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Abstract Externally detected vibroarthrographic (VAG)

signals bear diagnostic information related to the rough-

ness, softening, breakdown, or the state of lubrication of

the articular cartilage surfaces of the knee joint. Analysis of

VAG signals could provide quantitative indices for non-

invasive diagnosis of articular cartilage breakdown and

staging of osteoarthritis. We propose the use of statistical

parameters of VAG signals, including the form factor

involving the variance of the signal and its derivatives,

skewness, kurtosis, and entropy, to classify VAG signals as

normal or abnormal. With a database of 89 VAG signals,

screening efficiency of up to 0.82 was achieved, in terms of

the area under the receiver operating characteristics curve,

using a neural network classifier based on radial basis

functions.

Keywords Entropy � Form factor � Knee-joint sounds �
Kurtosis � Radial basis functions � Skewness �
Vibroarthrography

1 Introduction

1.1 Diagnosis of knee-joint pathology

The knee joint is the most commonly injured or diseased

joint in the human body [41]. Arthritic degeneration of

injured knees is known to result from a variety of trau-

matic causes. Damage to the stabilizing ligaments of the

knee, or to the shock-absorbing fibrocartilage pads (the

menisci) are two common causes of deterioration of

knee-joint surfaces [39, 50]. Nontraumatic conditions of

the knee could also lead to osteoarthritis, in which the

articular cartilage softens, fibrillates, and sheds off the

surface of the patella, femur, or the tibia, contributing to

painful inflammation of the joint. Defining treatment

protocols for conditions as above is often difficult, because

the natural history of their progression in an individual

cannot be easily determined. Imaging techniques such as

X-ray, computed tomography, and magnetic resonance

imaging (MRI) can assist in the noninvasive detection of

major cartilage pathology, but cannot be routinely used in

clinical practice for screening patients or to characterize

the functional integrity of cartilage, in terms of softening,

stiffness, or fissuring. Arthrography (dye-enhanced X-ray

visualization of articular cartilage surfaces and menisci)

and enhanced MRI, both semi-invasive procedures, are

more specific for the detection of cartilage defects, but

suffer from limitations in terms of defining functional

changes over time. Arthroscopy has emerged as the gold

standard for relatively low-risk assessment of joint sur-

faces (meniscal and chondral) in order to determine the

prognosis and treatment for a variety of conditions

[25, 38]. Regardless, arthroscopy is not a practical pro-

cedure for repeated examination of patients over time,

because it is invasive and does carry risks.

R. M. Rangayyan (&)

Department of Electrical and Computer Engineering Schulich

School of Engineering, 2500 University Dr. NW University

of Calgary, Calgary, AB, Canada T2N 1N4

e-mail: ranga@ucalgary.ca

Y. F. Wu

School of Information Engineering, Beijing University of Posts

and Telecommunications, 10 Xi Tu Cheng Road,

Haidian District, Beijing 100876, China

e-mail: y.wu@ieee.org

123

Med Biol Eng Comput (2008) 46:223–232

DOI 10.1007/s11517-007-0278-7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository

https://core.ac.uk/display/41373715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.2 Knee-joint vibration signals

Mechanical vibrations emitted from knee joints during

flexion or extension are expected to be associated with

pathological conditions in the knee joint, and may be useful

indicators of the roughness, softening, breakdown, or the

state of lubrication of the articular cartilage surfaces [8, 9,

17, 19, 49, 60, 61]. Externally detected vibration signals

may provide a useful index of early joint degeneration or

disease. With appropriately standardized signal recording

and processing methods, computer-aided analysis of knee-

joint vibration or vibroarthrographic (VAG) signals could

provide quantitative indices for noninvasive diagnosis of

articular cartilage breakdown, and thus, noninvasive

staging of osteoarthritis in the knee. Detection and locali-

zation of knee-joint pathology via the analysis of VAG

signals could decrease the need for diagnostic surgery, and

could also be useful in monitoring joint function and car-

tilage deterioration over extended periods of time.

When a knee joint is flexed or extended, both the intra-

and extra-articular components may produce vibration

signals (or sounds) as they pass over one another [13, 18,

19, 24, 33, 48, 58]. The diagnostic potential of knee-joint

sounds for noninvasive characterization of articular carti-

lage disorders was first reported by Blodgett [9] in 1902.

The first measurement of knee-joint signals was reported

by Erb in 1933 [17]. Since then, significant progress has

been made in data acquisition and signal processing [11,

14, 19, 24, 41, 47, 56, 62], adaptive cancellation of muscle

interference from the VAG signal [65], localization of

sound source and pathology [59], auditory mapping and

display of VAG signals [35], and parametric representation

and screening of VAG signals [34, 36, 45, 54, 63].

There is renewed interest, among orthopedic surgeons

and developers of aids for the muskulo-skeletal system, in

the use of VAG signals for noninvasive screening of

patients presenting with complaints related to the knee joint,

prior to the recommendation of arthroscopic examination.

This arises from the clinical observation that a significant

portion of the patients who undergo arthroscopy are seen to

be free of any abnormality of the joint [38]. With the aim of

developing a screening tool for use in the clinic of a physi-

cian or an orthopedic specialist, we investigate the use of

several statistical parameters for normal-versus-abnormal

classification of VAG signals. Improved selection of

patients for arthroscopy should reduce the associated costs

to the healthcare system and the concomitant risks to the

patient. In order to simplify the signal processing and

decision-making steps, as well as to minimize the clinical

information required in the design or application of the

methods, we propose to analyze VAG signals without per-

forming adaptive segmentation or associating parts of the

signals with specific parts of the articular cartilage surfaces

and related pathology. The proposed features are based on

clinical and visual observations of the nature of normal and

abnormal VAG signals [55].

2 Methods

2.1 VAG signal data acquisition

Each subject sat on a rigid table in a relaxed position with

the leg being tested freely suspended in air. The VAG

signal was recorded by placing an accelerometer (model

3115a, Dytran, Chatsworth, CA, USA) at the mid-patella

position of the knee as the subject swung the leg over an

approximate angle range of 135� (approximately full flex-

ion) to 0� (full extension) and back to 135� in 4 s [37, 54].

The first half (approximately) of each VAG signal corre-

sponds to extension, and the second half to flexion of the

leg. Auscultation of the knee joint using a stethoscope was

also performed, and a qualitative description of sound

intensity and type was recorded, along with their rela-

tionship to joint angle. Informed consent was obtained

from each subject. The experimental protocol was

approved by the Conjoint Health Research Ethics Board of

the University of Calgary.

The VAG signal was prefiltered (10 Hz to 1 kHz) and

amplified before digitizing at a sampling rate of 2 kHz.

Each signal was normalized to the amplitude range [0, 1].

Figure 1 shows examples of normal and abnormal VAG

signals. The abnormal signal exhibits a higher degree of

overall variability and complexity than the normal signal.

The database used in the present study consists of 89

signals, with 51 from normal volunteers and 38 from

subjects with knee-joint pathology. The normals were

established by clinical examination and history. The

abnormal signals were collected from symptomatic patients

scheduled to undergo arthroscopy independent of the VAG

studies. The abnormal signals include chondromalacia of

different grades at the patella, meniscal tear, tibial chon-

dromalacia, and anterior cruciate ligament injuries, as

confirmed during arthroscopic examination.

The power and other characteristics of VAG signals

vary with the nature and severity of the associated

pathology. The dataset available is not adequate to permit

classification of the signals into various types or stages of

pathology. The present study is aimed at screening only,

that is, normal versus abnormal classification; therefore, no

restriction is imposed on the type of pathology.

As compared to previous related studies [34, 36, 54], the

dataset used in the present study lacks one abnormal VAG

signal due to corruption of the data. The present study uses

the same dataset as that used in a recent report by

Umapathy and Krishnan [63].

224 Med Biol Eng Comput (2008) 46:223–232

123



2.2 Feature extraction from VAG signals

Figure 2 shows the normalized histograms of the VAG

signals in Fig. 1. It is evident that the abnormal signal has a

broader range of significant values than the normal signal.

In order to characterize the larger variability observed

in abnormal VAG signals, as compared to normal signals,

the standard deviation or variance of the signals could be

used. An improved representation of the variability or

‘‘busyness’’ of a signal may be achieved via the measure

of form factor (FF), which was originally defined by

Hjorth [21–23]; see also Cooper et al. [15] and

Rangayyan [51]. FF is defined using three parameters.

The first parameter, activity, is the variance rx
2 of the

given signal x (defined below). The second parameter,

mobility Mx, is computed as the square root of the ratio of

the activity of the first derivative x0 of the signal to the

activity of the original signal:

Mx ¼
r2

x0

r2
x

� �1
2

¼ rx0

rx
: ð1Þ

The third parameter, complexity or FF, is defined as the

ratio of the mobility of the first derivative of the signal to

the mobility of the signal itself:

FF ¼ Mx0

Mx
¼ rx00=rx0

rx0=rx
; ð2Þ

where x00 is the second derivative of x.

The FF value of a pure sinusoid is unity; other signals

have FF values that increase with the extent of their varia-

bility or complexity. However, because the computation of

FF is based upon the first and second derivatives of the

given signal and their variances, the measure could be

sensitive to noise.

Hjorth [21–23] described the mathematical relationships

between the activity, mobility, complexity, and power
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Fig. 1 VAG signal examples: a of a normal subject; b of a patient

with knee-joint pathology. The amplitudes have been normalized to

the range [0, 1]
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Fig. 2 Normalized histograms of the VAG signals in Fig. 1: a
normal, b abnormal
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spectral density of a signal, and applied them to model the

generation of electroencephalographic (EEG) signals.

Binnie et al. [6, 7] proposed the application of FF to EEG

analysis for the detection of epilepsy.

Vibroarthrographic signals generated during extension

(approximately the first half of the duration of each signal

recorded according to the protocol described in Sect. 2.1

and illustrated in Fig. 1) have been observed to bear more

discriminant information than those related to flexion, due

to increased loading of the knee joint during the former

phase of swinging movement of the leg than the latter [37].

To account for this expected characteristic and verify the

clinical observation, values of FF were also computed

separately for the first half (extension) and second half

(flexion) of each signal, and labeled as FF1 and FF2,

respectively.

In order to characterize the differences observed

between the histograms of normal and abnormal VAG

signals, we use skewness (S), kurtosis (K), and entropy (H)

[40, 52]. The measures are based upon the moments of the

probability density function (PDF) of the given signal,

denoted by px(xl), with xl, l = 0, 1, 2,..., L @ 1, representing

the L bins used to represent the range of the values of the

signal x. In the present work, we have set L = 100. The

PDF of each signal was estimated by normalizing its his-

togram; see Fig. 2 for examples. The kth central moment of

the PDF px(xl) is defined as

mk ¼
XL�1

l¼0

ðxl � lxÞk pxðxlÞ; ð3Þ

where lx is the mean value, given by

lx ¼
XL�1

l¼0

xl pxðxlÞ: ð4Þ

The variance is given by

r2
x ¼ m2 ¼

XL�1

l¼0

ðxl � lxÞ2 pxðxlÞ: ð5Þ

The normalized third and fourth moments, known as the

skewness (S) and kurtosis (K), respectively, are defined as

S ¼ m3

ðm2Þ3=2
; ð6Þ

and

K ¼ m4

ðm2Þ2
: ð7Þ

Skewness is related to asymmetry of the PDF. Kurtosis is

related to the presence of a long tail in the PDF; it also

represents the ‘‘peakedness’’ of the PDF.

Entropy is a commonly used measure to represent the

nature and spread of a PDF, and is defined as

H ¼ �
XL�1

l¼0

pxðxlÞ log2½pxðxlÞ�: ð8Þ

The entropy is at its maximum for a uniform PDF, and has

lower values for PDFs with narrow ranges of significant

probability values.

Table 1 lists the values of the mean and standard devia-

tion of each feature described above for the normal and

abnormal signals in the dataset used. The results of appli-

cation of pattern classification methods to the features are

presented in Sect. 3.

2.3 Pattern classification

Receiver operating characteristics (ROC) curves were

generated for each feature using the software tool ROCKIT

provided by the University of Chicago [42, 43]. The area

(Az) under the ROC curve was derived to serve as a sum-

mary measure of the overall classification performance of

each experiment.

A pattern classification experiment was conducted

using Fisher’s linear discriminant analysis (FLDA) [16]

using the set of features {FF1, FF2, S, K, H}, which was

selected by using a genetic algorithm as the best set of

features from all of the six features derived [46],

including the leave-one-out (LOO) procedure for cross

validation [16]. The resulting discriminant values were

used to derive an ROC curve and the associated Az value

using ROCKIT.

Classification experiments were also conducted with

several neural networks with radial basis functions (RBF)

[20], using the set of features {FF1, FF2, S, K, H} and the

LOO procedure. An RBF network (RBFN) with a feed-

forward hidden layer (see Fig. 3) applies a nonlinear

transformation from the input space to a high-dimensional

Table 1 Mean and standard deviation (SD) of the proposed features

for the normal (51) and abnormal (38) VAG signals

Feature Mean : SD:

Normal signals

Mean : SD:

Abnormal signals

FF 3.53 : 1.93 5.29 : 3.67

FF1 3.18 : 1.33 4.93 : 2.75

FF2 3.50 : 1.63 5.16 : 3.48

S 0.80 : 2.60 @0.27 : 1.22

K 71.67 : 172.42 25.46 : 57.22

H 4.05 : 1.07 4.39 : 0.93

FF, FF1, FF2: Form factor for the full duration, the first half

(extension), and the second half (flexion), respectively. S Skewness, K
kurtosis, H entropy
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hidden space, and then produces separable responses

through a linear output transformation.

Consider a set of N labeled input feature vectors, fn,

n = 1, 2,..., N (characterizing the N = 89 VAG signals in the

present study), each of which is an M 9 1 vector. Let zn be

the desired classification response for the nth signal, rep-

resented by its feature vector fn. With reference to the

RBFN shown in Fig. 3, we have the output of the network

as

bzn ¼
XI

i¼1

wi/ðfn; ciÞ þ w0; ð9Þ

where bzn indicates an estimate of zn, the RBF / is defined

as

/ðfn; ciÞ ¼ exp � logeð2Þ
kfn � cik2

r2

 !
; ð10Þ

wi is the weight and ci is the center vector for the ith neuron

in the hidden layer, I is the number of neurons in the hidden

layer, w0 is the bias, and r is the spread parameter that

determines the width of the area in the input space to which

each hidden neuron responds. For example, a neuron with a

spread of 0.1 provides the output of 0.5 for any input vector

fn at the distance of 0.1 from its weight vector.

The major challenge in the design of an RBFN is the

selection of the centers. The selection of the centers in a

random fashion commonly leads to a relatively large net-

work with high computational complexity. In the present

work, we applied the orthogonal least-squares (OLS)

method [10], a systematic method for center selection

which can significantly reduce the size of the RBFN.

According to Eq. 9, the mapping performed by the

RBFN can be viewed as a regression model, expressed in

matrix form as

z1

z2

..

.

zN

2
6664

3
7775¼

1 /ðf1;c1Þ � � � /ðf1; cIÞ
1 /ðf2;c1Þ � � � /ðf2; cIÞ
..
. ..

. . .
. ..

.

1 /ðfN ;c1Þ � � � /ðfN ; cIÞ

2
6664

3
7775

w0

w1

..

.

wI

2
6664

3
7775þ

e1

e2

..

.

eN

2
6664

3
7775;

ð11Þ

which is equivalent to

z ¼ Uwþ e; ð12Þ

where U is the N 9 (I + 1) regression matrix with the

RBFs; z represents the vectorial form of the corresponding

values zn for n = 1, 2,..., N; w = [w0, w1,..., wI]
T; and e is the

approximation error.

The centers of the RBFN are chosen from the set of

input feature vectors (a total of N = 89 candidates). The

task of the OLS method is to perform a systematic selection

of less than N centers so that the network size can be

reduced with minimal degradation of performance during

the learning procedure. From Eq. 11, we can see that there

is a one-to-one correspondence between the centers of the

RBFN and the coefficients in the regression matrix U. At

each step of the OLS regression, a new center can be

selected in such a manner that the incremental variance of

the desired output is maximized. Suppose that there are Q

\ N centers selected. The OLS solution yielding the

weights is given by [10]

bw ¼ UTU
� ��1

UTz ¼ Uþz; ð13Þ

where U+ represents the pseudoinverse of the regression

matrix U. The output of the RBFN is then expressed as

bz ¼ Ubw ¼ ½U1;U2; . . .;UQ�bw; ð14Þ

where bz denotes the portion of z that is within the vector

space spanned by the columns /q of the regression matrix

U.

By using Gram-Schmidt orthogonalization [20], the

regression matrix can be decomposed as

U ¼ BA ¼ ½b1; b2; . . .; bQ�

1 a11 a12 � � � a1Q

0 1 a23 � � � a2Q

..

. ..
. . .

. ..
. ..

.

0 0 0 � � � 1

2
6664

3
7775;

ð15Þ

where A is a Q 9 Q upper-triangular matrix with 1s on the

main diagonal, and B is an N 9 Q matrix with mutually

orthogonal columns bq such that

fn(1) F (fn, c1)

F (fn, ci)

F (fn, cI)

z

w1

wi

wI

bias = w0

fn(m)

fn(M)

Fig. 3 Schematic representation of the RBF network used for the

classification of VAG signals. The inputs to the RBFN, fn(1), fn(2),...,

fn(M), are the M components of the feature vector fn of a VAG signal

to be classified. The hidden layer has I neurons. Note: F(fn, ci) = /(fn,

ci) in the text
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BTB ¼ H ¼ diag½h1; h2; . . .; hQ�; ð16Þ

where the Q 9 Q matrix H is a diagonal matrix with

elements hk given by

hk ¼ bT
k bk ¼

XN

q¼1

b2
kq: ð17Þ

By substituting Eq. 15 into Eq. 12, we obtain

z ¼ BAw þ e ¼ Bgþ e; ð18Þ

where g = Aw. In Eq. 18, the desired output vector z is

expressed as a linear combination of the mutually

orthogonal columns of the matrix B. The OLS solution

for the coordinate vector g is given by

bg ¼ ðBTBÞ�1BTz ¼ Bþz ¼ H�1BTz: ð19Þ

The kth component of the vector bg is given by

gk ¼
bT

k z

bT
k bk

: ð20Þ

Because Gram–Schmidt orthogonalization ensures the

orthogonality between the approximation error e and Bg in

Eq. 18, we have

zTz¼ gTBTBgþ eTe¼ gHgþ eTe¼
XQ

k¼1

hkg2
kþ eTe: ð21Þ

Because there is a one-to-one correspondence between the

elements of the regression vector g and the RBF centers ci,

each term in the summation above reflects the contribution of

each of the RBF centers. We can, therefore, define an error

reduction ratio (err) with respect to the ith RBF center as [10]

erri ¼
hig

2
i

zTz
: ð22Þ

The error reduction ratio offers a simple and effective

criterion for the selection of RBF centers in a regression

model. At each step of the regression, an RBF center is

selected so as to maximize the error reduction ratio toward

a tolerance value.

The design details of the RBFN used in our experiments are

as follows: The input layer contains M = 5 nodes to accept the

set of features {FF1, FF2, S, K, H} extracted from each VAG

signal. The spread parameter r was varied over the range [1,

6], and the number of hidden nodes I was varied over the range

[1, 30]. The resulting output values were used to derive ROC

curves and the associated Az values using ROCKIT.

3 Results

Figure 4 shows the ROC plots for the individual features

FF, FF1, FF2, and S. Table 2 lists the Az values obtained for

the various parameters tested. It is seen that FF1 and FF

provide similar levels of classification performance with Az

values of 0.73 and 0.72, respectively, which are better than

those provided by the remaining features individually. The

higher accuracy provided by FF1 (0.73) than FF2 (0.68)

confirms the expectation that the VAG signal contains more

discriminant information during extension than flexion, due

to increased loading of the knee joint during the former

phase of swinging movement of the leg than the latter.

Figure 5 shows the ROC plots for the FLDA and RBFN

classifiers, including the LOO procedure, using the set of

features {FF1, FF2, S, K, H}. The Az value of 0.72 for the

FLDA/LOO classifier is comparable to that of FF or FF1 on

its own. The highest Az value obtained was 0.82 using the

RBFN classifier with r = 6 and I = 23 hidden nodes; see

Table 2.

The proposed statistical parameters were also computed

and evaluated after normalizing each VAG signal to have

zero mean and unit standard deviation. No significant dif-

ferences were observed in the results.

4 Discussion

In preceding works on the analysis of VAG signals, Chu

et al. [11–14] reported that specific acoustic patterns rela-

ted to rheumatoid arthritis, degenerative arthritis,

chondromalacia patella, and osteochondritis could be

recorded. Kernohan et al. [29–32], Mollan et al. [44], and

McCoy et al. [41] demonstrated the importance of the

lower frequencies present in VAG signals, which are
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The corresponding areas under the ROC curves (Az) are 0.72, 0.73,

0.68, and 0.70, respectively
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missed by acoustic microphones but captured by piezo-

electric accelerometers (contact sensors). McCoy et al.

[41] found that 80% of the patients with meniscal injuries

produced characteristic signals, and that alterations in

normal joint crepitus (grinding noise) may be a useful

indicator of early cartilage degeneration.

Physiological patello-femoral crepitus (PPC) is a ran-

dom sequence of vibration pulses apparently generated

between the patellar and femoral surfaces, typically

observed during slow knee movement [1–5, 28, 30].

Beverland et al. [2–5] and Kernohan et al. [30] noted that

two components—the rate of pulse repetition and the

spectrum of the basic signal pulse—affect the spectrum of

the PPC signal. Although they described both components

and further noted that there are peaks in the PPC spectrum

at multiples of the pulse repetition rate, Beverland et al.

[2–5] provided no information on whether and how the

PPC spectrum could be affected by the inter-pulse interval

(IPI) variation which exists in PPC signals. Zhang et al.

[64] developed a mathematical model, by using the theory

of linear systems and random processes, for the patello-

femoral pulse (PFP) train produced by slow knee move-

ment, and showed that the spectral peaks shift toward

higher frequencies with increasing repetition rates of the

PFP; see also Rangayyan [51]. Measurable parameters such

as the mean and variance of the PFP train were found to be

independent of the PDF of the IPI, but dependent on

parameters related to physiological factors.

Reddy et al. [57] studied the application of their

noninvasive accelerometry technique [56] for the

characterization of vibration signals related to spondylo-

arthropathy, with the aim of discriminating this type of

pathology from other types of knee-joint disorders. The

mean power of the knee acceleration signals in the range of

100–500 Hz was found to be significantly different for

spondyloarthropathy patients as compared to signals of

patients with rheumatoid arthritis.

Segmentation methods could be used to divide the

nonstationary VAG signals into quasi-stationary segments

so that modeling techniques such as linear prediction may

be used. Segmentation is mandatory when relating signal

features to specific angles of the joint (that is, positions at

which pathological joint surfaces are in contact). Methods

based upon fixed segmentation [19, 37] and adaptive seg-

mentation using linear prediction and adaptive modeling

[36, 45, 54, 62] have been proposed for the analysis of

VAG signals. Using linear prediction and adaptive seg-

mentation, the first dominant pole and the ratio of the

power in the 10@100 Hz band to the total power of the

segment were computed by Tavathia et al. [62]; distribu-

tions of the features suggested that they could be used to

distinguish between normal segments and segments cor-

responding to articular cartilage breakdown of the patella.

Classification using discriminant analysis and logistic

regression was performed with model parameters, clinical

parameters, and a signal variability parameter by Moussavi

et al. [45]; a two-step classification procedure was pro-

posed to classify VAG signals based upon analysis of their

segments. Least-squares (autoregressive, all-pole, or linear

prediction) modeling methods have been studied, and

model parameters along with a few clinical parameters and

a signal variability parameter have been used as

Table 2 Performance of the features used for the screening of VAG

signals in terms of the area Az under the ROC curve

Feature Az Standard error

FF 0.72 0.054

FF1 0.73 0.053

FF2 0.68 0.056

S 0.70 0.055

K 0.61 0.059

H 0.60 0.060

FLDA/LOO 0.72 0.054

RBFN/LOO 0.82 0.045

FF, FF1, FF2: Form factor for the full duration, the first half

(extension), and the second half (flexion), respectively. S Skewness, K
kurtosis, H entropy, FLDA Fisher’s linear discriminant analysis, LOO
leave-one-out cross validation, RBFN classification using a neural

network with radial basis functions. The experiments with FLDA and

RBFN were performed using the set of features {FF1, FF2, S, K, H}
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Fig. 5 ROC plots for the FLDA and RBF classifiers, including the

LOO procedure, using the set of features {FF1, FF2, S, K, H}. The

corresponding areas under the ROC curves (Az) are 0.72 and 0.82,

respectively
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discriminant features [36, 45, 54]. With a set of 90 signals,

including 51 normal cases and 39 cases with various types

of joint-related pathology, the best normal-versus-abnor-

mal classification accuracy achieved was 75.6%; a higher

accuracy of 85.9% was achieved in the detection of

articular cartilage breakdown of the patella, using a limited

set of 51 normals but only 20 cases of chondromalacia of

the patella.

Ladly et al. [37] demonstrated clear separation between

VAG signals of normal knees and knees with articular

cartilage damage in terms of measures related to signal

power and median frequency (MDF). When averaged over

the total swing cycle, they observed up to 112% difference

in mean signal power and up to 173% difference in MDF

between normal and pathological VAG signals. In the last

60� of knee extension, the differences increased to up to

471% in mean power and 652% in MDF between normal

and pathological signals. The study of Ladly et al. [37]

indicated evidence that VAG signals can be separated in

terms of their power and MDF in the angle range of [60�,

0�]. (Note that average power is related to the variance if

there is no DC present in the signal, as is the case with

VAG signals.)

A major drawback of the segmentation-based approach

lies in associating the clinical information obtained during

arthroscopy with the segments of the corresponding VAG

signal. It is difficult to define joint angles accurately during

arthroscopy, due to the presence of drapes and surgical

equipment. Furthermore, it is difficult to determine the

actual points of cartilage contact during load on the joint,

because arthroscopy, by design, is performed in an unloa-

ded position with the scope inserted between the joint

surfaces. Visualization of a cartilage defect or injury is

achieved when it is not in contact with the corresponding

articulating surface; when contact is made, the defect is out

of view. The angle estimated is a guess by extrapolating,

from the arthroscopic visualization, the probable joint

angle at which contact between the cartilage surfaces under

consideration is maximal. These problems make it difficult

to estimate accurately the joint angle related to contact of

specific cartilage positions.

Segmentation and joint angle estimation may be avoided

by using nonstationary signal analysis tools, such as time-

frequency distributions (TFDs) [34, 53]. Using the

matching pursuit TFD, Krishnan et al. [34] computed

several features to characterize VAG signals. With a set of

90 signals, including 51 normal cases and 39 cases with

various types of joint-related pathology, the best normal-

versus-abnormal classification accuracy achieved was

68.9%. However, with a reduced set including 51 normals

but only 20 cases of chondromalacia of the patella, the

accuracy increased to 77.5%. The areas (Az) under the ROC

curves for the two sets of signals were 0.68 and 0.75,

respectively.

Recently, Umapathy and Krishnan [63] applied

wavelet packet decomposition and a modified local dis-

criminant bases algorithm to a set of 89 VAG signals.

Multiple dissimilarity measures were used to identify an

optimal set of discriminant basis functions. The applica-

tion of a classifier based on linear discriminant analysis

led to a normal-versus-abnormal classification accuracy

of 79.8%.

Jiang et al. [27] applied vibration arthrometry for the

diagnosis of meniscal tear in knee joints, with an overall

accuracy of 81% with 37 patients. Jiang et al. [26] exten-

ded the application of VAG signal analysis to artificial

knee joints. The root-mean-squared (RMS) value and

parameters of autoregressive models were used to analyze

the signals. The methods could detect and distinguish

between failure of the prostheses due to wear of the

polyethylene in the patellar component and wear of the

metallic components.

In comparison with the results reported in preceding

studies on the analysis of VAG signals, the results obtained

in the present study are significant in that the statistical

parameters derived from the VAG signals, with no seg-

mentation other than splitting the duration of each signal in

halves, have provided screening accuracies comparable to

those obtained with more sophisticated methods based

upon adaptive segmentation, AR modeling [36, 54], ceps-

tral coefficients [54], TFDs [34], and wavelet packet

decomposition [63]. The proposed methods do not require

any clinical information regarding the patient, reports

related to auscultation of the knee joint, or clinical inter-

pretation of the VAG signals. The elimination of the

segmentation process obviates the need to estimate the

joint angle corresponding to the pathology as observed

during clinical examination, auscultation, or arthroscopy.

However, the use of the simpler statistical features has

required the application of a sophisticated pattern classifier

(RBFN) to achieve good classification accuracy. Advanced

classifiers such as RBFNs pose concomitant problems

related to the derivation of the optimal parameters and

generalization from a training set to a test set, among

others. Experiments were also conducted with support

vector machines (SVMs) for classification of VAG signals

using the proposed features; however, the results were not

satisfactory.

Further work is in progress on the derivation of addi-

tional parameters related to the complexity of the

waveforms. We are also conducting further investigations

on advanced methods for feature selection, nonlinear pat-

tern classification, and the optimization of the parameters

of the classifier [46].
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5 Conclusion

The proposed methods have shown good potential for

noninvasive screening for articular cartilage pathology, and

could lead to a practical approach for the analysis of the

nonstationary VAG signals. Our aim is to develop a simple

screening tool for use in the clinic of a physician or an

orthopedic specialist. Further work is being conducted on

the implementation of the proposed techniques on a digital

signal processor (DSP) chip that could be located in a

stand-alone device or incorporated into a computer. Given

the simple nature of the data acquisition and proposed

signal analysis procedures, the assessment of the knee

joints of a subject could be performed in the office of a

physician or in the field in about 10–15 min. Improved

selection of patients for further clinical or surgical proce-

dures, such as arthroscopy, could reduce costs to the

healthcare system and the associated risks to the patient.
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