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Abstract—The electrocardiogram (ECG) is the most commonly 
used signal for diagnostic purposes in medicine. The adaptive 
filtering technique is suited for filtering ECG signals, which are 
inherently nonstationary. In this paper, we propose a novel 
neural-network-based adaptive filter to eliminate high-frequency 
random noise in ECG signals. We make use of a linear artificial 
neural network (ANN) with delayed values of the ECG time 
series as the filter inputs. The ANN does not contain a bias in its 
summation unit, and the coefficients are normalized. During the 
learning process, the normalized coefficients are used in the 
steepest-descent algorithm in order to achieve efficient online 
filtering of noisy ECG signals. 
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I.  INTRODUCTION 
Computerized electrocardiography is a well-established 

practice. However, surface recording of the electrocardiogram 
(ECG) by placing electrodes on the subject’s skin is susceptible 
to several different types of artifacts and noise. Commonly 
encountered artifacts include physiological signals generated 
by other organs or muscles of the body, and external 
interference from electronic medical devices, lights, or 
machines. Effective noise cancellation in the ECG is essential 
before further processing in applications such as beat 
classification, fetal ECG signal extraction from the maternal 
abdominal ECG, and the detection of cardiovascular 
abnormalities [1], [2]. 

The fundamental principles of adaptive filtering have been 
described by Widrow et al. [3]. The literature shows that many 
adaptive filtering methods have been effectively applied in 
diverse practical applications. Xue et al. [4] developed adaptive 
whitening and matched filters based on artificial neural 
networks (ANNs) to detect QRS complexes in ECG signals. 
Thakor and Zhu [5] proposed an adaptive recurrent filter to 
acquire the impulse response of the normal QRS complex, and 
applied it for arrhythmia detection in ambulatory ECG. 
Hamilton [6] compared adaptive and nonadaptive 60 Hz notch 
filters for reduction of power-line noise and ECG data 

compression. Sameni et al. [7] utilized an extended Kalman 
filter to extract the ECG from corrupted signals. 

Although several filter structures have been proposed in the 
literature, many are inconvenient to use by physicians or 
engineers in practical applications, due to the requirement to set 
various parameters at appropriate values. The aim of this paper 
is to propose a normalized adaptive filter based upon an 
Unbiased Linear Artificial Neural Network (ULANN) to 
reduce high-frequency random noise in ECG signals. 

The remaining parts of this paper are organized as follows. 
Section II presents the structure of the ULANN, together with 
the algorithm for updating the normalized filter coefficients. 
Section III provides a description of the signal preprocessing 
steps and the signal template model. Section IV presents the 
results of the ULANN filter in relation to those provided by the 
popular least-mean-square (LMS) and recursive-least-squares 
(RLS) filters [8]. Section V concludes the paper with 
discussion and directions for future work. 

II. UNBIASED LINEAR ARTIFICIAL NEURAL NETWORK 
(ULANN) WITH NORMALIZED FILTER COEFFICIENTS 

The structure of the ULANN filter is illustrated in Fig. 1. 
The ULANN filter is a transversal, linear, finite impulse 
response (FIR) filter, whose output is the convolution of the 
input signal ( )x n  with the filter coefficients ( )mw n :  
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where ( )s n  is an estimate of the reference signal ( )d n  that is 
available from the template model.  The primary difference 
compared with the LMS filter is that the ULANN filter does 
not contain a constant bias and the corresponding coefficient 
assigned for the same. The filter transfer function is given 
according to the time-domain input-output relationship as 
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In order to obtain unit gain at DC, the FIR filter coefficients 
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Figure 1. (a) Block diagram of the adaptive transversal filter.            
(b) Detailed structure of the ULANN adaptive filter.  
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By comparing the estimated signal with the reference input, 
we can produce the instantaneous error ( )e n , i.e., 
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The ULANN filter is optimized by using the steepest-
descent algorithm, which is considered to be a deterministic 
search method in the multidimensional filter-coefficient space. 
The convergence of the squared instantaneous error follows a 
distinct path provided by the corresponding negative gradient 
with respect to the filter coefficients, i.e., 
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By substituting (3) and (5) into the steepest-descent 
adaptation rule [8], we have the ULANN filter coefficients 
updated as 
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where µ  represents the learning rate (typically 0 1µ< < ) that 
indicates the search magnitude in the negative gradient 
direction. 

In each iteration of updating the filter coefficients, the filter 
coefficients should be modified so as to follow the requirement 
of (3), with the normalization 
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where ˆ ( 1)mw n +  is the estimated coefficient value after the 
coefficient adaptation process. 

III. IMPLEMENTATION OF SIGNAL PREPROCESSING AND 
ADAPTIVE FILTERING PROCEDURES 

The ECG data used in our experiments are 22 records of 
lead II noisy ECG signals recorded from a total of 11 subjects 
(seven females and four males, aged 4 to 29 years, including 
two normal subjects and nine patients with suspected 
cardiovascular abnormalities causing murmurs), sampled at 
1000 Hz [9]. Fig. 2 (a) gives an example of an original signal. 
The complete implementation of the filtering procedures 
contains a signal preprocessing procedure which prepares the 
original signals for the appropriate inputs and templates for 
adaptive filtering. The procedures are presented, step-by-step, 
in the following subsections. 

A. Derivative-based Highpass Filter 
The first-order difference operator is used in the form of an 

infinite impulse response (IIR) filter to eliminate low-
frequency baseline wander in the ECG signal, with the transfer 
function 
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where sf  denotes the sampling frequency [1]. The zero at 1z =  
is to reject the DC component. A pole is set at 0.995z =  so as 
to make the gain of the filter increase rapidly after DC. The 
magnitude response is commonly normalized so as to provide 
unit gain for frequencies greater than about 1 Hz. In our 
experiment, this highpass filter was used to remove baseline 
drift with no significant distortion of the QRS complexes in the 
ECG signals. 

B. Comb Filter 
Undesired components at 60 Hz and its harmonics are 

usually present in ECG signals as periodic artifacts due to 
power-line interference. In order to attenuate such periodic 
interference, we applied a comb filter with the transfer function 
[1] 
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The filter has zeros at 60, 180, 300, and 420 Hz, with the 
sampling rate at 1000 Hz. The coefficients were multiplied by 
the factor 0.6312 so that the filter has unit gain at DC. 
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Figure 2. Illustration of the filtering steps with an ECG (No. 23 from the database). (a) Original signal. (b) Output of the combination of the first-order 
derivative-based and comb filters (with the detected locations of QRS complexes marked). (c) Rebuilt template signal. (d) Rebuilt output of the LMS filter. 

(e) Rebuilt output of the RLS filter. (f) Rebuilt output of the ULANN filter. The abscissa is marked in seconds.  

C. QRS Detection 
The QRS complex provides pivotal information for the 

analysis of ECG signals [10], and is frequently used as a real-
time trigger for multichannel physiological signal processing 
[11]. After each QRS complex in a given ECG signal has been 
identified, the heart rate may be calculated, the ST segment 
may be examined for evidence of ischemia or infarction, or the 
ECG waveform may be classified as normal or abnormal. For 
the detection of QRS complexes, we applied the method of 
Murthy and Rangaraj [12], which includes the squared first-
derivative operator, a moving-average filter, a threshold 
operator, and a simple peak-searching procedure. 

In our experiments, the QRS complex is used as a reference 
for the segmentation of cardiac-cycle-to-cycle P-QRS-T waves 
and the building of the signal in the filter and output channels. 

D. Template Establishment 
The signal template used as the reference input for the 

adaptive filters is different from one cardiac cycle to another. 
First, segments of the ECG signal starting with the P wave and 
ending with the T wave from all cardiac cycles in the given 
signal are identified. Then, the P-T segment of the current 
cardiac cycle is smoothed with a Butterworth lowpass filter (-3 

dB cutoff at 75 Hz), and used as the reference input of the 
current cardiac cycle for the adaptive filters.  

E. Adaptive Filters 
For the purpose of comparison, we also implemented the 

popular LMS and RLS adaptive filters [8]. The signal inputs 
for each adaptive filter are time series of cardiac P-T segments 
one followed by another, because the signal samples between 
successive cardiac cycles do not offer much information in 
most ECG signals. The reference input for the filters is the 
template signal for each cardiac cycle. By following the 
adaptation rule for each filter, the optimal parameters of each 
filter (listed in Table I) may be obtained. It is worth noting that 
the ULANN filter is the most sensitive of the filters used, 
because the active range of the filter parameter is much wider 
than that of the LMS or RLS filter. 

 

F. Rebuilding Channel Signals 
Cardiologists and physicians would prefer to read the whole 

ECG signal instead of cardiac-cycle-to-cycle segments. For this 
reason, we have to rebuild the channel outputs for the filters, 
together with the template signals. 
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In order to rebuild the channel signal, the isoelectric line 
was set to be the mean value of the difference between the 
preprocessed signals and the template signals. The smoothed 
template signal was placed upon the isoelectric line at every 
position where the corresponding QRS complex was detected 
in the original signal to form a template channel of the same 
duration as the original signal. For the channel output of a 
filter, the rebuilding procedure is similar, with the only 
difference being that the filter output signal is utilized instead 
of the template signal. 

 

TABLE I.  PARAMETERS OF ADAPTIVE FILTERS 

 Filter Parameters 
ECG 
(No.)* 

Step Size 
(LMS) 

Forgetting Factor 
(RLS) 

Learning Rate 
(ULANN) 

1            0.03 0.9        0.007 
2            0.05 0.8        0.00005 
3            0.04 0.9        0.001 
4            0.04 0.7        0.01 
5            0.02 1.0        0.0009 
6            0.03 1.0        0.0005 
8            0.001 0.9        0.001 
9            0.014 0.8        0.001 

10            0.03 0.6        0.0008 
11            0.03 1.0        0.001 
12            0.06 0.9        0.01 
13            0.005 0.8        0.0005 
14            0.04 0.9        0.0001 
15            0.02 1.0        0.05 
16            0.001 1.0        0.0001 
17            0.02 0.8        0.003 
18            0.02 0.9        0.1 
19            0.05 0.7        0.01 
20            0.04 0.5        0.01 
21            0.001 0.8        0.0005 
22            0.002 1.0        0.0005 
23            0.04 1.0        0.2 

*. The No. 7 raw ECG signal does not exist in the database used. 

IV. RESULTS 
The rebuilt channel outputs of the three filters studied are 

shown in Fig. 2 (d)-(f), with the reference input in (c). The 
root-mean-squared error (RMSE) for the LMS, RLS, and 
ULANN adaptive filters, computed between the filter output 
and the corresponding template and averaged over the 22 ECG 
signals processed, are 0.0404 ± 0.0159 (mean ± standard 
deviation), 0.0391 ± 0.0075, and 0.0333 ± 0.0102, respectively. 
The filtered signals were also compared with the templates 
derived from each ECG signal using a measure of normalized 
correlation coefficient, and the nature of the noise removed by 

each filter was characterized by Shannon’s entropy; the details 
of these measures are described in a companion paper [13].  

V. CONCLUSION AND FUTURE WORK 
Results obtained with 22 ECG signals indicate that the 

proposed ULANN adaptive filter can achieve lower average 
error with respect to a template derived from each ECG signal. 
Future work would include a study of the convergence 
characteristics of the filter coefficients on the squared-error 
performance surface, in accordance with the learning rate. The 
performance of the ULANN method needs to be tested with 
ECG signals including ectopic beats and abnormal waveforms. 
Furthermore, a noise reference channel could also be derived 
from the original signal to facilitate improved adaptive 
filtering. 
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