

vector xp. For the SA fusion, the fusion coefficients are αk = 1/K. 

Weighted Average (WA). In the WA fusion [17], for a one-dimensional input xp, the 
estimation of the a posteriori probability of the i-th class from the output of the k-th 
CNN is denoted as ˆ ( )i

k pp x . According to Roli et al. [15], it can be expressed as 

ˆ ( ) ( ) ( )i i i
k p k p k pp p ε= +x x x  (15) 

where ( )i
k pp x  is the a posteriori probability of the i-th class, and ( )i

k pε x  denotes the 

estimation error. Assume that the class boundaries provided from the approximate a 
posteriori probabilities are close to the optimal Bayes boundaries [17]. According to 
Tumer et al. [17], if the estimation errors ( )i

k pε x  on different classes are independent 

and identically distributed (i.i.d.) variables with zero mean and variance 2
εσ , the ex-

pectation of the added errors (the error in addition to the Bayesian one) can be ex-
pressed as 2addE sεσ= , where s  is a constant term depending only on the values of 

probability density functions at the optimal decision boundary. Using (14) and (15), 
under the hypothesis that the output of the network approximates the posterior prob-
abilities of the classes, the a posteriori probability of the linear fusion is 

1
ˆ ( ) ( ) ( ) ( ) ( )

Ki i i i i
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where ( )i
pε x  denotes the estimation fusion. In the case of uncorrelated estimation 

errors, the expectation add
aveE  of the added error of the WA fusion is [15] 
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Considering (13), the fusion coefficients that minimize add
aveE  are [17] 
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In other words, the optimal fusion coefficients are inversely proportional to the ex-
pectation errors of each CNN.  

Perceptron Average (PA). When the data are statistical independent Gaussian 
distributed, the operation of the Bayes classifier reduces to a linear classifier, which  
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is equivalent to the perceptron having exponential family activation functions [6]. 
Note that the WA fusion is “parametric,” because its derivation is contingent on the 
assumption that the underlying distributions of the estimation errors εk(xp) on 
different classes are Gaussian, which may limit its area of applications. On the other 
hand, the perceptron convergence algorithm is “non-parametric” in the sense that it 
makes no assumptions concerning the form of the underlying distributions [6]. It 
operates by concentrating on errors that occur where the distributions overlap. It may 
therefore work well when the input patterns are generated by some nonlinear 
physical mechanisms whose distributions might be heavily skewed and non-
Gaussian. With such a concept, we may utilize the perceptron convergence algorithm 
to train the linear fusion to obtain the optimal fusion coefficients assigned to each 
output of the CNNs. In the PA fusion, the bias b(n)(xp) over the p-th input pattern at 
the n-th training epoch is treated as an additional coefficient driven by a fixed input 
equal to +1. Let D(n)(xp) denote the desired fusion output at the n-th training epoch, 
we have: 

( )
1 if belongs to

( )
1 if belongs to

pn
p

p

malignant
D

benign

+⎧⎪= ⎨−⎪⎩

x
x

x
 

(19) 

Thus, the fusion coefficients and bias are updated by following the rule: 

( )( 1) ( ) ( ) ( ) ( ) ˆ( ) sgn ( ) ( , )n n n n n
k k p p k pD Fα α+ ⎡ ⎤= + − ⋅⎣ ⎦x x O x w  (20) 

( )( 1) ( ) ( ) ( )( ) ( ) ( ) sgn ( )n n n n
p p p pb b D F+ ⎡ ⎤= + −⎣ ⎦x x x x  (21) 

4   Experimental Results 

4.1   Data Description 

The data set applied in our experiments was obtained from the Wisconsin Diagnostic 
Breast Cancer Database described by Mangasarian et al. [13]. The data set contains 
569 instances (357 benign cases and 212 malignant cases) with thirty real-valued 
input features, including the mean, standard error, and “worst” or largest (mean of the 
three largest values) of ten cell nucleus attributes (i.e. radius, texture, perimeter, area, 
smoothness, compactness, concavity, concave, points, symmetry, fractal dimension). 
In the experiments, we split the whole data set into two sets: training set and testing 
set, each involving 200 instances and 369 instances, respectively. And we divided the 
thirty input features into three parts: Mean, Standard Error, and Largest Deviation 
features of the ten cell nucleus attributes correspondingly sent to three CNNs (labelled 
CNN-1, CNN-2, CNN-3) which to be independently trained by the Resilient Back-
propagation, Scaled Conjugate Gradient, and Levernberg-Marquardt algorithms. All 
the input features were normalized to zero mean and unity standard deviation in order 
to accelerate the backpropagation learning process. And the MLP performance was 
validated with the 10-fold cross validation. 
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Fig. 1. The convergence of regularization parameter vector λ = [λNK, λKM]T through the gradi-
ent descent path of the network risk (the track points are depicted as “+”). The current MLP 
architecture is (10-4-1) and trained by the Resilient BP algorithm. 
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Fig. 2. MLP risk dynamics curves and MSE performance independently carried out by different 
algorithms for the CNNs in breast cancer diagnosis 

4.2   Results of Optimal MLP Architecture Selection 

Referring to (1), the risk exported from a MLP would be jointly affected by the syn-
aptic weights and regularization parameter vector λ. In order to achieve the optimal 
architecture for a particular task, we first relax the number of the hidden nodes at the 
range from 1 to 10, and then search the most appropriate parameter vector λ which 
minimizes the risk associated with each certain network structure. In this case, we will 
have a series of 10 dynamic networks which reach the minimum risks within their 



172 Y. Wu et al. 

own structures. On comparison of the risk dynamics, the optimal MLP architecture 
could be found. In Fig. 1, we can observe that the regularization parameter vector λ 
converges through the gradient descent risk path on the network (10-4-1) for CNN-1. 
By locating the regularization parameter vector λ after convergence (referring to (6)), 
we will find the minimum risk on each network structure. Later, the optimal MLP 
architecture can be obtained according to the risk dynamics curve varying from a 
series of hidden nodes (see Fig. 2). The optimal structures for CNN-2 and CNN-3 are 
(10-5-1) and (10-2-1), respectively. Their regularization convergence situations are 
quite similar to the one of CNN-1, and are not illustrated again. 

4.3   Results of Breast Lesion Classification Via Linear Fusion Strategies 

Table 1 and Table 2 show the weighted coefficients and diagnostic results of the four 
fusion strategies. Note that absolute errors are the misclassification cases in percent-
age terms, and for relative error ratios, the averaged error of the CNNs is regarded as 
1.0000, and the reported error of each fusion is in fact the ratio over that of the aver-
aged value of the CNNs. In Table 2, we find that MV and SA are at the same degree, 
when WA and PA are at a lower level in terms of relative error ratio. 

Table 1. Normalized fusion coefficients assigned to the CNNs in different fusion strategies 

Weighted Coefficients Fusion Strategy 
CNN-1 CNN-2 CNN-3 

MV Fusion N/A N/A N/A 
SA Fusion 0.3333 0.3333 0.3333 
WA Fusion 0.3727 0.2037 0.4236 
PA Fusion 0.3401 0.2081 0.4518 

Table 2. Diagnostic performances of different fusion strategies 

 MSE Absolute Error (%) Relative Error Ratio 
CNN averaged 0.3577 8.9431 1.0000 

MV Fusion 0.3111 7.7778 0.8697 
SA Fusion 0.2883 7.2087 0.8061 
WA Fusion 0.2060 5.1491 0.5758 
PA Fusion 0.1951 4.8780 0.5454 

Measures of overall error of classification as percentage provide limited indications 
in a medical diagnostic method. Especially in breast cancer diagnosis, a misidentifica-
tion between benign mass and malignant tumor has their different costs [4]. The pro-
vision of separate correct classification rates for each class, such as Sensitivity/True 
Positive (TP) rate (the percentage of cancer correctly diagnosed) and Specificity (the 
percentage of benign lesions correctly diagnosed), can facilitate improved analysis. A 
Receiver Operating Characteristic (ROC) curve is a plot of operating points showing 
the possible tradeoff between the classifier’s TP rate versus its False Positive (FP) rate 
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(1-Specificity) [20]. A summary measure of effectiveness of classifier is given by the 
ROC Area Under Curve (AUC). Here we show two zoomed ROC plots in Figures 3 
(a) and (b), because if we move out the range of 0.03 to 0.3 in the horizontal axis, all 
four fusion ROCs tend to converge with no apparent significant differences. It is clear 
from Fig. 3 that the PA fusion’s ROC covers a larger area (AUC = 0.9801) than the 
second ranking one of the SA fusion (AUC = 0.9775). It is interesting that the WA 
fusion strategy just covers the smallest area under the ROC, and the further discussion 
is provided in Section 5. 
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(a)                                                                        (b) 

Fig. 3. ROC curves of all four fusion strategies in breast cancer diagnosis: (a) panoramic 
curves, and (b) zoomed curves from the range of 0.03 to 0.3 in the horizontal axis 

5   Discussion 

For the MV fusion, assuming that only two classes are considered, and we restrict the 
choice of the number of CNNs (N) to an odd number. The MV fusion will assign the 

wrong class to input vector x  if at least 1
2

N +  CNNs incorrectly vote for it. It is there-

fore possible that the consensus decision might be worse than that of the best individ-
ual CNN. So the decision of MV fusion might not be always superior to all the indi-
vidual CNNs. 

The SA fusion is widely used due to its simplicity and effectiveness, which has 
been demonstrated in several experimental studies. However, it might suffer from 
individual classifiers whose performances are significantly diverse. In our experi-
ments, the SA fusion was poor at fusing the individual CNNs, i.e., the relative error 
ratio of the SA fusion is 0.2303 and 0.2607 above those in the WA and PA fusions, 
respectively (see Table 2). 

For the WA fusion, we note in Fig. 3 (a) that the ROC curve of the WA fusion as-
cends slowly (even behind the MV and SA fusions) from 0 to 0.02 in the horizontal 
axis. We believe that the preliminary assumption of Gaussian distributions for the 
estimation errors on different classes in the WA fusion results in this phenomenon in 
the ROC curve, especially when a casualty of training data sizes. 
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The PA fusion can achieve the lowest absolute error and relative error ratio in our 
experiments, but it is vastly inferior to the WA when a moderate FP rate is tolerable. 
This could be the direction for us to improve the PA fusion in the future work. 

6   Conclusion 

In this paper, we presented the MLP architecture selection method based on parameter 
regularization and cross-validation, and four linear fusion strategies for combining the 
component MLP classifiers. The numerical experiments reveals the pitfalls of the 
MV, SA, and WA fusion strategies in solving the classification of breast lesions, and 
also exhibits the advantages of the PA fusion strategy, which achieves the lowest 
absolute error and relative error ratio, and has the top ranking AUC in its ROC versus 
the other linear fusion strategies. The development of new adaptive weighted average 
algorithm and the nonlinear fusion strategies will be the next step of our work. 
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