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ABSTRACT

We show that when the gravitational force is correctly calculated in dealing with the vertical hydrostatic equilib-
rium of black hole accretion disks, the relationship that is valid for geometrically thin disks, i.e., cs /�KH ¼ constant,
where cs is the sound speed,�K is the Keplerian angular velocity, andH is the half-thickness of the disk, does not hold
for slim disks. More importantly, by adopting the correct vertical gravitational force in studies of thermal equilibrium
solutions, we find that there exists a maximal possible accretion rate for each radius in the outer region of optically
thick accretion flows, such that only the inner regions of these flows can possibly take the form of slim disks, and
strong outflows from the outer region are required to reduce the accretion rate in order for slim disks to be realized.

Subject headinggs: accretion, accretion disks — black hole physics — hydrodynamics

1. INTRODUCTION

The slim disk model is one of the popular models for accre-
tion flows around black holes, and it has been applied in recent
years to many energetic astrophysical systems, such as narrow-
line Seyfert 1 galaxies (e.g.,Wang&Netzer 2003; Chen&Wang
2004), Galactic black hole candidates (e.g., Watarai et al. 2000),
and ultraluminous X-ray sources (e.g., Watarai et al. 2001;
Vierdayanti et al. 2006).

Despite its growing importance in the observational sense, we
note that some theoretical problems regarding this model in the
fundamental sense have been ignored. In this paper we address
one such problem, namely, the inaccurate calculation of the grav-
itational force in dealing with the hydrostatic equilibrium in the
vertical direction of slim disks. We work in the cylindrical coor-
dinate system (r, z, ’) throughout.

2. VERTICAL GRAVITATIONAL FORCE

Obviously, because the Shakura-Sunyaev disk (SSD) model
(Shakura & Sunyaev 1973) is the first and still the most success-
ful model of accretion disks, many simplifications made in this
model are followed by the subsequent accretion disk models
without rigorously verifying their applicability. The treatment
of the disk’s vertical structure is such a one.

The very basic character of an SSD is that it is geometrically
thin; i.e., everywhere in the disk, the half-thicknessH(r) is much
smaller than the corresponding cylindrical radius r: H(r)/rT1.
This means that the averagedmotion of diskmatter in the vertical
direction (if there is any) must be negligible compared with that
in the radial direction, and it is reasonable to assume that in the
macro sense, the disk matter is in vertical hydrostatic equilibrium;
i.e., in the vertical direction, the gravitational force and the pres-
sure force are balanced with each other:

@p

@z
þ �

@ 

@z
¼ 0; ð1Þ

where p is the pressure, � is the mass density, is the gravitational
potential, and the disk is already assumed to be steady and axi-
symmetric, @ /@t ¼ @ /@’ ¼ 0. In the SSD model, the Newtonian
potential  N(r; z) ¼ �GM /(r 2 þ z2)1

=2 was used, where M is
the mass of the central accreting object, and the one-zone ap-
proximation in the vertical direction was made; then in equa-

tion (1), @p/@z ’ �p/H , @ N/@z ’ GMH /r 3 ¼ �2
KH , where

�K ¼ (GM /r 3)1=2 is the Keplerian angular velocity, and a rela-
tion H ¼ cs /�K was obtained, where cs ¼ ( p/�)1=2 is the sound
speed (e.g., Kato et al. 1998, p. 80).

The above procedure was somewhat improved by Hōshi
(1977), who approximated the Newtonian potential as N(r; z)’
 N(r; 0)þ �2

K
z2/2 and assumed a polytropic relation in the ver-

tical direction, p ¼ K�1þ1=N , whereK andN are constants, instead
of the one-zone approximation. Then the disk changes to have
a vertical structure, and the vertical integration of equation (1)
gives H ¼ 2(N þ 1)½ �1=2cs /�K, where the sound speed is cs ¼
( p0 /�0)

1=2, with the subscript ‘‘0’’ representing quantities on
the equatorial plane.

Both the SSDmodel and Hōshi (1977) reduced the differential
equation (1) into a very simple but very useful relation: cs /�KH ¼
constant. This relation was adopted in the slim disk model in the
following way. First, vertical hydrostatic equilibrium was still
assumed, even though slim disks are not geometrically thin; i.e.,
they may have H P r or H � r. The argument for this was that
these disks have quite large radial velocities, so their configura-
tions are quasi-spherical; i.e., the vertical motion of disk matter
can still be safely neglected, and equation (1) holds. Second, al-
though the pseudo-Newtonian potential introduced by Paczyński
& Wiita (1980, hereafter the PW potential), i.e.,

 PW r; zð Þ ¼ � GMBHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2 þ z2

p
� rg

; ð2Þ

was widely used to simulate the general relativistic effect of a
central black hole, where MBH is the black hole mass and rg �
2GMBH/c

2 is the Schwarzschild radius, it was again treated in
the form of Hōshi (1977), i.e.,

 PW r; zð Þ ’  PW r; 0ð Þ þ �2
Kz

2=2; ð3Þ

where the Keplerian angular velocity �K ¼ (GM /r)1
=2 /(r � rg).

Using equation (3) and keeping the assumption of a polytropic
relation, we refined the relation cs /�KH ¼ constant by integrat-
ing equation (1), with the sound speed cs being defined either in
terms of the pressure and mass density on the equatorial plane
(Abramowicz et al. 1988; Wang & Zhou 1999; Chen & Wang
2004) or in terms of the vertically integrated pressure and density,
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i.e., cs ¼ (�/�)1
=2, where� ¼

RH

�H
p dz and� ¼

RH

�H
� dz (Kato

et al. 1998, p. 242; Watarai 2006).
To check the validity of the Hōshi form of the potential, we

show in Figure 1 the gravitational force in the vertical direc-
tion @ PW/@z in units of c2 /rg for varying values of z/r at a fixed
radius r ¼ 10rg, calculated from equations (2) (solid line) and
(3) (dashed line). As expected, the Hōshi form of the poten-
tial, equation (3), is valid only for z/rP 0:2, while for z/r � 1 it
greatly magnifies the vertical gravitational force in comparison
with the correct result according to the explicit form of the PW
potential, equation (2).

In the following calculations we take the polytropic index
N ¼ 3. Instead of the simple relationships (�/�0)1

=3¼ ( p/p0)
1=4 ¼

1� (z/H )2 and 8p0 /�0 ¼ �2
KH

2, obtained using equation (3)
(Kato et al. 1998, p. 241), the vertical integration of equation (1)
using equation (2) gives

�

�0

� �1=3
¼ p

p0

� �1=4

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z=rð Þ2

q
� rg=r

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H=rð Þ2

q
� rg=r

2
64

3
75

;
1

1� rg=r
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ H=rð Þ2
q

� rg=r

2
64

3
75
�1

; ð4Þ

4
p0

�0
¼ �2

Kr
2 1� rg=r
� �

1� 1� rg=rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ H=rð Þ2

q
� rg=r

2
64

3
75: ð5Þ

For a fixed r and a given value of H /r, we obtain values of
�/2�0H and �/2p0H by vertically integrating equation (4), and
we obtain the value of cs /�KH by using equation (5). We define

c2s ¼ �/�, as in Kato et al. (1998), where detailed results were
provided that can be quantitatively compared with ours.
Figure 2 shows �/2�0H (dashed line), �/2p0H (dotted line),

and cs /�KH (solid line) as functions of H /r at r ¼ 10rg . In the
slim diskmodel, these three quantities were all constant; forN ¼ 3,
they are �/2�0H ¼ 16/35, �/2p0H ¼ 128/315, and cs /�KH ¼
1/3 (Kato et al. 1998, p. 242). It is seen from the figure, however,
that these quantities are not constant: they take approximately
their model-predicted values only for H /rT1. For slim disks
with H /r � 1, the simple relation cs /�KH ¼ constant is invalid.

3. THERMAL EQUILIBRIA

To reveal further the consequences of the correction of vertical
gravitational force, we go on to study thermal equilibrium solu-
tions of black hole accretion flows. We write the continuity, ra-
dial momentum, angular momentum, energy, and state equations
of accretion flows in forms similar to those of Kato et al. (1998):

Ṁ ¼ �2�r�vr ¼ constant; ð6Þ

vr
dvr
d ln r

þ c2s
d ln�

d ln r
� �2r 2

¼ �
�2

K r � rg
� �2
�

Z H

�H

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z=rð Þ2

q
� rg=r

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z=rð Þ2

q dz;

ð7Þ

Ṁ �r 2 � j0
� �

¼ 2��r 2�; ð8Þ

Qþ
vis ¼ Q�

adv þ Q�
rad; ð9Þ

� ¼ �gas þ�rad

¼ kB�0T0
�mp

Z H

�H

�

�0

T

T0
dzþ 1

3
aT 4

0

Z H

�H

T

T0

� �4

dz; ð10Þ

Fig. 1.—Vertical gravitational force @ /@z for varying z/r at r ¼ 10rg, cal-
culated using the explicit form of the PWpotential (solid line) and the Hōshi form
of this potential (dashed line).

Fig. 2.—Variations of �/2�0H (dashed line), �/2p0H (dotted line), and
cs /�KH (solid line) with H /r at r ¼ 10rg.
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where Ṁ is the mass accretion rate, vr is the radial velocity, � is
the angular velocity, j0 is an integration constant representing the
specific angularmomentum (per unit mass) accreted by the black
hole, and � is the viscosity parameter. Equation (7) is obtained
by vertically integrating equation (8.2) of Kato et al. (1998) and
specifying the PW potential, equation (2). The viscous heat-
ing rate is Qþ

vis ¼ Ṁ�2f g/2�, where f ¼ 1� j/�Kr
2, j ¼ j0 /!,

! ¼ �/�K is assumed to be a constant that is smaller than 1
(sub-Keplerian rotation) and is to be evaluated, and g ¼
�d ln�K /d ln r. The advective cooling rate isQ

�
adv ¼ �Ṁc2s /2�r

2

(see Kato et al. [1998] for the detailed expression of � ). The ra-
diative cooling rate isQ�

rad ¼ 32�T 4
0 /3� , where T0 is the tempera-

ture on the equatorial plane, � ¼ �es�0H is the vertical optical depth
(e.g., eq. [8.61] of Kato et al. 1998), and �es ’ 0:34 cm2 g�1 is
the electron scattering opacity, which is assumed to be the dom-
inant opacity source. In equation (10), T is the temperature, and
T /T0 ¼ (�/�0)

1=3, as expressed by equation (4). For slim disks
the radiation pressure dominates over the gas pressure, so the
term �gas in equation (10) can be dropped for the moment.

To avoid unnecessary complexity, we ignore the ram pressure
term vrdvr /d ln r in equation (7) and take d ln�/d ln r ¼ �3/2
and � ¼ 3/2 from the self-similar solution (e.g., Wang & Zhou
1999; Watarai 2006). Then we have a set of six algebraic equa-
tions, i.e., equations (5)Y(10), which can be solved for the six un-
known quantitiesH, vr, cs,� (or !), �0, and T0, with given values
ofMBH, Ṁ , �, j, and r. In our calculations we fixMBH ¼ 10M�,
� ¼ 0:1, and j ¼ 1:83crg (a reasonable value that is just a little
less than theKeplerian angular momentum at the last stable orbit,
�Kr

2j3rg ¼ 1:837crg).
Figure 3 shows thermal equilibrium solutions at a certain ra-

dius in the ṁ-H /r plane, where ṁ is the accretion rate normalized
by the Eddington accretion rate ṀEdd ¼ 64�GMBH/c�es. The
thick lines represent the solutions obtained with the PW po-
tential, equation (2). For comparison, the thin lines show the
solutions obtained with the Hōshi form of the potential, equa-
tion (3), and accordingly equation (7) is reduced to equation (2.9)
of Matsumoto et al. (1984). The dashed, solid, and dotted lines
represent r ¼ 5rg, r ¼ 50rg, and r ¼ 500rg, respectively. It is
seen that for r ¼ 5rg, the difference between the results obtained
with the two potentials is only quantitative. For r ¼ 50rg and
r ¼ 500rg, however, the difference becomes qualitative. The
most remarkable difference is that the thick solid and thick dotted
lines have a maximum (not drawn in the figure); i.e., there exists
a maximal possible accretion rate ṁmax for slim disk solutions in
the PW potential, while no such ṁmax exists for solutions in the
Hōshi form of this potential (thin solid and thin dotted lines). One
might wonder whether H /r > 1, at which ṁmax appears, is phys-
ical. Our arguments are as follows. First,H /r > 1 has indeed been
obtained in many works on slim disks or other accretion disks
(see, e.g., Figs. 5Y10 of Peitz & Appl [1997]; Figs. 1Y4 of
Popham & Gammie [1998]; Figs. 4 and 6 of Lu et al. [1999];
Fig. 5 of Chen &Wang [2004]; Figs. 3 and 5 of Watarai [2006]).
Second, it does not matter for which value ofH /r this ṁmax really
appears. What is important is that for each large radius there is
an upper limit for ṁ beyond which no thermal equilibrium so-
lutions can be constructed. By contrast, the previous under-
standing in the slim disk model (e.g., Abramowicz et al. 1988;
Chen et al. 1995; Kato et al. 1998) was that any large value of
ṁ could correspond to a thermal equilibrium solution, as the
thin solid and thin dotted lines in Figure 3 imply. This is be-
cause those authors either used the Hōshi form of the potential,
equation (3), which magnifies the vertical gravitational force,
or used the relation cs /�KH ¼ constant, which results from
equation (3).

It is also noticeable that at small radii (r ¼ 5rg in Fig. 3), there
is no ṁmax for thermal equilibrium solutions. Figure 4 illustrates
this qualitative difference between small and large radii. Fig-
ure 4a shows results for ṁ ¼ 10 and r ¼ 5rg, and Figure 4b shows
results also for ṁ ¼ 10, but for r ¼ 50rg (ṁ is larger than the cor-
responding ṁmax). It is clear in the former case that thermal
equilibrium can be established; i.e.,Qþ

vis ¼ Q� (�Q�
adv þ Q�

rad ),
or Qþ

vis ¼ Q�
adv if Q

�
rad is totally negligible, can be realized for

some value ofH /r � 1; while in the latter case there are no ther-
mal equilibrium solutions, as Qþ

vis is always larger than Q�.
We derive an approximate analytic expression of the critical

radius rcrit: for r > rcrit there is a ṁmax, and for r < rcrit there is
not. Equation (5) gives 4c2s < �2

Kr
2, and equation (7) gives

(3/2)c2s þ �2r 2 ’ �2
Kr

2, so we have (5/2)c2s < �2r 2. As seen
from Figure 4, the condition that can ensure a thermal equilib-
rium solution at a given radius is Q�

adv � Qþ
vis, i.e., (3/2)c

2
s /r

2 �
�2f g ’ (3/2)�2f , since g ’ 3/2. Therefore, the criterion for a
thermal equilibrium solution to exist is expressed as

f � 1� j

�Kr 2
� 2

5
: ð11Þ

For j ¼ 1:83crg in our calculations, the critical value fcrit ¼ 2/5
gives rcrit ¼ 16:4rg, which agrees well with the numerical value
rcrit ¼ 18:8rg in Figures 3 and 5. The reason why f is of crucial
importance is that since Qþ

vis is proportional to f, for small radii f
is small, and Qþ

vis can be balanced by Q�
adv for any ṁ, while for

large radii f is large, and there must be an upper limit for ṁ be-
yondwhichQþ

vis would be too large to be balanced by any cooling.
To see where the position of slim disks is according to our un-

derstanding, we present in Figure 5 a united description of ther-
mal equilibrium solutions of optically thick accretion flows around
black holes in the ṁ-r plane. The solid line in the figure shows ṁmax

for each radius, above which no thermal equilibrium solutions exist
at all. The rest of the plane is further divided into three regions on
the basis of the local stability analysis. We adopt a simple ther-
mal instability criterion: (@Qþ

vis /@T )�� (@Q�/@T )� > 0, which

Fig. 3.—Thermal equilibrium solutions with the Hōshi form of the PW poten-
tial (thin lines) and with the explicit PW potential (thick lines) at r ¼ 5rg (dashed
lines), r ¼ 50rg (solid lines), and r ¼ 500rg (dotted lines).
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is practically valid for moderately large scale perturbations (Kato
et al. 1998, p. 306). The criterion results in 	 ¼ 2� 5
 � 6fadv þ
8
fadv > 0, where 
 � �gas /� and fadv � Q�

adv /Q
þ
vis. The dotted

and dashed lines both show 	 ¼ 0, but they correspond to 
 ¼
2/5 and fadv ¼ 0 and to fadv ¼ 1/3 and 
 ¼ 0, respectively. The
region below the dotted line has 	 < 0 and is for stable SSDs,
which are radiative coolingYdominated ( fadv ! 0) and gas
pressureYsupported (
 > 2/5). The region between the dotted
and the dashed lines has 	 > 0 and is for unstable SSDs, which

are radiation pressureYsupported (
 < 2/5) but not yet advec-
tive coolingYdominated ( fadv < 1/3). These two regions were
already known in the literature. The region between the dashed
and the solid line has 	 < 0 and is obviously for slim disks,
which are advective coolingYdominated ( fadv > 1/3) and radia-
tion pressureYsupported (
 ! 0) and are stable. What is new
is that, because of the limitation of ṁmax, accretion flows can
possibly take the form of slim disks only in the inner regions of
the flows; i.e., in the region r < rcrit.
Figure 5 may have interesting implications. If the accretion

rate ṁ of an accretion flow is sufficiently small at large radii
(i.e., below the dotted line), then the flow can behave as an SSD
throughout (here we do not want to discuss the inapplicability
of the SSD model to the inner region of a black hole accretion
flow, such as for the flow’s transonic motion). If, however, ṁ at
large radii is in the unstable region or in the no-solution region,
then it seems that the only possible way for accretion to proceed
is that the flow loses matter continuously in the form of outflows.
Such outflows must be so strong that ṁ remains below the dotted
line all the way to the inner region, where r < rcrit. In the inner
region there are two possibilities for the accretion flow: either ṁ
is still below the dotted line and the flow continues to be an SSD,
or ṁ is in the unstable region. In the latter case the flow may un-
dergo a limit cycle, i.e., oscillating between the SSD state and
the slim disk state in the vertical axis direction of Figure 5. Such
a limit cycle behavior has been investigated extensively in the
literature (e.g., Szuszkiewicz & Miller 2001 and references
therein) and is the likely way for slim disks to be realized. A
related remark is that, provided that the value of ṁ in the outer
region of accretion flows is not sufficiently small, outflows seem
to be unavoidable, as has already been observed in many high-
energy astrophysical systems that are believed to be powered by
black hole accretion.

4. DISCUSSION

We have shown that when the gravitational force in the verti-
cal direction of black hole accretion disks is correctly calculated,

Fig. 4.—Variations of Qþ
vis (solid line), Q�

adv (dashed line), Q�
rad (dotted line), and Q�

adv þ Q�
rad (dot-dashed line) with H /r. In panel a, ṁ ¼ 10 and r ¼ 5rg, and in

panel b, ṁ ¼ 10 and r ¼ 50rg. Numbers on the vertical axis are in units of ergs cm�2 s�1.

Fig. 5.—Distribution of thermal equilibrium solutions. The solid line repre-
sents ṁmax, the dashed line indicates fadv ¼ 1/3, and the dotted line indicates

 ¼ 2/5.
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the relationship cs /�KH ¼ constant, which is valid only for
geometrically thin disks, does not hold for slim disks; that there
exists a maximal possible mass accretion rate for each radius in
the outer region of optically thick accretion flows, such that only
the flow’s inner region can possibly take the form of slim disks;
and that outflows from the outer region must be produced in
order for slim disks to be realized.We stress that only one change
has been made in obtaining these results, i.e., using the explicit
form of the PW potential, instead of the Hōshi form of this po-
tential, to calculate the vertical gravitational force, while all the
assumptions, equations, and methods for solutions are kept ex-
actly the same as in the slim diskmodel (e.g., in the excellent book
of Kato et al. 1998).

All our results here are based on a local analysis. Although
a similar local analysis was often used in the literature (e.g.,
Abramowicz et al. 1995; Chen et al. 1995; Kato et al. 1998), it is
worthwhile to check our results by constructing global solutions
of original differential equations for black hole accretion flows,
similar to what was done by, for example, Chen &Wang (2004),
but with a revised vertical gravitational force. We plan to do this
in a subsequent work.

A natural question is why we concentrate our attention here
only on slim disks and do not consider another type of black hole
accretion flows, namely, optically thin advection-dominated
accretion flows (ADAFs; Narayan&Yi 1994; Abramowicz et al.
1995), which are also geometrically not thin. We think that the
ADAFmodel is also likely to suffer the same problem in the ver-

tical direction as the slim disk model does, because the problem
results from a purely hydrodynamic consideration and is related
only to the geometrical thickness of the flow. In particular, the
usage of the relation cs /�KH ¼ constant for ADAFs is question-
able.What is different is that for optically thin flows the radiation
processes aremore complicated and the vertical integration is not
as easy to perform as for slim disks. In addition, ADAFs are
known to correspond to very low accretion rates and to have a
maximal possible accretion rate at each radius (e.g., Abramowicz
et al. 1995), so the problem may have no impact on ADAFs with
respect to the accretion rate. However, we still wish to make one
more comment. Many two-dimensional or three-dimensional nu-
merical simulations of viscous radiatively inefficient accretion
flows revealed the existence of convection-dominated accretion
flows instead of ADAFs (e.g., Stone et al. 1999; Igumenshchev
&Abramowicz 2000;McKinney&Gammie 2002; Igumenshchev
et al. 2003). According to our results here, the one-dimensional
ADAF model might have hidden inconsistencies in the vertical
direction, such that ADAFs could not be obtained in those multi-
dimensional numerical simulations.

We thank Li Xue for beneficial discussions and the referee for
prompt and helpful comments. This work was supported by the
National Science Foundation of China under grants 10503003
and 10673009.
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