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Abstract—In this paper we adopted a length-variable second 
order Markov model to identify plant messenger RNA poly(A) 
sites, and provided a common method that only relies on the 
experimental sequences. The efficacy of our model is showed up 
to 92% sensitivity and 79% specificity. This method is 
particularly suitable for the prediction of the poly(A) site which is 
lack of biological priori knowledge and has poor conservative 
signal characteristic, as well as for the identification of the 
alternative poly(A) sites in different genetic regions. Compared 
with other algorithms, generalized hidden Markov model needed 
the signal distributions and AdaBoost required the construction 
of signal features around the sites, our model is more versatile.  

Keywords-polyadenylation site; length-variable second order 
Markov model; biological priori knowledge. 

I.  INTRODUCTION  
In eukaryotic cells, precursor messenger RNA (mRNA) 

needs to transcribe and undergo processing events, including 5' 
capping, intron splicing, and 3' end polyadenylation (poly(A)), 
then becomes mature and functional mRNA. Therein, the 3' 
end polyadenylation processing affects mRNA stability, 
translatability, and nuclear-to-cytoplasmic export, and plays an 
important role in other cellular and disease mechanisms [1-4]. 

Nowadays many researchers have worked on the feature 
and the prediction of poly(A) sites of eukaryotic mRNA 
sequences in different species, such as in human [5-8], yeast 
[9,10], Caenorhabditis [11] and Arabidopsis [12-14]. 
According to the studies of these organisms, it is found that 
consensus motifs or features surrounding the poly(A) sites in 
animals are more conservative than those in plants. Previous 
researches show that the poly(A) signals in plant mRNA 
sequences are more dispersed, diverse and complex [15]. There 
is little conservation in cis-elements and many 3' ends of plant 
mRNAs do not have the most conservative poly(A) signal 
AAUAAA, which can only be found in about 10% of 
Arabidopsis genes [16,17], but in up to 58% humans genes [7]. 
Moreover, multiple poly(A) sites often exist in plant [17], for 
example, 14 different 3’ processing sites were found in a 
tobacco chloroplast mRNA binding protein coding gene [8]. 

Therefore, it is a more challenging task to identify poly(A) sites 
in plants then in animals.  

Current protocols to recognize plant poly(A) sites rely 
heavily on expressed sequence tags (ESTs) with a poly(A) 
tract. And, there are several poly(A) sites databases available 
[8,10]. However, many poly(A) sites cannot be accurately 
identified because differential expression, mis-annotation and 
incomplete EST data [5]. Moreover, current protocols to 
identify poly(A) sites mostly aims at the animals and humans 
[6-11]. Though there are some methods to predict plant 
poly(A) site, such as GHMM (Generalized Hidden Markov 
Model) [12] and AdaBoost [13], they still have limitations. 
Both the models based on GHMM and AdaBoost largely 
depend on the signal features surrounding the poly(A) sites, 
known as FUE, NUE and CS [15], and pre-process of the 
mRNA sequences such as feature generation, feature selection 
and feature standardization. Thus, it is very difficult to identify 
the poly(A) sites without such pre-processes using these two 
models. In this paper, we adopted length-variable second order 
Markov model (LVMM2) [18] to identify mRNA poly(A) sites 
in model plant Arabidopsis thaliana through probabilistic and 
statistical computing of upstream and downstream nucleotide 
sequences of the poly(A) sites to obtain the corresponding 
transition probability matrixes. Compared with the GHMM and 
AdaBoost models, LVMM2 only depends on the experimental 
sequences to build the recognition model, but does not require 
any priori knowledge. The results show that our model not only 
achieves higher identification accuracy, but also is less time-
consuming. 

II. METHODS 
In this paper, we adopted LVMM2 to predict plant poly(A) 

sites. The LVMM2 was first proposed and used in prediction of 
splice sites in human genome, which containing two different 
models. LVMM2 can be constructed with little pre-processing 
of the experimental sequences to predict the candidate sites by 
the likelihood at each position [18]. We borrowed the idea of 
this model to predict poly(A) sites in that it is especially 
suitable for processing sequences with little priori knowledge. 
However, the identification of plant poly(A) sites is huge 
different from identification of the splice sites, because the 
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species is different and there are insufficient consensus motifs 
or features surrounding the poly(A) sites. Here, we took the 
advantage of this algorithm for the prediction of poly(A) sites 
in Arabidopsis. More details about the model method are in the 
rest of this section.  

A. Markov model 
Here we consider the gene sequence with a poly(A) site as a 

Markov process. The sequence is denotes as 1 2 HL L L , the 
state set is { , , , }M A G T C= . Then, for a given training set, the 
Markov transition probability is constructed by the following 
formula: 
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Where ( )ii kX L L−  means the number occurrences of 

ii kL L−  in the training set.  

Assuming that we get a thK  order Markov model MM, the 
likelihood of sequence 1 2, , Hl l l  is  
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B. Description of length-variable second order Markov 
model 
Given a sequence, it is predicted according to its likelihood 

under the Markov model which is considered as a classifier. 
The ratio of the likelihood under true site model and the false 
site model is compared, then a threshold hd is applied to predict 
poly(A) sites. According to the relevant experiments, however, 
it was found that there are little consensus motifs or features 
surrounding plant poly(A) sites [17]. Thus, it is insufficient to 
precisely identify poly(A) sites only relying on a certain length, 
and the interception of a long sequence may bring about 
redundant or irrelevant attributes which leads to reduce the 
recognition performance of the model [18]. For these reasons, 
we adopted the length-variable second order Markov model to 
predict Arabidopsis poly(A) sites. 

In LVMM2, the di-nucleotides occurrence probability in 
training sequences surrounding the poly(A) sites is statistically 
analyzed by first, then the ratio of the likelihood (denoted as 
I ) under the true site model and false site model is compared 
to predict the poly(A) sites. In the test model, two different 
thresholds are set, _T thr  and _F thr  ( _ 1.0T thr > , 

_ 1.0F thr ≤ ), then a candidate sequence is predicted. The 
sequence is predicted as containing poly(A) site if _I T thr> , 
while not containing poly(A) site if _I F thr< . If 

_ _F thr I T thr≤ ≤ , it indicates that the sequence is not 
significant to be classified, so more features are needed, then 

we extend the length and repeat the previous process to 
recalculate the I until _I T thr> or _I F thr< . If 

_ _F thr I T thr≤ ≤  is still even reaching the maximum 
length of the sequence, then the candidate sequence is 
classified by ( _ _ ) / 2I T thr F thr> +  standing for true and 

( _ _ ) / 2I T thr F thr≤ +  as false. 

C. Prediction algorithm 
Given the length of training sequence is 2U DL L L= + +  

(the length of poly(A) site is 2), we construct the models from 
the true and false data set. Because mRNA sequences is 
instable, the sequences used in our experiment are DNA 
sequences, so we used T instead of U in RNA, but this does not 
affect the analysis. For upstream model, the state set is denoted 
as { , , , }UM A T G C=  and the random process is 
{ | 1, 2, , }UtL t H=  ( { , , , }tL A T G C∈ ), then according to the 

second order Markov model, we construct the model TUR  
(true upstream model). Similar to the models TDR  (true 

downstream model)， FUR  (false upstream model) and FDR  
(false downstream model). Supposing a test sequence 

[ ]1 1 1 1, ... , , ,... ,hU U D D

U U U D D D
h h hL L L L YA L L L− −=  with default 

upstream length Uh  ( UUh H≤ ) and downstream length Dh  
( DDh H≤ ), its likelihood I(L) is calculated as follows: 
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    (5) 

The sequence model is shown in Figure.1, the "italic 
nucleotides" are the default length of the models and the "bold 
di-nucleotides" means the poly(A) site. 

CS

UUUGGG GUAACA
U D

Upstream DownstreamL L

AAUAAA...CCAA UCC...GAUYA  

Figure 1.  The length-variable Markov model 
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If the value of I(L) is neither greater than _T thr  nor less 
than _F thr , we need to extend the upstream or downstream 
length by the following formulas: 
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Here:  
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Where the ‘0’ indicates extending upstream and ‘1’ shows 
extending downstream, ‘&’ stands for ‘AND’, ‘||’ means ‘OR’. 
NonLeft means selecting the different direction of last time. 
When '

UUh H= , the downstream need extend, and if  '
DDh H=  

means update the upstream length [18]. 

D.  Model default length and thresholds 
The initial length is important in our model in that it 

directly affects the identification accuracy and experiment time. 
However, if we have no idea about the characteristics 
surrounding the poly(A) sites or the construction of the 
dominant region, we can set the default length parameters 
through different combinations of upstream and downstream 
length to meet different requirements in the modeling process. 
This is also the reason why LVMM2 model is less dependent 
on the priori knowledge.   

In addition to initial length, our models also contain two 
other parameters: thresholds T_thr and F_thr. In this paper, we 
tested several groups of T_thr and F_thr according to the 
experimental standards to determine the optimal value for 
T_thr and F_thr.  

III. RESULTS 

A. Datasets 
The dataset with real poly(A) sites was extracted from 

GenBank (release 85.0, Dec. 08, 2003), with a total of 8160 
ESTs (8K dataset) [12]. These sequences were trimmed into 
400 nt in length, with known poly(A) sites at the 301st 
position, including 301 nt upstream and 99 nt downstream of 
the authentic poly(A) site. And several control datasets without 
any poly(A) site were truncated from the regions of Introns，
CDS (coding sequences) and 5'UTR (5' untranslated region), 
respectively. All these sequences are 400nt in length.  

To test the efficiency of our model, we generated one 
training dataset to estimate the optimal model parameters, and 
another test dataset to test our model. The training dataset 
includes the true dataset containing 4000 sequences randomly 
selected from the 8K dataset, and the false dataset with 20,000 
sequences randomly selected from the control datasets. For the 
test dataset, we randomly selected 4000 sequences from the rest 
of 8K dataset to form true dataset and another 20,000 
sequences from the control datasets to form the false dataset. 

B. Performance standards 
To evaluate the performance of our experiments, we adopt 

two common standards: sensitivity (Sn) and specificity (Sp): 

 

TPSn
TP FN

=
+   (11) 

 
1TN FPSp

TN FP TN FP
= = −

+ +  (12) 

 TP (true positive) means the number of actual sites 
predicted correctly. FN (false negative) is the number of true 
sites not predicted correctly. TN (true negative) is the number 
of false sites predicted correctly. FP (false positive) represents 
the number of negative sites predicted as true sites. The value 
of Sn represents the fraction of the true poly(A) sites which can 
be identified correctly, while Sp means the proportion of false 
sites correctly predicted. 

C. Results 
To show the effectiveness of our model, first we tested our 

model on the true dataset and false dataset mentioned above 
and used ROC curves to evaluate the results. ROC curve 
provides a comprehensive evaluation for the accuracy of the 
prediction, using the false positive rate (FPR, 1-Sp) as the 
horizontal axis and the true positive rate (TPR, Sn) as the 
vertical axis. In this paper, we set (1-Sp) of a fixed F_thr 0.2 
with T_thr from 1.5 to 6.0 as the horizontal axis and Sn as the 
vertical axis. As shown in Figure. 2, different length 
combinations were used, such as '6+7', '16+17', '46+32', 
'100+50' ('6+7' means the default upstream length + default 
downstream length). 
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It was found that the identification performance would be 
better with the increasing of default upstream and downstream 
length. Therefore, based on the previous analysis, we tested our 
model with thresholds T_thr=1.5 and F_thr=0.2. The results 
are shown in Table I. 

From Table I, it showed that the value of Sn increased at 
the beginning, but became fluctuated when the default 
upstream length reached 150nt. This indicated that it might 
bring about redundant or irrelevant attributes to the model 
when the upstream length is more than 150nt. In addition, the 
maximum upstream length of experimental sequence is 300 nt. 
Therefore, the longer of the initial length is, the shorter length 
to be extended when the candidate sequence cannot be 
significant identified, which would affect the recognition 
performances. For these considerations, we selected the 
upstream 150 nt and downstream 30 nt to further test our 
model. Here, we tested the prediction accuracy with several 
F_thr (0.2, 0.3, 0.4, 0.5, 0.6), and obtained the ROC curves of 
each F_thr by updating the value of T_thr (Figure.3). 

 
Figure 2.   ROC curves with different length 

TABLE I.  RESULTS OF DIFFERENT LENGTH  

Left + Right Sn 1-Sp 
50+20 0.9240 0.2169 
50+30 0.9264 0.2186 
50+40 0.9278 0.2208 
100+20 0.9430 0.2272 
100+30  0.9424 0.2298 
100+40  0.9430  0.2326 
150+20 0.9438  0.2433 
150+30  0.9444 0.2444 
150+40 0.9462  0.2464 
200+20 0.9404 0.2431 
200+30 0.9426  0.2444 
200+40 0.9448 02455 

 

Figure 3.  The ROC curves of different F_thr 

Through analysis of these results and the relevant 
information mentioned above, finally we set the default 
upstream length as 150 nt and downstream as 30 nt, the 
thresholds T_thr=3.0 and F_thr=0.5, respectively, as our model 
parameters. Then, we applied our model on the test dataset 
using these parameters. Our model achieved high identification 
performance with Sn=92.2% and Sp=79.3%. Here, we 
compared our results with one previous AdaBoost based 
poly(A) recognition model [13]. Using AdaBoost [13], the Sn 
was 70% and Sp was about 89% in different control datasets. 
In contrast, our LVMM2 model achieved much higher Sn by 
22%, which means much more of the true poly(A) sites were 
identified correctly by LVMM2 than by AdaBoost. Though, 
our Sp is about 10% lower than that of AdaBoost, this may due 
to that we didn’t use different control datasets but the combined 
one to test our model. In fact, it is not practical to use different 
control datasets to calculate Sp, since normally the user has 
little priori knowledge about his sequence. Therefore, our 
model is more universal, because it did not rely on the type of 
the sequence, or the genetic region the sequence may be 
located. Using the combination of randomly selected sequences 
from different genetic regions as the false dataset made our 
model be especially suitable for the prediction of long gene 
sequence, with satisfied Sn at expense of reducing Sp a bit. 

IV. CONCLUSIONS 
In this paper, our model not only achieved high 

identification performance, but also is more flexible than 
previous poly(A) site recognition models, like AdaBoost [13] 
and GHMM [12]. AdaBoost model [13] is required to extract 
the features of the datasets by different methods, like K-gram 
nucleotide sequence pattern, Z-Curve, PSSM-based CIS score, 
etc. For new datasets, it needed to recalculate the weight of 
every sample set. While the GHMM [12] is needed the signal 
distributions according to priori knowledge to make each 
genetic region framework and constituted a fixed pattern. Once 
the features are changed or new signal characteristics are 
added, we have to reconstruct the model step by step. In 
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contrast, our Length-variable second order Markov Model can 
achieve higher identification accuracy without any priori 
knowledge or pre-processing the experiment data. Thus, our 
model is especially suitable for the prediction of plant mRNA 
poly(A) sites which are lack of biological priori knowledge and 
conservative signal characteristic, as well as for the 
identification of the alternative poly(A) sites in different 
genetic regions.  

With the development of biotechnology, given more 
information accumulated from the biological experiments in 
the future, it is easy to modify the LVMM2 model to improve 
the prediction accuracy, such as changing the order of model, 
weighting the different genetic regions, or combine the other 
algorithms to form a dynamic model framework to optimize 
our identification model.  
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