
Proceedings of International Joint Conference on Neural Networks, Orlando, Florida, USA, August 12-17, 2007

Breast Tissue Classification Based on Unbiased Linear Fusion of
Neural Networks with Normalized Weighted Average Algorithm

Yunfeng Wu and S. C. Ng

Abstract- The diagnosis of breast cancer is performed based
on informed interpretation of representative histological tissue
sections. Tissue distribution detected from cytologic examina-
tions is useful for tumor staging and appropriate treatment.
In this paper, we propose a normalized weighted average
(Normwave) algorithm for the unbiased linear fusion, and
also construct the multiple classifier system that includes a
group of Radial Basis Function (RBF) neural classifiers for
the classification of breast tissue samples. The empirical results
show that the proposed Normwave algorithm may improve the
performance of the RBF-based multiple classifier system, and
also reliably outperforms some widely used fusion methods, in
particular the simple average and adaptive mixture of experts.

I. INTRODUCTION

Cancers of the breast, lung and bronchus, and colon and
rectum, are top three most commonly diagnosed types of can-
cer among women in North America [1], [2]. Recent statistics
[1] indicate that breast cancer is estimated to account for
26% of all new cancer cases among women in the United
States in 2007. Early detection of primary tumors by taking
one or more breast exams such as palpation, mammography,
ultrasonography, and cytologic examinations, is important
for an improved prognosis in the treatment that can help
reduce the mortality rates [3], [4]. Screening mammography
has been shown to be effective in detection of nonpalpable
breast tumors at an early stage [4], [5], which helps a
more accurate diagnostic decision by radiologists or medical
specialists. Although mammography is commonly used in
the diagnosis of malignant carcinoma, it is not conclusive
in equivocal cases, and the result of modality study requires
confirmation with the histological examination of relevant
tissues [6]. The distribution of tissues detected from cytologic
examinations can provide important information about the
elastic characteristics of breast which would be incorporated
in building the breast deformation model [7].

Recently, more and more computational systems and ma-
chine learning algorithms have been utilized in computer-
aided diagnosis [8]. Artificial neural networks, with the
advantages of experience-based learning and generalization
ability [9], are also popular in a number of biomedical appli-
cations, such as the characterization of breast abnormalities
[10], classification of microcalcifications [11] and masses
[12], and early diagnosis of breast cancer [13].
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However, when given a noisy data set from the real
world, artificial neural networks might produce multifarious
generalizations by determining different decision boundaries
[14]. In order to ameliorate accuracy of an individual neural
classifier, the ensemble methods were proposed [15]-[19].
The scheme of an ensemble is to make a finite number
of component neural networks work collectively, and then
combine their knowledge to produce a consensus decision.
The applications of neural network ensembles in biomedicine
are rich in the literature, e.g., the spectroscopic detection of
cervical pre-cancer [20], diagnosis of breast cancer [11], [21],
[22], and prediction of protein subcellular locations [23]-
[25].
According to Valentini and Masulli [26], the ensembles of

neural networks can be categorized into two main styles:
nongenerative and generative methods. The nongenerative
ensembles confine themselves to combining a set of well-
devised component learners by means of fusion strategies,
e.g., the Simple Average (SA) [27], Adaptive Mixture of
Experts (AME) [28], Majority Vote (MV) [29], Weighted Av-
erage (WA) [30], Perceptron Average (PA) [22], and Linear
Least-Squares Fusion (LLSF) [23]. The MV and SA rules set
the fixed fusion coefficients, whereas the WA, PA, and LLSF
require a training process to initialize and update their fusion
coefficients for an adaptation of component learners. On the
other hand, the generative methods will produce a series of
component neural learners by resampling the original data
under a certain distribution. The representative algorithms are
AdaBoost [31] and Bagging [32]. AdaBoost was proposed
by Freund et al. [31] with the aim to find a final error-
free mapping function according to the given probability
distribution over the training data. Bagging introduces the
bootstrap resampling procedure [33] into ensemble systems
so that the final bias converges by average while the variance
gets much smaller than that of each component learner. In
this paper, we propose a novel ensemble algorithm for the
unbiased linear fusion of neural networks, and only focus
our study on the nongenerative ensembles.
The rest of this paper is organized as follows. Section II

presents the detailed information of breast tissue data used in
our experiments. Section III provides a detailed description
of the multiple classifier system for breast tissue classifi-
cation. Section IV presents the empirical results of three
fusion methods: the SA, AME, and the proposed normalized
weighted average fusion. The classification performance of
the multiple classifier system studied is also compared with
that of its component neural classifiers. Section V concludes
our study as well as the directions for future work.
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II. DATA DESCRIPTION AND NOTATION

The data set used in our experiments was provided by
da Silva et al. [34], and it contains the electrical impedance
measurements performed on 106 freshly excised breast tissue
samples. The impedance measurements were taken at seven
frequencies and plotted in the Argand plane. A total of
nine features computed from the impedance spectrum are:
impedance at zero frequency (10); phase angle at 500 kHz;
high-frequency slope of the phase angle; impedance distance
between spectral ends (DA); area under the spectrum; area
normalized by DA; maximum amplitude of the spectrum;
distance between 10 and real part of the maximum frequency
point; length of the spectral curve. The task is to categorize
the breast tissues present in the data set into six classes,
i.e., adipose (ADI), connective (CON), glandular (GLA),
fibro-adenoma (FAD), mastopathy (MAS), and carcinoma
(CAR). The detailed information about each tissue class is
shown in Table I. For the purpose of notation description, let
S = {(xi, ti)}N 1 (N = 106) be the set of the sample-class
pairs of breast tissues studied. The ith tissue sample that is
characterized by the vector of the impedance-measurement
features xi (Xi C Rd, d = 9), is expected to be categorized
into one of the M possible classes, i.e., ti C {t, ... ,tM}
(M = 6). For the purpose of numerical analysis, we
converted the class names into a group of M-dimensional
vectors, in which one of the M coordinates is one, and the
rest are zero.

TABLE I

CLASSES OF BREAST TISSUES

Class Names Abbreviations NTissue Samplest
Carcinoma CAR 21

Fibro-adenoma FAD 15
Mastopathy MAS 18
Glandular GLA 16
Connective CON 14
Adipose ADI 22

III. THE SCHEME OF THE MULTIPLE CLASSIFIER
SYSTEM FOR BREAST TISSUE CLASSIFICATION

A. Component RBF classifiers

An illustration of the multiple classifier system used for
the classification of breast tissues is shown in Fig. 1. In
our experiments, a total of four three-layer feedforward
neural networks based on Radial Basis Function (RBF)
were employed as component classifiers. The first layer of
a component RBF classifier contains nine sensory neurons
in accordance with tissue features. The hidden layer is
comprised of nonlinear neurons with the Gaussian kernel
function defined by

(-) = exp (- n2 U22)

where or is the spread parameter that determines the width
of the area in the input space to which each hidden neuron
responds. For example, a hidden neuron with a spread of 0.1
provides the output of 0.5 for any Euclidean distance of 0.1.
To achieve ensemble diversity, the spread parameter was set
to be incremental from 1.0 to 4.0 for each RBF classifier.
The output layer is linear, and the response of the kth
component RBF classifier to the ith tissue sample is denoted
as fk (xi), which is later sent to the succeeding linear fusion
module. The learning of all four component RBF classifier
was carried out with the orthognal least-squares method [35].
To select the optimal structure of each component classifier,
the number of hidden neurons was varied over the range
[1, 25]. From the mean-squared error (MSE) results tested
with the leave-one-out method (listed in Table II), it can be
inferred that the RBF classifiers with 14, 4, 10, and 10 hidden
neurons could produce the minimum MSEs, respectively.
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Fig. 1. Illustration of a multiple classifier system with the linear fusion of
component RBF classifiers.

B. Normalized Weighted Average Algorithm for Unbiased
Linear Fusion

To solve a multi-class pattern recognition problem, the
number of fusion modules in the multiple classifier system
is commonly set to be the same as the dimension of the
class vector, i.e., each fusion module contributes a coordinate
in the M-dimensional vector, and the interpretation of the
predicted class should provide the maximum a posteriori
probability among the coordinates.

For the sake of convenience of analytical study, we just
clarify the training process of a single linear fusion module
with the Normwave algorithm, and the working functions of
all M linear fusion modules are similar in the breast tissue
classification system studied. Consider the multiple classifier
system that consists of a total of K (K = 4) component RBF
classifiers, the output produced by a unbiased linear fusion
module functioned by the normalized weighted average can
be expressed as

K

F(xi) = Wkfk(Xi),
k=l

(1)

and
K

Ewk
kl1

1 (2)



TABLE II

MEAN-SQUARED ERRORS PRODUCED BY A SINGLE RBF CLASSIFIER

WITH DIFFERENT PARAMETERS

weighted coefficients as

wk = W +Tj [-VWkEfusion]

Number of MSE associated with different spread parameters
Hidden Nodes

a = 1.0 a = 2.0 a = 3.0 a = 4.0
1 0.1304 0.1184 0.1218 0.1182
2 0.1136 0.1064 0.1004 0.1006
3 0.1104 0.0909 0.0900 0.0900
4 0.1051 0.0800 0.0846 0.0855
5 0.1060 0.0802 0.0816 0.0835
6 0.1073 0.0805 0.0779 0.0859
7 0.1041 0.0810 0.0802 0.0805
8 0.0890 0.0824 0.0770 0.0803
9 0.0888 0.0819 0.0776 0.0794
10 0.0885 0.0801 0.0769 0.0786
11 0.0860 0.0816 0.0803 0.0790
12 0.0869 0.0819 0.0806 0.0802
13 0.0831 0.0826 0.0819 0.0805
14 0.0823 0.0841 0.0819 0.0838
15 0.0847 0.0842 0.0824 0.0856
16 0.0838 0.0844 0.0817 0.0836
17 0.0853 0.0834 0.0809 0.0842
18 0.0844 0.0830 0.0826 0.0853
19 0.0845 0.0855 0.0844 0.0880
20 0.0846 0.0847 0.0837 0.0888
21 0.0848 0.0865 0.0850 0.0904
22 0.0848 0.0873 0.0902 0.0926
23 0.0865 0.0863 0.0937 0.0929
24 0.0860 0.0857 0.0954 0.0960
25 0.0832 0.0871 0.0971 0.0950

where wk is the normalized weighted coefficient assigned
to the kth component RBF classifier. The MSE between the
linear fusion output and desired classes on the whole data
set of size N is written as

I (

Efuson -NI: 12tV
'=1

K \2-
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Therefore, the gradient of overall MSE with respect to the
weighted coefficients is computed as follows,
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By substituting (2) and (4) into the steepest-descent
method, we may derive the training rule of the fusion

N

wk+ NE
i=l

N
wk+ NE

i=l

N
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[

K

K
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(5)

where r1 is the learning rate (0 < r < 1), and ei (xi)
represents the difference between the desired class value and
actual response of the jth component RBF classifier for the
ith tissue sample, i.e.,

(6)
Equation (5) can be rewritten in the matrix form, and then

the normalized weighted average (Normwave) algorithm can
be formulated to be

Wk = Wk +wTeik (7)

where w is the K x 1 weighted coefficient vector, the
instantaneous estimated error e is a K x N matrix, and fk
is the N x 1 output vector of component RBF classifier in
accordance with the kth tissue sample.

IV. EMPIRICAL RESULTS

We carried out the 10-fold Cross-Validation method [36]
to evaluate the numerical experiments. The data set was
randomly partitioned into 10 disjoint subsets of equal size.
Each time with a single subset is retained as a validation set,
and the remaining 9 subsets are used as training data. The
10 results from the folds were then combined to produce an
overall classification for 106 tissue samples. For the purpose
of comparison, we also implemented the most frequently
used SA and AME ensemble methods.

Fig. 2 shows the overall classification accuracy performed
by the three ensemble methods, together with the average
results of the component RBF neural classifiers. It is noted
that the fusion methods can ameliorate the classification
performance in relation to that of a single RBF classifier
at an average level, in particular that the SA, AME, and
Normwave fusion improve 4.95%, 4.01%, and 7.78% accu-
racy, respectively.
The classification results on the specific tissue categories

performed by the SA, AME, and Normwave fusions are
tabulated in Table III. It can also be observed that the
Normwave fusion is superior in the tasks of categorizing the
specific breast tissues, whereas the SA and AME methods
failed to ameliorate the classification performance on the
CAR and ADI.

In addition, we also applied the measure of reliability
index [24], [25] as an indicator of the certainty level of the
ensemble results. A reliability index (RI) is defined to be

c, (xi) = ti f' (xi) -
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Fig. 2. Classification accuracy performed by different fusion methods.

TABLE III

ACCURACY OF BREAST TISSUE CLASSIFICATION

Class Classification Accuracy (%)
Names RBF SA AME Normwave
CAR 85.00 83.81 83.81 91.43
FAD 32.67 44.00 44.00 57.33
MAS 14.44 26.67 26.67 25.56
GLA 61.88 63.75 63.75 65.00
CON 84.29 92.86 92.86 92.86
ADI 92.50 91.82 91.82 97.27

In Fig. 4, the normalized classification accuracy was
calculated cumulatively with respect to a range of reliability
indices by starting with tissue samples with the highest RI,
and then progressively including those with lower indices
until the lowest RI. It can be observed that around 67% of
all the tissue samples have RI = 2, and among these tissues
about 0.89 accuracy are correctly classified by the Normwave
fusion, which is notably higher than that of the SA (0.84)
and AME (0.84) methods.
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Fig. 3. Classification accuracy over a range of reliability indices.

difference (diff) between the highest and the second highest
output value of a classification system, i.e.,

RI ={ INTEGER(diff ) + 1 if 0 < diff < 9.0
if diff> 9.0

where INTEGER(.) denotes the round function towards
zero.
The curves and values of normalized classification ac-

curacy over the reliability index provided by the ensemble
methods are presented in Fig. 3 and Table IV, respectively.
It can be observed that the performance of Normwave fusion
is consistently better than the SA or AME except for the RI
value of 7 and 10.

TABLE IV
RELIABILITY INDEX RESULTS OF THE ENSEMBLE METHODS STUDIED

Reliability Normalized Classification Accuracy
Index SA AME Normwave

1 0.39 0.34 0.40
2 0.63 0.65 0.76
3 0.80 0.75 0.80
4 0.78 0.60 1.00
5 0.50 0.83 1.00
6 1.00 0.88 1.00
7 0.83 1.00 0.83
8 1.00 1.00 1.00
9 1.00 1.00 1.00
10 1.00 1.00 0.89
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Fig. 4. Plots of cumulative accuracy and percentage of classified tissue
samples with descending reliability indices..

V. CONCLUSIONS

The empirical results of the classification of breast tissues
demonstrate that the proposed Normwave algorithm for the
unbiased linear fusion in the multiple classifier system works
effectively in improving classification accuracy, and also
achieves confident performance in terms of reliability index.
The tangible superiority versus the SA and AME methods
indicates the merits of the Normwave algorithm for the
design of multiple classifier systems.

* * A _ s = _



The theoretical analysis of the generative ensemble meth-
ods and more experimental comparison with other nongener-
ative ensemble rules, e.g., the Median, Min, Max rules [37],
[38], would be the next step of our work.
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