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ABSTRACT

We study the fluctuations of standard thin accretion disks by linear analysis

of the time-dependent energy equation together with the vertical hydrostatic

equilibrium and the equation of state. We show that some of the simulation

results in Hirose et al. (2009b), such as the time delay, the relationship of power

spectra, and the correlation between magnetic energy and radiation energy, can

be well understood by our analytic results.

Subject headings: accretion, accretion disks - hydrodynamics - instabilities - MHD

1. Introduction

Aperiodic X-ray fluctuations have been observed from both galactic black hole binaries

(BHBs) and active galactic nuclei (AGNs) (Uttley et al. 2005; McHardy et al. 2006). The

Power Spectral Density (PSD) of such variability is generally modeled with a power law,

P (f) ∝ f−β, where P (f) is the power at frequency f , and β varies with frequency. In

the soft state, the PSDs of both BHBs and AGNs have a steep slope with β ∼ 2 at high

frequencies, flatting to a shallow slope with β ∼ 1 below a bend frequency fb, which is

typically around 10Hz for BHBs (see King et al. 2004 and references therein). The PSDs

in the hard state are more complex. The origin of variability is not well understood yet.

However, it is highly tempting to relate this variability to the magnetohydrodynamic (MHD)

turbulence, which is believed to drive the accretion process (Balbus & Hawley 1991). Some

works followed this path through numerical simulation, and typically used proxies for the

radiation rather than a direct measure of luminosity (Hawley & Krolik 2001; Noble & Krolik

2009). It remains uncertain whether the proxies for radiation are appropriate to describe the

luminosity fluctuations. In the present work, we will show that the variability of magnetic
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energy (stress) of the standard thin disk is different from that of radiation for short time-scale

fluctuations.

Recently, shearing box simulations of stratified magnetorotational turbulence (Hirose et al.

2009b) showed that fluctuations in the magnetic energy (stress) lead those in the radiation

energy with roughly a thermal time-scale, and a correlation is found between the stress and

total pressure. Moreover, the disk is found to be thermally stable, which is, however, in

conflict with the disk theory (Lightman & Eardley 1974; Shakura & Sunyaev 1973). The

discrepancy reveals that the correlation found in the simulation may be different from the

α-prescription. For example, such a correlation may be related to the energy equation or

result from the feedback from pressure to stress, which is not in the form of the standard

α-prescription (e.g., Lin et al. 2011; Ciesielski et al. 2012). Since the dissipation of magnetic

energy will heat the gas of accretion flow, the perturbations in the magnetic energy will pro-

duce corresponding fluctuations in the internal energy and therefore in the pressure. Then,

there should exist a correlation and delay between the stress and the pressure. In the present

work, based on the energy equation, we will investigate the relationship between fluctuations

of the viscous heating and the inducing fluctuations of the radiative cooling.

The paper is organized as follows. The relationship of fluctuations of the viscous heating

and the inducing fluctuations of the radiative cooling is derived in Section 2. A comparison

of analysis and simulation is presented in Section 3. Conclusions and discussion are made in

Section 4.

2. Radiative cooling fluctuations induced by viscous heating fluctuations

2.1. Energy equation

In the context of standard thin accretion disk (Shakura & Sunyaev 1973), the vertically

integrated energy equation in cylindrical coordinates (r, φ, z) takes the form (e.g., Kato et al.

2008):
∂E

∂t
− (E + Π)

∂ ln Σ

∂t
+ Π

∂lnH

∂t
= Q+

vis −Q−

rad , (1)

where H is the vertical height of the disk, and Σ (= 2ρH) and Π(= 2pH) are the surface

density and the vertically integrated pressure, respectively. The gas internal energy E and

the radiative cooling rate Q−

rad per unit area are expressed as

E = Erad + Egas =

[

3(1 − β) +
β

γ − 1

]

Π , (2)
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Q−

rad =
16acT 4

3κ̄Σ
, (3)

where Erad and Egas are respectively the internal energy of radiation and gas, β is defined as

the ratio of the gas to the total pressure, i.e., β ≡ Πgas/Π, γ is the ratio of specific heating, and

T is the temperature on the equatorial plane of the disk. The opacity κ̄ is generally dominated

by the electron scattering (κes) in radiation-pressure-dominated accretion disks, where κ̄ can

be regarded as a constant. On the other hand, if the opacity is dominated by the free-free

absorption (κff), κ̄ will vary with the temperature and the density. The viscous heating Q+
vis is

due to the dissipation of magnetic energy and turbulent kinetic energy in magnetoturbulent

disks, and is dominated by the dissipation of magnetic energy in simulations (Simon et al.

2009).

For the fluctuations with a time-scale less than the viscous time-scale, the variation of

Σ can be neglected, and Equation (1) is therefore simplified as

∂E

∂t
+ Π

∂lnH

∂t
= Q+

vis −Q−

rad. (4)

In order to study the induced fluctuations of radiative cooling, we adopt the vertical hydro-

static equilibrium

Ω2
KH

2 =
Π

Σ
, (5)

and the equation of state, which can be approximately expressed as

Π = Πgas + Πrad =
kB
µmH

ΣT +
2

3
aT 4H. (6)

2.2. Relationship of fluctuations

We use the subscripts “0” and “1” to describe the unperturbed and perturbed quantities,

respectively. We would stress that, the amplitude of fluctuations is assumed to be small in

our linear analysis. In simulations (e.g., Figures 3 and 4 of Hirose et al. 2009b), however,

the amplitudes can be significantly large. Nevertheless, the linear analysis may reveal the

relationship of fluctuations of physical quantities. Combining Equations (2)-(6) with κ̄ = κes,

we have

Atth
∂

∂t
(4
T1

T0

) =
Q+

vis,1

Q+
vis,0

− 4
T1

T0

, (7)

where the dimensionless parameter A is expressed as

A =
(4 − 3β)(γ − 1)

4(1 + β) [β + 3 (1 − β) (γ − 1)]

[

7 − 6β +
2β

γ − 1
−

7β (4 − 3γ) (1 − β)

(γ − 1) (4 − 3β)

]

, (8)
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and the thermal time-scale tth takes the from (with Q+
vis,0 = 3αΠ0ΩK/2):

tth ≡
E0

Q−

rad,0

=
E0

Q+
vis,0

=

[

2 (1 − β) +
2β

3(γ − 1)

]

1

αΩK

. (9)

We choose γ = 5/3 and α = 0.02 (e.g., Hirose et al. 2009a) for numerical calculations. The

variation of A with β is shown by the solid line in Figure 1. The other two parameters,

Aff (dashed line) and Arad (dotted line), will be introduced by Equations (13) and (16),

respectively.

By assuming that the time-dependent component of fluctuations takes the form of

exp(iωt), e.g., Q+
vis,1/Q

+
vis,0 ∝ exp(iωt), we have the following relationship from Equation (7):

(

4
T1

T0

)

ω

=
1

iAωtth + 1

(

Q+
vis,1

Q+
vis,0

)

ω

, (10)

where
(

Q+
vis,1/Q

+
vis,0

)

ω
and (4T1/T0)ω represent the fluctuations with ω of the viscous heating

and those of the radiative cooling, respectively. We would stress that Equation (10) is a key

relationship in the present work.

3. Comparison of analysis and simulation

3.1. Time delay between magnetic energy and radiation energy

Equation (10) can be modified as

(

4
T1

T0

)

ω

=
1

√

(Aωtth)2 + 1

(

Q+
vis,1

Q+
vis,0

)

ω

exp (−iωtdel) , (11)

where the delay time tdel of the radiative cooling compared with the viscous heating takes

the form:

tdel =
1

ω
arctan (Aωtth) . (12)

Obviously, this equation implies tdel ≈ Atth for long time-scale fluctuations.

Figure 2 shows the variation of tdel for three different values of β. The simulations

for β ∼ 0.1 (Hirose et al. 2009b) showed that fluctuations of magnetic energy lead those of

radiation energy by 5−15 orbit periods (torb), roughly a thermal time. Moreover, Figure 5 of

Hirose et al. (2009b) indicates that significant variability occurs in the range 0.01 . f ·torb .

0.1, which is equivalent to 0.01 . ω/ΩK . 0.1, corresponding to the region between the two
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vertical dot-dashed lines in Figure 2. As shown by the solid line, the delay in our analysis is

around 3− 17torb, which is consistent with the simulations. In addition, we would point out

that the delay between viscous heating and magnetic energy (∼ 0.5torb, Hirose et al. 2009b)

is negligible compared with the thermal time-scale.

Furthermore, simulations have been done for the gas-pressure-dominated case (Hirose et al.

2006) and the case that gas and radiation pressures are comparable (Krolik et al. 2007). The

delay in those simulations is ∼ 2torb for β ∼ 0.8 and ∼ 5torb for β ∼ 0.5. In our analysis,

as shown by the dotted and dashed lines, the delay is around 2 − 3torb for β = 0.8 and

2 − 12torb for β = 0.5 in the range 0.01 . ω/ΩK . 0.1, which is again consistent with the

simulations. Note that κ̄ in the simulations for β ∼ 0.8 (Hirose et al. 2006) is dominated by

the free-free absorption. In such case, for a simple approach, we modify the parameter A as

Aff by considering the free-free absorption instead of the electron scattering in Equation (3):

Aff =
(4 − 3β)(γ − 1)

(11.5 + 4.5β) [β + 3 (1 − β) (γ − 1)]

[

7 − 6β +
2β

γ − 1
−

7β (4 − 3γ) (1 − β)

(γ − 1) (4 − 3β)

]

. (13)

The profile of Aff is shown by the dashed line in Figure 1.

3.2. Power spectrum relationship

In this subsection, we will show a comparison between our analytic normalized power

spectrum of radiation energy PA
rad and that in simulations Prad. Equation (11) provides

the relationship of the power spectrum between the radiative cooling Pcool and the viscous

heating Pvis:

Pcool(f) =
1

1 + (2πAftth)2
Pvis(f). (14)

Then the analytic power spectrum of volume-integrated radiation energy PA
rad is expressed

as

PA
rad(f) =

A2
rad

1 + (2πAftth)2
Pvis(f), (15)

where the quantity Arad is derived from Equations (2), (5), and (6):

Arad ≡
(Erad,1/Erad,0)

(4T1/T0)
= 1 +

4 − 3β

4(1 + β)
. (16)

The variation of Arad with β is shown by the dotted line in Figure 1. Since the viscous

heating is mainly due to the dissipation of magnetic energy, it is plausible to have

Pvis(f) ≈
[

(
√

2πftdis)
2 + 1

]

PB(f), (17)
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where tdis is the dissipation time-scale of magnetic energy, and PB is the power spectrum of

magnetic energy. The explanation for this relationship is presented in Appendix A. Then,

Equations (15) and (17) provide an analytic relationship between the power spectrum of

radiation energy and that of magnetic energy:

PA
rad(f) = A2

rad

1 + (
√

2πftdis)
2

1 + (2πAftth)2
PB(f). (18)

The simulations (Equation (17) and Figure 5 of Hirose et al. 2009b) showed the profiles

of PB and Prad:

PB (f) =

{

8.7 × 10−6f−1.13, f < 0.171,

10−7f−3.65, f > 0.171,
(19)

Prad (f) =

{

6.1 × 10−9f−2.38, f < 0.118,

2.3 × 10−10f−3.91, f > 0.118.
(20)

In our Figure 3, we replot the above PB and Prad with the dotted and dashed lines, respec-

tively. In addition, according to Equation (18), we plot the analytic power spectrum PA
rad

with the solid line. The values of PB(f) in Equation (18) are taken from the above simula-

tion results (the dotted line). The parameters for calculating PA
rad are A = 2.1, Arad = 1.8

(corresponding to β = 0.1), and tdis = 0.5torb (Hirose et al. 2009b). As shown by the solid

and dashed lines, our analytic PA
rad agrees well with Prad in simulations.

3.3. Correlation between magnetic energy and radiation energy

The energy equation implies a correlation between the viscous heating (magnetic energy)

and the pressure. Based on Equation (7), the correlation can be read as:

Q+
vis,1

Q+
vis,0

≃ 4
T1

T0

. (21)

Owning to the same reason, there should be a correlation between viscous heating and

magnetic energy, i.e., Q+
vis,1/Q

+
vis,0 ≃ EB,1/EB,0. With Equation (16), the above equation can

be modified as
EB,1

EB,0

≃
1

Arad

Erad,1

Erad,0

. (22)

As shown in Figure 1, there exists Arad = 1.8 for β = 0.1, so we have the relationship:

EB ∝ E0.55
rad , (23)

which is close to the correlation found in simulations, e.g., EB ∝ E0.71
rad (Hirose et al. 2009b).

The difference in the index may be related to the following two reasons: (1) the analysis
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is quite simple, particularly in dealing with the vertical radiative cooling; (2) the feedback

from pressure to stress makes significant contribution.

It is worthy to note that Hirose et al. (2009b) also provided an explanation for the

correlation with a toy model based on the energy equation. By using the correlation between

tth and Erad (tth ∝ Es
rad) obtained in simulations, they derived the correlation between EB

and Erad (EB ∝ E1−s
rad ). In our analysis, we choose Q−

rad to replace their radiative cooling

term Erad/tth. We will show below that our results are quite similar to theirs.

Equations (3) and (16) can provide the relationship:

Q−

rad ∝ E
1/Arad

rad . (24)

In simulations (Hirose et al. 2009b), the thermal time is calculated by

tth = E/Q−

rad. (25)

With Equations (2), (5), (6) and (24), the above equation can be reduced to

tth ∝ Es′

rad, (26)

where

s′ =
3(1 − β)(4 − 3β)(γ − 1) − 3β(1 + β)

(8 + β)[β + 3(γ − 1)(1 − β)]
. (27)

For radiation-pressure-dominated accretion flows, Equation (27) can be simplified as s′ ≈

1 − 1/Arad. Thus, Equation (22) indicates the relationship EB ∝ E1−s′

rad , which is consistent

with the correlation in the toy model (Hirose et al. 2009b). Moreover, in the case of β = 0.1,

Equation (27) gives s′ = 0.41, thus tth ∝ E0.41
rad , which is close to the correlation found in

simulations, e.g., tth ∝ E0.32
rad in simulation 1112a and tth ∝ E0.44

rad in simulation 1126b of

Hirose et al. (2009b).

4. Conclusions and Discussion

In the present work, we have studied the fluctuations of standard thin disks by linear

analysis of the time-dependent energy equation together with the vertical hydrostatic equi-

librium and the equation of state. Our analytic results show that the delay between magnetic

energy and radiation energy is consistent with that in previous simulations. In addition, the

analytic power spectrum of radiation energy agrees well with that in simulations. Moreover,

the correlation between magnetic energy and radiation energy can be well understood by the

analysis, with an index (0.55) being close to that in simulations (0.71).
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As indicated by Equation (14), there may exist a break frequency fbr ∼ 1/(2πAtth) in

Pcool. The frequency fbr may be associated with the high-frequency break observed in the

power spectra of luminosity fluctuations (e.g., McHardy 2010), since its value in the inner

region of disk is close to that of observed high frequency break. Moreover, the difference

between Pcool and Pvis for f > fbr, shown by Equation (14), should be taken into account

in modeling the high-frequency variability of quasar luminosity (e.g., Mushotzky et al. 2011;

Zu et al. 2012). In addition, the similar frequency break may also occur in radiatively ineffi-

cient accretion flows, such as advection-dominated accretion flows (Narayan & Yi 1994) and

slim disks (Abramowicz et al. 1988).

We thank the referee, Omer Blaes, for helpful suggestions and useful communications

to improve the paper. We also thank Feng Yuan and Sheng-Ming Zheng for beneficial dis-

cussions. This work was supported by the National Basic Research Program (973 Program)

of China under grant 2009CB824800, and the National Natural Science Foundation of China

under grants 10833002, 11073015, 11103015, 11222328, and 11233006.

A. The relationship between Pvis and PB

In this Appendix, we try to derive the relationship between Pvis(f) and PB(f) as shown

by Equation (17). The evolution of magnetic energy EB(t) can be simply described as

∂EB(t)

∂t
= GB(t) −DB(t), (A1)

where GB(t) and DB(t) are respectively the generation and dissipation rate of magnetic

energy. With small amplitude perturbations in Equation (A1), we have

iωtdis

(

EB,1

EB,0

)

ω

=

(

GB,1

GB,0

)

ω

−

(

DB,1

DB,0

)

ω

, (A2)

or

(ωtdis)
2PB(ω) = PG(ω)+PD(ω)−

(

GB,1

GB,0

)

ω

×

[(

DB,1

DB,0

)

ω

]

∗

−

[(

GB,1

GB,0

)

ω

]

∗

×

(

DB,1

DB,0

)

ω

, (A3)

where DB,0 = GB,0, tdis = EB,0/DB,0, the symbol “∗” represents the complex conjugate

number, the power spectrum of GB and DB are

PG(ω) =

∣

∣

∣

∣

(

GB,1

GB,0

)

ω

∣

∣

∣

∣

2

, PD(ω) =

∣

∣

∣

∣

(

DB,1

DB,0

)

ω

∣

∣

∣

∣

2

.
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Magnetic fields in the accretion disk present exponential growth owing to the magne-

torotational instability (MRI, Balbus & Hawley 1991), followed by the dissipation due to

some destructive mechanisms. Since the rise and decay phases of channel modes are similar

(e.g., Figure 4 of Simon et al. 2009), it is plausible to believe that PG and PD is compara-

ble for ω . π/tdis. With the consideration of the delay (∼ tdis) between GB and DB, the

relationship between GB and DB can be modeled as

(

DB,1

DB,0

)

ω

∼

(

GB,1

GB,0

)

ω

exp (−iωtdis) . (A4)

Substituting this relationship into Equation (A3), we obtain

PD(ω) =
(ωtdis)

2

2 (1 − cosωtdis)
PB(ω) ≈

[

(ωtdis)
2

2
+ 1

]

PB(f). (A5)

The above relationship is applicable for ω . π/tdis.

The fluctuations with ω > π/tdis in GB and those in DB is unclear, and thus it remains

uncertain for PG(ω) and PD(ω). However, it may be plausible to believe that GB and DB

are decoupled with each other for ω > π/tdis. If we further assume that PG(ω) ∼ PD(ω),

Equation (A3) can be reduced to

PD(ω) ∼
(ωtdis)

2

2
PB(ω). (A6)

We use this equation to describe the relationship of PD(ω) and PB(ω) for ω > π/tdis. Based

on Equations (A5) and (A6), a general form of relationship between PD and PB may be

simply described as

PD(f) ≈
[

(
√

2πftdis)
2 + 1

]

PB(f). (A7)

Since the turbulent kinetic energy follows the fluctuating magnetic energy (Hirose et al.

2009b) and magnetic dissipation dominates over kinetic dissipation, we obtain

Pvis(f) ≈ PD(f) ≈
[

(
√

2πftdis)
2 + 1

]

PB(f), (A8)

which is the exact form of Equation (17). It should be noted that the relationship between

Pvis and PB in the short time-scale range (ω > π/tdis) is tentatively used in the present work.
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Fig. 1.— Variations of A (solid line), Arad (dotted line), and Aff (dashed line) with β.
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Fig. 2.— The analytic delay of radiation energy compared with magnetic energy for β = 0.1

(solid line), 0.5 (dashed line), and 0.8 (dotted line). The vertical dot-dashed lines represent

two specific frequencies ω/ΩK = 0.01 and 0.1.
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Fig. 3.— A comparison of PA
rad (solid line) and Prad (dashed line), where PA

rad is calculated

with PB (dotted line).
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