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The thermostatistic properties of a q-generalized Fermi system trapped in a generic power-law potential are studied,

based on the generalized statistic distribution derived from the Tsallis entropy. The total number of particles, the total

energy, and the heat capacity at constant volume of the system are derived. The thermostatistic characteristics of

the system are discussed in detail. It is found that the thermostatistic properties of such a system depend closely on

parameter q, dimensional number of the space, kinetic characteristics of particles and shapes of the external potential,

and the external potential has a great influence on the thermostatistic properties of the system. Moreover, it is shown

that the results obtained here are very general and can be used to unify the description of the nonextensive and

extensive thermostatistic properties of a class of Fermi systems trapped in different external potentials so that the

important conclusions of many typical Fermi systems in the literature may be directly derived from the present paper.
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1. Introduction

In recent years, it has been considered that

the systems with spatial and/or temporal long-range

interactions are nonextensive and the conventional

Boltzmann–Gibbs (BG) statistical mechanics needs

generalizing for the statistical description of the fea-

tures of the systems. The nonextensive generaliza-

tion of BG statistical mechanics was carried out first

by constructing a new form of entropy with a nonex-

tensive parameter q different from unity.[1] And sub-

sequently it was further developed and widely used

to analyse the thermostatistic properties of many

such nonextensive systems.[2−8] A representative set

of examples are the dynamic linear response theory,[7]

the Lévy distributions,[9] the ground-state geometry

of silicon cluster,[10] the nonionized hydrogen atom

system[11] with q < 1, the dark magnetism,[12] the

cosmic background radiation,[13] the pure-electron

plasma with q = 1/2,[14] the quantum scattering of

spinless particles,[15] etc. The novel results obtained

show that the nonextensive generalization of BG sta-

tistical mechanics is a powerful tool in such studies

and the nonextensive parameter q can play an impor-

tant role.

It is well known that the Bose and Fermi systems

are two types of the basic quantum systems in the

natural world. In the experiment of the Bose–Einstein

condensation (BEC), it can be said that the external

potential creates favourable conditions for controlling

degenerate atomic gases and quantitatively investigat-

ing their performance. Unlike the Bose system, the

Fermi system does not undergo a phase transition un-

der the constrained conditions of external potentials

and very low temperatures. However, under suitable

conditions the fermions may form Fermi pairs and be-

come a Bose gas.[16] The BEC may occur in such a

system and was recently achieved by Markus Greiner

et al.[17] In the last few years, the q-generalized sta-

tistical mechanics has been used to investigate the

q-generalized free Fermi system and some important

results have been obtained.[18] However, the proper-

ties of a trapped q-Fermi system, which may be more

closely related to the experiments, have been seldom

studied.

In the present paper, we systemically investigate

the thermostatistic properties of a q-generalized Fermi

system trapped in a generic power-law potential, so
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that the results obtained here can unify the descrip-

tion of the nonextensive and extensive thermostatistic

properties of a class of Fermi systems.

2. Total particle number and en-

ergy of the system

With the help of the dilute gas assumption and

the approximation method called factorization ap-

proach, some researchers[19−21] derived a generalized

Fermi–Dirac (FD) distribution function, i.e.

nq =
1

[1 + (q − 1)β(ε − µ)]1/(q−1) + 1
, (1)

where nq is the average occupation number in a state

with energy ε, β = 1/(kT ) with T being the absolute

temperature, and µ is the chemical potential. When

q = 1, expression (1) becomes the well-known FD dis-

tribution.

It should be pointed out that the deviation of

the factorization approximation (FA) can be neglected

when the temperature is out of the forbidden zone

of the dilute approximation (FZDA).[22] For example,

the forbidden zone will appear at 1010 K for a system

with the particle number Nq = 105 and 1020 K for

Nq = 1015. As a matter of fact, most of practical

systems are far away from the FZDA so the FA can

be used to investigate the properties of the quantum

nonextensive systems.

According to the Pauli principle and expression

(1), one has

1 + (q − 1)β(ε − µ) ≥ 0 (2)

for an arbitrary value of q. From inequality (2), we

obtain[18]

ε











≤ µ +
1

(1 − q)β
(q ≤ 1)

≥ µ −
1

(q − 1)β
(q ≥ 1)

. (3)

On the other hand, it is easily seen from the

expression [1 + (q − 1)β(ε − µ)]
1

q−1 that for an ar-

bitrary value of q, the expression is smaller than 1

when ε − µ < 0 and larger than 1 when ε − µ > 0.

Using the relation [1 + (q − 1)β(ε − µ)]1/(q−1) =

Z−1
q [1 + (q − 1)βZq−1

q ε]1/(q−1) and expression (1), we

obtain

nq =



























∞
∑

j=0

(−1)jZ−j
q [1 + (q − 1)βZq−1

q ε]
j

q−1 (ε < µ),

1

2
(ε = µ),

∞
∑

j=1

(−1)j−1Zj
q [1 + (q − 1)βZq−1

q ε]
j

1−q (ε > µ),

(4)

where

Zq = [1 + (1 − q)βµ]
1

1−q (5)

is called the q-generalized fugacity.[23]

Now, we consider a q-generalized Fermi system

trapped in a generic power-law potential. The Hamil-

tonian of a single particle in the system can be written

as[24,25]

H = aps +

n
∑

i=1

Ui|
ri

Li
|ti , (6)

where a, s, Ui and Li are all positive constants, and

p and ri are the momentum and the i-th component

of coordinate of a particle, respectively. The energy

spectrum given above is very general in which the dif-

ferent values of a and s indicate the different kinematic

characteristics of particles and the different parame-

ters Ui, Li and ti correspond to different strengths and

shapes of the external potentials.

When the number of particles in the system is

large and the potential energy of particles in a trap is

much smaller than their kinetic energy, the Thomas–

Fermi semiclassical approximation is valid,[26] so that

the total number of quantum states for H ≤ ε may be

expressed as

∑

(ε) =
g

hn

∫

H≤ε

n
∏

i=1

(dridpi), (7)

where g is the degree of degeneracy and h is the Planck

constant. The derivation of expression (7) with re-

spect to ε yields the expression of the density of states
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for an ideal system trapped in a generic power-law po-

tential, i.e.

D(ε)

=
∂Σ(ε)

∂ε

=
2ngπn/2

hnΓ(n/2 + 1)an/s

×

n
∏

i=1

LiΓ(1/ti + 1)

U
1/ti

i

Γ(n/s + 1)

Γ(δ)
εδ−1, (8)

where

δ = n/s +

n
∑

i=1

1/ti. (9)

It is seen from expression (9) that δ is a char-

acteristic parameter of the system. It is dependent

only on the space dimensionality n, kinematic char-

acteristics of particles s, and positive parameters ti

which describe the external potential, but it is in-

dependent of the nonextensivity parameter q. It is

significant to note that the different values of δ repre-

sent different Fermi systems which may have different

external potentials or different kinematic characteris-

tics of particles, but the different Fermi systems may

have the identical values of δ because one value of

δ may correspond to the different choices of parame-

ters n, s and ti (i = 1, 2, 3, ..., n). For example, when

δ = 3, the Fermi system may be a relativistic Fermi

gas confined in a three-dimensional rigid container

(n = 3, s = 1, and ti → ∞), or a nonrelativistic Fermi

gas trapped in a three-dimensional harmonic potential

(n = 3, s = 2, and ti = 2), or a nonrelativistic Fermi

system confined in a six-dimensional rigid container

(n = 6, s = 2, and ti → ∞). It should be further

pointed out that although the different Fermi systems

may have identical values of δ, these Fermi systems

will have different thermostatistic properties because

parameters n,s, ti (i = 1, 2, 3, ..., n), a, Ui, and Li are

closely dependent on the choice of different systems.

By using expression (8), the total particle num-

ber and the energy of the system can be, respectively,

written as

N =

∫

D(ε)nqdε =
2ngπn/2

hnΓ(n/2 + 1)an/s

n
∏

i=1

LiΓ(1/ti + 1)

U
1/ti

i

Γ(n/s + 1)

Γ(δ)
Iδ−1 (10)

and

E =

∫

εD(ε)nqdε =
2ngπn/2

hnΓ(n/2 + 1)an/s

n
∏

i=1

LiΓ(1/ti + 1)

U
1/ti

i

Γ(n/s + 1)

Γ(δ)
Iδ, (11)

where the parameter Iλ is given by

Iλ =

∫

ελdε

[1 + (q − 1)β(ε − µ)]
1

q−1 + 1

=

∞
∑

j=0

(−1)jZ−j
q

∫ µ

−∞

[1 + (q − 1)βZq−1
q ε]

j
q−1 ελdε +

∞
∑

j=1

(−1)j−1Zj
q

∫ ∞

µ

[1 + (q − 1)βZq−1
q ε]

j
1−q ελdε (12)

and λ is the parameter which may be equal to δ or

δ − 1. It should be pointed out that expression (12)

is directly derived from expressions (4), (10) and (11),

and the lower and upper bounds of the integration in

expression (12) depend not only on the value of µ but

also on the relation between ε and µ for the different

cases of q ≤ 1 and q ≥ 1. For example, when µ < 0,

it is necessary only to calculate the second integral in

expression (12) because of the requirement of ε ≥ 0.

When µ ≥ 0, we have to calculate two integrals in ex-

pression (12) simultaneously. When q ≤ 1 or q ≥ 1, we

must use the first or the second relation in inequality

(3) to determine the lower and upper bounds of the

integrations in expression (12), respectively. Detailed

discussion is given in Section 3.

3. General properties of the sys-

tem

It is well known that the energy ε of a single par-

ticle in the system is a nonnegative real number, i.e.

ε ≥ 0, (13)
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and it is constrained by different conditions when the

values of q are different. Thus, it is necessary to dis-

cuss the thermostatistic properties of the system for

two different cases of q ≥ 1 and q ≤ 1, separately.

3.1. The case of q ≥ 1

When µ ≤ 0 and 0 ≤ ε < ∞, expression (12) may

be expressed as

Iλ =

∞
∑

j=1

(−1)j−1Zj
q

∫ ∞

0

[1 + (q − 1)βZq−1
q ε]

j
1−q ελdε =

∞
∑

j=1

(−1)j−1Zj
q

[(q − 1)βZq−1
q ]λ+1

Γ

(

j

q − 1
− λ − 1

)

Γ(λ + 1)

Γ

(

j

q − 1

) .(14)

In order to guarantee that the integral value in ex-

pression (14) is larger than zero, the parameter q

has to be restricted, and consequently, the condition
j

q − 1
> λ + 1, i.e. q <

λ + 2

λ + 1
, must be satisfied. Sub-

stituting expression (14) into expressions (10) and (11)

yields the total particle number and the total energy

of the system, respectively, as

N =
2ngπn/2Γ(n/s + 1)(kT )δ

hnΓ(n/2 + 1)an/s

×

n
∏

i=1

LiΓ(1/ti + 1)

U
1/ti

i

fq,δ(Zq) (15)

and

E = δNkT
fq,δ+1(Zq)

fq,δ(Zq)
, (16)

where

fq,D(Zq) =

∞
∑

j=1

(−1)j−1Z
j−(q−1)D
q

(q − 1)D

×

Γ

(

j

q − 1
− D

)

Γ

(

j

q − 1

) (17)

is the generalized Fermi integral.

Using the definition of the heat capacity at con-

stant volume

CV,q =

(

∂E

∂T

)

V

(18)

and expression (16), one can calculate the heat capac-

ity at constant volume of the system as

CV,q

= δNk

[

(δ + 1)
fq,δ+1(Zq)

fq,δ(Zq)
− δ

fq,δ(Zq)

fq,δ−1(Zq)

]

. (19)

When 0 < µ ≤
1

β(q − 1)
, 1 ≤ q ≤ 1 +

1

µβ
and

0 ≤ ε < ∞, expression (12) may be expressed as

Iλ =

∞
∑

j=0

(−1)jZ−j
q

∫ µ

0

[1 + (q − 1)βZq−1
q ε]j/(q−1)ελdε +

∞
∑

j=1

(−1)j−1Zj
q

∫ ∞

µ

[1 + (q − 1)βZq−1
q ε]

j
1−q ελdε

=

∞
∑

j=0

(−1)jZ−j
q

[(q − 1)βZq−1
q ]λ+1

(Zq−1
q − 1)λ+1H

[

j

1 − q
, λ + 1, λ + 2, 1 − Zq−1

q

]

λ + 1

+

∞
∑

j=1

(−1)j−1Zj
q

[(q − 1)βZq−1
q ]λ+1

H

[

j

q − 1
,

j

q − 1
− λ − 1,

j

q − 1
− λ,

1

1 − Zq−1
q

]

(

j

q − 1
− λ − 1

)

(Zq−1
q − 1)

j
q−1−λ−1

, (20)

where q < (λ + 2)/(λ + 1) must also be satisfied,

H[a, b, b + 1, c] = b

∫ 1

0

(1 − ct)−atb−1dt (21)
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is the so-called hyper-geometric function with a, b and c being some parameters which are independent of t. By

using expressions (10), (11), (18) and (20), the expressions of N , E, and CV,q are, respectively, given by

N =
2ngπn/2

hnΓ(n/2 + 1)an/s

n
∏

i=1

LiΓ(1/ti + 1)

U
1/ti

i

Γ(n/s + 1)

Γ(δ)
(kT )δfq,δ(Zq), (22)

E = NkT
fq,δ+1(Zq)

fq,δ(Zq)
, (23)

and
CV,q

Nk
= (δ + 1)

fq,δ+1(Zq)

fq,δ(Zq)
− δ

∂fq,δ+1(Zq)/∂Zq

∂fq,δ(Zq)/∂Zq
, (24)

where the generalized Fermi integral

fq,D(Zq) =

∞
∑

j=0

(−1)jZ
−j−(q−1)D
q

(q − 1)D

(Zq−1
q − 1)DH

[

j

1 − q
, D, 1 + D, 1 − Zq−1

q

]

D

+

∞
∑

j=1

(−1)j−1Z
j−(q−1)D
q

(q − 1)D

(Zq−1
q − 1)D−

j
q−1 H

[

j

q − 1
,

j

q − 1
− D,

j

q − 1
− D + 1,

1

1 − Zq−1
q

]

(

j

q − 1
− D

) . (25)

When 1/[β(q − 1)] < µ, it is seen from inequal-

ity (3) that there is a constrained condition ε > 0,

while ε = 0 is unallowable. It is in contradiction with

inequality (13). On the other hand, it is seen from

expression (5) that when 1/[β(q−1)] < µ, Zq may be-

come an imaginary number. It implies that the case

of 1/[β(q − 1)] < µ is not allowed for the Fermi sys-

tems with q > 1, which is a common characteristic of

q-generalized Fermi systems.

3.2. The case of q ≤ 1

From inequalities (3) and (13), we obtain the fol-

lowing relation:

0 ≤ ε ≤ µ + 1/[(1 − q)β]. (26)

When µ < 0, then 1 + 1/(µβ) ≤ q ≤ 1. By using

inequality (26), expression (12) may be written as

Iλ =

∞
∑

j=1

(−1)j−1Zj
q

∫ µ+ 1
(1−q)β

0

[

1 + (q − 1)βZq−1
q ε

]

j
1−q ελdε. (27)

Substituting expression (27) into expressions (10),

(11) and (18), we find that the forms of total particle

number, total energy and heat capacity at constant

volume of the system are all the same as those of ex-

pressions (15), (16) and (19) respectively, while in this

case the q-generalized Fermi integral may be expressed

as

fq,D(Zq)

=
∞
∑

j=1

(−1)j−1Z
j+(1−q)D
q

(1 − q)D

Γ

(

j

1 − q
+ 1

)

Γ

(

j

1 − q
+ D + 1

) . (28)

When µ ≥ 0, the expressions of N , E, and CV,q

are the same as expressions (22)–(24), while the q-

Fermi integral is given by

fq,D(Zq) =

∞
∑

j=0

(−1)jZ
−j+(1−q)D
q

(1 − q)D

(1 − Zq−1
q )DH

[

j

1 − q
, D, 1 + D, 1 − Zq−1

q

]

D

+

∞
∑

j=1

(−1)j−1Z
(1−q)(D−1)
q

(1 − q)D

H

[

1 − D,
j

1 − q
+ 1,

j

1 − q
+ 2, Zq−1

q

]

j

1 − q
+ 1

. (29)
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It can be seen from inequality (26) that when q < 1 and µ > 0, the energy of particles is not allowed to be

larger than the chemical potential. At zero temperature, all the energy levels below the Fermi energy level EF

are filled by particles, while all the energy levels above the Fermi energy level EF are empty. From expression

(10), one can derive the Fermi energy of the system as

EF =

[

NhnΓ(n/2 + 1)an/s

2ngπn/2

n
∏

i=1

U
1/ti

i

LiΓ(1/ti + 1)

Γ(δ + 1)

Γ(n/s + 1)

]1/δ

, (30)

which is independent of q and the same as that of an

original extensive Fermi system trapped in a generic

power-law potential.

Using expressions (15), (22) and (30), one can

generate the curves for the chemical potentials of a

class of Fermi systems trapped in different external po-

tentials versus dimensionless temperature kT/EF for

different values of q and δ as shown in Fig.1. It is

seen from the curves in Fig.1 that the chemical poten-

tials of the systems with q 6= 1 are different from that

of the system with q = 1 and closely dependent not

only on temperature but also on the parameters q and

δ. When q > 1, the chemical potential of a nonexten-

sive Fermi system is always less than the Fermi energy

and there is a cut-off of the chemical potential. The

straight lines in Fig.1 represent the critical condition

of the cut-off. The slope of the straight line increases

with the decrease of q, and the cut-off temperature de-

creases with the increase of the slope of straight line.

It implies that the curves for the chemical potential

of a nonextensive Fermi system against temperature

are only allowed to be situated on the right side of

the straight line with a slope of kT/(q−1). When the

value of q approaches to 1, the slope of the straight line

becomes infinite, the cut-off temperature approaches

to zero, and the chemical potential at the cut-off tem-

perature is equal to the Fermi energy. When q < 1,

the chemical potential of a nonextensive Fermi system

at any non-zero temperature is always larger than that

of an original Fermi system. The more the q value is

away from 1, the larger the difference between them

will be. When T → 0K, the difference will disappear

and all the chemical potentials for the various systems

with different values of q < 1 are equal to the Fermi

energy. It is worth while to point out that the chemical

potential of a nonextensive Fermi system with q < 1

is not a monotonic function of temperature and may

be larger than the Fermi energy in a certain region of

temperature.

Fig.1. Curves for chemical potentials of a class of Fermi systems versus temperature, where curves a, b, c, d

and e correspond to the cases of q = 0.7, 0.9, 1, 1.05 and 1.1, respectively.

Similarly, expressions (19), (24) and (30) can be used to plot the curves for heat capacities at constant

volume of a class of Fermi systems at low and high temperatures against dimensionless temperature kT/EF for

different values of q and δ as shown in Figs.2 and 3, respectively. The dot curve in Fig.2 represents the different
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cut-off points for the different values of q. It is seen

from the curves in Figs.2 and 3 that the heat capaci-

ties at constant volume of the Fermi systems increase

with the increase of q for the same value of δ, but they

are not a monotonic function of temperature in some

cases. When q > 1, there is a cut-off of the heat ca-

pacity for a q-generalized Fermi system. The heat ca-

pacities of the systems with q > 1 are larger than that

of the system with q = 1 and increase monotonically

with temperature. When q < 1, the heat capacity

at constant volume of a Fermi system will approach

to zero when temperature is close to absolute zero no

matter what the q value is, and consequently, the third

law of thermodynamics still holds. At any tempera-

ture, the heat capacities of the systems with q < 1 are

always less than that of the system with q = 1. When

temperature is very low, the difference in heat capac-

ity between the systems with q < 1 and q = 1 will

not be obvious. The heat capacity of the system with

q = 1 is a monotonically increasing function of tem-

perature, while the heat capacities of the systems with

q < 1 are not monotonic functions of temperature.

However, unlike the nonextensive Bose system[23,27,28]

that has a phase transition point and a heat capacity

that may be discontinuous at the critical temperature

of BEC, the q-generalized Fermi system has a heat ca-

pacity that continuously varies with temperature. It

first increases and then decreases as temperature in-

creases so that there is a maximum heat capacity at

a certain value of temperature, which is due mainly

to the fact that the fermions must be constrained by

the Pauli principle. In addition, it is significant to

note that at high temperatures, the heat capacities of

the generalized Fermi systems do not approach to a

constant. This is very unusual but coincides with the

case of the generalized Bose system.[23,27−31] It implies

that at high temperatures, the quantum effects of the

generalized Bose and Fermi systems are negligible and

consequently their thermostatistic properties tend to

be accordant with each other.

Fig.2. Curves for heat capacities at constant volume of a class of Fermi systems at low temperatures versus

temperature, where curves a, b, c, d and e correspond to the cases of q = 0.7, 0.9, 1, 1.05 and 1.1, respectively.

Fig.3. Curves for heat capacities at constant volume of a class of Fermi systems at high temperatures versus

temperature, where curves a, b, c, d and e correspond to the cases of q = 0.7, 0.9, 1, 1.05 and 1.1, respectively.
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4. Discussion

It is interesting to note that the results ob-

tained above are very general and can be used to

derive the thermostatistic properties of ordinary and

q-generalized Fermi systems trapped in different ex-

ternal potentials by appropriately choosing different

values of parameters a, s, Ui, Li and n. Several typi-

cal examples are given as follows.

4.1.Nonextensive Fermi system trapped

in a harmonic oscillator potential

When a = 1/(2m), ti = 2 and Ui/L2
i = mω2

i /2

(i = 1, 2, . . . , n), the above results can be used to de-

rive the thermostatistic properties of a q-generalized

Fermi system trapped in an n-dimensional harmonic

potential with frequency ωi. In such a case, expression

(9) is simplified to

δ = n/s + n/2. (31)

When q ≥ 1, the total number of particles of the sys-

tem in the case of µ ≤ 0

N =
gπnΓ(n/s + 1)(kT )δ

hn
∏

i

ωiΓ(n/2 + 1)an/s(m/2)n/2
fq,δ(Zq), (32)

and that in the case of 0 < µ ≤
1

β(q − 1)

N

=
gπn

hn
∏

i

ωiΓ(n/2 + 1)an/s

Γ(n/s + 1)(kT )δ

(m/2)n/2Γ(δ)
fq,δ(Zq)

(33)

can be, respectively, derived from expressions (15) and

(22), while the total energy and heat capacity at con-

stant volume of the system are still given by expres-

sions (16) and (19) when µ ≤ 0 and by expressions

(23) and (24) when 0 < µ ≤
1

β(q − 1)
. Similarly, one

can derive the total particle number, the total energy

and the heat capacity at constant volume of the sys-

tem from the above results when q ≤ 1.

4.2.Nonextensive Fermi system con-

fined in a rigid container

When ti → ∞ (i = 1, 2, . . . n), expression (9) is

simplified into

δ = n/s (34)

and the above equations can be used to derive the

thermostatistic properties of a q-generalized nonrela-

tivistic or relativistic Fermi system confined in a rigid

container with an n-dimensional volume. The results

obtained are just the same as those derived in Ref.[18].

4.3.Ordinary Fermi system

When q → 1, expression (1) becomes the well-

known FD distribution function. It is easily seen from

the above equations that the thermostatistic proper-

ties of an ordinary Fermi system trapped in a generic

power-law potential are given by[25]

N =
2ngπn/2Γ(n/s + 1)(kT )δ

hnΓ(n/2 + 1)an/s

×
n

∏

i=1

LiΓ(1/ti + 1)

U
1/ti

i

fδ(Z), (35)

E = δNkT
fδ+1(Z)

fδ(Z)
, (36)

and

CV =

(

∂E

∂T

)

V

= δNk

[

(δ + 1)
fδ+1(Z)

fδ(Z)
− δ

fδ(Z)

fδ−1(Z)

]

, (37)

where Z = eβµ is the fugacity and fD(Z) =
1

Γ(D)

∫ ∞

0

xD−1dx

Z−1ex + 1
is the original Fermi integral.

Expressions (35)–(37) may be used to discuss the ther-

mostatistic properties of an ordinary Fermi gas sys-

tem trapped in different external potentials such as a

harmonic oscillator potential[32] and a rigid container.

For example, when n = 3, s = 2, a = 1/(2m), and

ti → ∞ are chosen, the thermostatistic properties of

a three-dimensional nonrelativistic Fermi system men-

tioned often in textbooks[33] can be easily derived from

expressions (35)–(37).

5. Conclusions

With the help of the q-generalized FD distribu-

tion function and the density of states of a Fermi

system trapped in a generic power-law potential, we

have successfully derived the analytic expressions for

the total particle number, the total energy, and the

heat capacity at constant volume of a q-generalized

Fermi system trapped in a generic power-law poten-

tial by introducing some significant physical param-

eters such as the q-generalized fugacity§generalized
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Fermi integral§and so on. The effects of the kinetic

characteristics of particles, shape of external poten-

tial, dimensional number of the space and nonexten-

sive parameter on the properties of the system are

discussed in detail. It is found that when q > 1, the

chemical potential and the heat capacity at constant

volume of a q-generalized Fermi system at low tem-

peratures must be cut off and the chemical potential

is always smaller than the Fermi energy; when q < 1,

the chemical potential of a q-generalized Fermi system

in a certain region of temperature may be larger than

the Fermi energy and there exists a maximum of the

chemical potential which is a common characteristic of

q-generalized Fermi systems. It is also found that at

low temperatures, the thermodynamic properties of a

generalized Fermi system are very different from those

of a generalized Bose system. However, at high tem-

peratures, the quantum effects of generalized Fermi

and Bose systems are negligible and consequently they

have the same unusual behaviour of the heat capac-

ity at constant volume. Moreover, it is expounded

that the thermodynamic properties of typical Fermi

systems trapped in different external potentials can

be derived from the present paper so that the results

obtained here can play an important role in unifying

the description of thermodynamic properties of many

nonextensive and extensive Fermi systems.
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[20] Büyükkiliç F and Demirhan D 1993 Phys. Lett. A 181 24
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