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Figure 1. Illustration of the effect of combination of the derivative-
based and comb filters with an ECG signal (No. 14 from the database). 
(a) Original signal. (b) Power spectrum of the signal. (c) Output of the 

combination of the derivative-based and comb filters. (d) Power spectrum 
of the output of the combination of the derivative-based and comb filters. 
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Abstract—Filtering electrocardiogram (ECG) signals calls for a 
filter whose impulse response can be automatically adjusted 
according to the varying characteristics of the signal and 
artifacts. In order to eliminate effectively the artifacts in ECG 
signals, we propose the unbiased linear artificial neural network 
(ULANN) as a new type of adaptive filter. This paper compares 
the performance of the ULANN filter with the prevailing least-
mean-squares (LMS) and recursive-least-squares (RLS) adaptive 
filters, for the removal of artifacts in noisy ECG signals. The 
measures of performance include the root-mean-squared error, a 
normalized correlation coefficient (NCC), and entropy. A 
template derived from each ECG signal is used as a reference to 
derive the measures. The NCC values for the ULANN, LMS, and 
RLS filter, averaged over 22 ECG signals, are 0.9956 ± 0.0022, 
0.9948 ± 0.0020, and 0.9940 ± 0.0026, respectively. The results 
indicate that the ULANN filter provides filtered signals with the 
highest waveshape fidelity among the three filters studied. 

Keywords—Adaptive filters; ECG; Entropy; Correlation coefficient 

I.  INTRODUCTION 
The electrocardiogram (ECG) is the electrical manifestation 

of the contractile activity of the heart, and is the most 
commonly used biomedical signal for the detection of 
asymptomatic arrhythmia and diagnosis of cardiovascular 
diseases or abnormalities [1]. In clinical practice, ECG 
recordings commonly contain concomitant artifacts, including 
baseline drift, power-line interference, and high-frequency 
random noise. The stage of artifact removal is crucial in ECG 
monitoring systems, and fundamental for many other ECG 
processing applications [2]. Unfortunately, most conventional 
approaches suffer from drawbacks of unreliability in dealing 
with ambiguous patterns derived from noisy signals. Artificial 
neural networks (ANNs), with the properties of experience-
based learning and fault tolerance, are considered to be 
promising for the analysis of ECG signals. Recently, ANN 
techniques have been exploited for the detection of QRS 
complexes [3] and classification of myocardial ischemia [4]. 

In a companion paper [5], we proposed an unbiased linear 
artificial neural network (ULANN) for the removal of artifacts 
in ECG signals. This paper evaluates the performance of the 

proposed adaptive filtering method. The results of the ULANN 
filter are compared with those of the least-mean-squares (LMS) 
and recursive-least-squares (RLS) adaptive filters [6]. 

The subsequent parts of this paper are structured as follows. 
Section II provides brief descriptions of the procedures of 
adaptive ECG filtering, along with details of the proposed 
quantitative measures of performance. Section III presents 
empirical results of evaluation the adaptive ECG filters. 

This work was supported by the Doctoral Program Foundation of 
Ministry of Education of China under the Grant No. 20060013007, and the 
2006 Innovation Research Funds from the Graduate School, Beijing 
University of Posts and Telecommunications. 
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Figure 2. Illustration of the filtering steps with an ECG (No. 4 from the database). (a) Original signal. (b) Output of the combination of the first-order 
derivative-based and comb filters (with the detected locations of QRS complexes marked). (c) Rebuilt template signal. (d) Rebuilt output of the LMS filter. 

(e) Rebuilt output of the RLS filter. (f) Rebuilt output of the ULANN filter. The abscissa is marked in seconds, and the ordinate is not calibrated. 

Section IV provides a discussion on the limitations of signal 
templates for adaptive filtering of ECG signals, in relation to 
the scheme of adaptive noise cancellation. Section V concludes 
the paper with a summary of the merits of the proposed 
ULANN filter and comments on future work.  

II. IMPLEMENTATION OF ADAPTIVE FILTERING AND 
PERFORMANCE EVALUATION METHODS 

The ECG data used in our experiments are 22 records of 
lead II noisy ECG signals recorded from a total of 11 subjects 
(seven females and four males, aged 4 to 29 years, including 
two normal subjects and nine patients with suspected 
cardiovascular abnormalities causing murmurs), sampled at 
1000 Hz [7]. In the ECG signal preprocessing step before 
adaptive filtering, a first-order difference operator is applied to 
cancel baseline wander without distorting the QRS complexes 
in the ECG signal. A comb filter is used to eliminate the 
fundamental 60 Hz and higher-order harmonics (at 180, 300, 
and 420 Hz) present in artifacts due to power-line interference. 
The QRS complexes in the ECG signal are detected using a 
computationally efficient method designed by combining a 
smoothed derivative-based filter, a threshold operator, and a 

peak-searching approach. In order to set up a signal template, 
the P-T intervals (with the duration of 520 ms each) within the 
cardiac cycles of the ECG signal are segmented. The P-T 
segments are smoothed by using a Butterworth lowpass filter  
(-3 dB cutoff at 75 Hz), and used as the reference input for the 
corresponding cardiac cycles. The ULANN filter does not 
contain a bias in its summation unit, and the coefficients are 
normalized. During the learning process, the normalized 
coefficients are updated by the steepest-descent algorithm so as 
to achieve adaptive ECG filtering (see Wu and Rangayyan [5], 
Section II). To rebuild the output channel, the filtered cardiac 
signals are synchronously placed on the isoelectric line in 
accordance with their QRS location references.  

A sample output of the combination of the derivative-based 
and comb filters for an ECG signal (No. 14), with baseline drift 
and power-line interference that are clearly visible, is shown in 
Fig. 1. It is clear that the baseline drift and power-line 
interference seen in Fig. 1 (a) and (b) have been effectively 
eliminated, as shown in Fig. 1 (c) and (d). The rebuilt filter 
outputs of an ECG signal (No. 4) are shown in Fig. 2 (d)-(f), 
along with the raw signal (a), preprocessed signal (b), and 
rebuilt template signal (c). For a quantitative study of the 
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performance of the adaptive filters, the evaluation criteria 
utilized are as follows. 

A. Root-Mean-Squared Error 
The average magnitude of the noise remaining in the output 

of each filter is measured by the root-mean-squared error 
(RMSE) as 

 [ ]21
1

1 ( ) ( )S

SB

N
NN nB

RMSE d n s n
N =

= −∑ ∑ , (1) 

where ( )s n  is the filter output, ( )d n  is the template, BN  
denotes the number of cardiac cycles analyzed, and SN  
represents the number of samples included in each P-T 
segment. 

B. Normalized Correlation Coefficient 
The normalized correlation coefficient (NCC) is the most 

popular measure of association in time-series prediction [8]. In 
our experiments, NCC is used to characterize the similarity 
between filtered signals and the corresponding templates, as 

 1
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C. Filtered Noise Entropy 
Shannon’s entropy [9] of the first-order difference residual 

signal (original cardiac beat signal subtracted from an average 
beat or template) was used by Hamilton and Tompkins [10] for 

ECG data compression. In our investigation, Shannon’s 
entropy is used to characterize the nature of the noise ( )m n  
removed by the adaptive filter, i.e.,  

 ( ) ( ) ( )m n x n s n= − , (3) 

where ( )x n  represents the input signal. The probability density 
function of the noise removed can be estimated by calculating 
the frequencies of occurrence binP  for various bins (20 bins 
used in our experiments). The entropy of the filtered noise 
(FNE) is then defined as 

 2
for all

logbin bin
bins

FNE P P= − ∑ . (4) 

III. RESULTS OF EVALUATION OF THE FILTERS 
The empirical results of evaluation of the proposed 

ULANN filter, along with those for the LMS and RLS filters, 
are tabulated in Table I. It is worth noting that the ULANN 
filter produces a larger RMSE only for five of the 22 signals as 
compared with either the LMS or RLS filter. The ULANN 
filter provides the highest fidelity in terms of NCC for 17 
signals, among the three filters studied. Concerning the noise 
removed, as indicated by FNE, the ULANN filter outperforms 
the LMS and RLS filters for 19 and 16 signals, respectively. 
Box plots of the RMSE and NCC measures are depicted in Fig. 
3. It can be observed that the ULANN adaptive filter performs 
better, with respect to prediction accuracy and fidelity, than the 
LMS and RLS filters, with statistical significance. Similar 
statistical analysis of FNE is not appropriate, because the 
sources of noise are multifarious and not comparable. 

TABLE I RESULTS OF EVALUATION OF THE ADAPTIVE FILTERS 
ECG Root-Mean-Squared Error (RMSE) Normalized Correlation Coefficient (NCC) Filtered Noise Entropy (FNE) 

No.* Cardiac beats 
analyzed LMS RLS ULANN LMS RLS ULANN LMS RLS ULANN 

1 20 0.0269 0.0307 0.0278 0.9963 0.9951 0.9965 2.5932 2.5832 2.5856 
2 17 0.0379 0.0317 0.0315 0.9951 0.9956 0.9966 2.5407 2.5924 2.5943 
3 22 0.0391 0.0376 0.0340 0.9933 0.9932 0.9942 2.6958 2.6809 2.7177 
4 21 0.0317 0.0365 0.0310 0.9943 0.9908 0.9941 2.3934 2.3835 2.4240 
5 19 0.0322 0.0275 0.0282 0.9951 0.9960 0.9962 2.3102 2.2962 2.2338 
6 24 0.0319 0.0303 0.0257 0.9952 0.9952 0.9966 2.0290 2.0461 2.0311 
8 22 0.0353 0.0267 0.0225 0.9952 0.9965 0.9973 2.0888 2.0851 2.1013 
9 21 0.0309 0.0478 0.0231 0.9969 0.9926 0.9982 2.3242 2.3559 2.3497 

10 21 0.0316 0.0455 0.0274 0.9970 0.9938 0.9975 2.5296 2.5241 2.5111 
11 21 0.0317 0.0333 0.0207 0.9965 0.9964 0.9985 2.3031 2.3420 2.3478 
12 21 0.0395 0.0389 0.0529 0.9939 0.9937 0.9884 2.7794 2.7392 2.8521 
13 17 0.0446 0.0469 0.0320 0.9890 0.9874 0.9941 2.8065 2.8076 2.8627 
14 14 0.0294 0.0307 0.0410 0.9966 0.9967 0.9933 2.9917 2.9902 3.0243 
15 33 0.0413 0.0517 0.0449 0.9969 0.9934 0.9957 2.6324 2.6330 2.6618 
16 33 0.0502 0.0388 0.0398 0.9953 0.9969 0.9969 2.5408 2.5747 2.5978 
17 24 0.0618 0.0492 0.0640 0.9945 0.9959 0.9930 2.7907 2.7755 2.7999 
18 26 0.0339 0.0429 0.0306 0.9967 0.9944 0.9973 2.4622 2.4786 2.4218 
19 24 0.0349 0.0439 0.0252 0.9912 0.9879 0.9955 2.1742 2.1531 2.1760 
20 25 0.0336 0.0363 0.0250 0.9955 0.9942 0.9961 2.0926 2.0902 2.1210 
21 18 0.0450 0.0389 0.0307 0.9936 0.9958 0.9965 2.6482 2.6483 2.6655 
22 17 0.0392 0.0401 0.0316 0.9947 0.9935 0.9961 2.7671 2.7339 2.8174 
23 5 0.0497 0.0493 0.0466 0.9934 0.9941 0.9942 3.4191 3.4242 3.4201 

*. The No. 7 raw ECG signal does not exist in the database used. 
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Figure 3. Box plots of (a) RMSE  and (b) NCC  for the three adaptive 
filters studied. The “+” signs indicate the outliers exceeding the range of 

the corresponding box by more than 1.5 times its inter-quartile range. 

IV. DISCUSSION 

A. Fixed versus Variable Templates 
One of the strategies to generate the reference input for 

adaptive filtering is to create an unaltered signal template that 
could be obtained by averaging several initial cardiac beat 
segments. Such a scheme is simple, and causes some pitfalls. 
First, the unaltered signal template being repeated from cardiac 
cycle to cycle would enhance the stationary characteristics of 
the reference input, which might cause the adaptive filter to 
behave somewhat similarly to a fixed filter. Second, the fixed 
signal template would be inappropriate if the ECG signal 
includes ectopic beats, e.g., premature ventricular contractions. 

The use of a variable or adaptive signal template is one of a 
few possible solutions: the signal template is updated for each 
cardiac cycle, as implemented in our experiments. One possible 
strategy is to utilize the preceding filtered signal as the template 
for the upcoming heart beat. However, a normal cardiac beat 
template will not be suitable for ectopic beats. To overcome 
this limitation, we applied a Butterworth lowpass filter to 
generate a smoothed signal template, with the cost of a delay of 
one heart beat. 

B. Signal Template or Noise Reference for Adaptive Filters 
Although a variable signal template is able to increase the 

prediction accuracy of the adaptive filter, this scheme only 
deals with the current beat, rather than effectively acquiring 

statistical knowledge from the entire available history of the 
signal. One promising solution is to use noise as the reference 
input, and to convert the filter to be an adaptive noise canceller 
instead of a signal predictor. The principle behind such a filter 
is that the primary noise is not correlated with the signal of 
interest. Regardless of the changes in the ECG signal, the 
primary noise is commonly assumed to be a random variable 
with zero mean. Thus, the use of a noise reference input is 
more flexible than the approach of using a signal template. The 
primary noise estimated from the previous cardiac beat can be 
utilized to filter the upcoming beat, regardless of whether it is a 
normal or ectopic beat. An adaptive noise canceller may not 
need the procedures of QRS detection and P-T interval 
segmentation, because the source of the reference input is now 
shifted to the primary noise, not the ECG signal.  

V. CONCLUSION 
The proposed ULANN filter has improved prediction 

accuracy, resulting in high fidelity of waveshape, and the 
removal of random noise more effectively than the LMS and 
RLS filters. The strategy of a variable signal template has been 
successfully implemented in this investigation, although this 
approach requires a high level of computational complexity for 
QRS detection and P-T interval segmentation. Future work 
would be directed toward a study of adaptive noise cancellation 
based on the ULANN for both normal and arrhythmic ECGs. 
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