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We introduce a new universality class of one-dimensional iteration model giving rise to 

self-similar motion, in which the Feigenbaum constants are generalized as self-similar rates 

and can be predetermined. The curves of the mean-square displacement versus time 

generated here show that the motion is a kind of anomalous diffusion with the diffusion 

coefficient depending on the self-similar rates. In addition, it is found that the distribution of 

displacement agrees to a reliable precision with the q-Gaussian type distribution in some 

cases and bimodal distribution in some other cases. The results obtained show that the 

self-similar motion may be used to describe the anomalous diffusion and nonextensive 

statistical distributions. 
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Diffusion is one of the most important types of motion in nature. Its thorough 

understanding from dynamical and thermodynamic points of view is still a big matter of 

investigation. A widely investigated diffusion, among many others, is the anomalous one 

which occurs in many physical and biological systems [1-4] often having fractal and 

self-similar structures, long-range interaction and/or long-duration memory, and so on. 

Anomalous diffusion is characterized by one-dimensional mean-square displacement as 

follows: 

αττ Δ>∝Δ< )(2x , (1) 

where )( τΔx  is the displacement in time interval τΔ , α  is called the diffusion 

coefficient characterizing the time behavior of the mean-square displacement. The cases of 

1<α  and 1>α  correspond to the subdiffusion and superdiffusion, respectively, while 

1=α  corresponds to the normal diffusion or Brownian motion. 

The probability distribution of displacement in anomalous diffusion usually does not 

agree with Gaussian distribution coming from independent or nearly independent 

contributions, but may take the form of q-Gaussian given by 

)1/(12 ])1(1[)( qxqxp −−−∝ β , (2) 

where β  is a parameter characterizing the width of the distribution and q is the 

nonextensivity index [5-9]. Anomalous diffusion is sometimes associated with q-Gaussian 

distribution, as in the liquid with vortices [10] or in the driven-dissipative dusty plasma [11, 

12], sometimes not [13]. In Eq.(2), 1≠q  indicates a departure from the Gaussian shape 

while 1→q  limit yields the normal Gaussian distribution. 

As a family of stochastic motion, anomalous diffusion has been widely studied within 

various models and circumstances [14] such as fractional Brownian motion [15], Lévy 

motions [16], fractional stable Lévy motions [17, 18], to cite only some. However, in the 
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analysis of stochastic process, the long-range interaction and/or long-duration memory can 

not be well described. On the other hand, the iterations of a deterministic dynamical system 

can never be completely independent from each other, since they are generated by 

deterministic algorithm. Concerning this matter, much work has been done to find the 

properties of iteration that allow a classification of deterministic systems. May [19] 

established a simple mathematical model called logistic map and founded the theory of 

complicated dynamics. It is shown that there exists periodic motion or chaos in a 

deterministic dynamical system, which enables us to analyze the statistical properties from 

deterministic dynamics by simple iterative algorithm. An intriguing aspect of the chaotic 

motion in complex systems usually exhibits self-similar structures [20] characterized by 

geometrical invariance under the change of scale and plays a central role in physics [21]. It is 

common knowledge that nonlinear maps are deterministic dynamics and often have 

self-similar structures. They exhibit various routes to chaos [22].  

In particular, one-dimensional maps are of widely used tools to study the emergence of 

complexity in dynamical systems. Tirnakli et al. [23, 24] showed that the probability 

distribution of the sums of iterates at the edge of chaos of the z-logistic map is numerically 

consistent with a q-Gaussian distribution given by Eq.(2) with q=1.63. Moreover, 

Fergenbaum [25, 26] proved that the self-similar proportion is constant in all unimodal 

dissipative maps. Ruiz et al. [27] obtained several Feigenbaum-like constants in a new 

universality class of one-dimensional dissipative maps and derived several values of q by 

fitting the probability distributions to Eq. (2). Their iterations, however, can only yield one 

value of q each time and, therefore, can not give predetermined Feigenbaum-like constants. 

In addition, these dissipative maps can not meet the form of anomalous diffusion given by 

Eq.(1). 

In this rapid communications, we attempt to construct a universality class of self-similar 
motion with a new method of iteration. The trajectory is iterated with self-similar structure in 
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different scale in the whole period. Furthermore, we will analyze the properties of diffusion 
through simulating the underlying deterministic dynamical system. 

In previous works, Cantor iterated a continuous line to get a self-similar line segment 

called the Cantor set. Similarly, let us attempt to use a simple iteration method to get a 

periodic motion which is similar to its own. Suppose that the periodic motion is of the 

square-wave form with the velocity 1v  in its front half period and 2v−  in its latter half 

period ( 0, 21 >vv ), i.e., the velocity in the first iteration is given by 
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as shown in Fig. 1a, where 1v  and 2v  are equal to 1.2 and 0.9, respectively. In order to get 

a motion which is similar to its own in different time scale, we can iterate the front half 

period and latter half period similar to the whole period in the rate 1r  and 2r− , respectively, 

i.e., 
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(4) 

In order to get the motion similar to its original motion after iterated, the iteration rate is 

assumed to be proportional to the velocity, i.e., 
2

1

2

1

v
v

r
r = . It can be seen from Eq.(4) that 

when the trajectory is iterated in the whole period, the self-similar rates of iteration 1r  and 

2r  can be changed continuously and predetermined. It shows that the self-similar rates of 

iteration 1r  and 2r  in the present letter are of a generalization of the Feigenbaum constants 

[25, 26].  

It is also seen from Eq.(4) that the number of states of the velocity will be doubled when 

the time interval of one state of the velocity is halved in one iteration. Thus, the time interval 
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of one state of the velocity in the i th iteration is 

i

Tit
2

)( =Δ . 
(5) 

According to Eq.(5), when the number of iteration is large enough, the time interval of one 

state of the velocity will be far less than the period. In this situation, the number of states is 

large enough to analyze the statistical property of the motion. In the i th iteration, the 

displacement in the time interval )(itnΔ  beginning from the stochastic time rant can be 

numerically calculated by 

∫
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itnt
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dtivtivntix , 
(6) 

where n is a positive integer and )(iv  is the average velocity in the iteration, which can be 

derived from Eq.(4) as  
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In order to get a reasonable statistical property, n should be large enough, i.e., 1>>n . In 

addition, the period should be far longer than the calculation time interval, i.e., )(itnT Δ>> . 

Starting from Eq.(6), we first numerically calculate the displacement ( , , )ranx i t n  for each 

stochastic beginning time rant  and then find the mean square displacement as 

2 2( , ) ( , , )rani n x i t nσ =< > , (8) 

Each 2 ( , )i nσ  is the average of 2 ( , , )ranx i t n  at different stochastic beginning times. 

Using Eqs. (4)-(8), we can plot the curves of )](/)(ln[ 0
22 nn σσ  varying with )/ln( 0nn  

for a very large i , as shown in Fig.2, where 0n  is equal to 102 . It is very interesting to note 

that if tnΔ  is chosen to be equal to τΔ  in Eq. (1), the slope of the curves in Fig.2 is just 
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equal to α  in Eq. (1). It illustrates clearly that the numerical simulations based on Eqs. 

(4)-(8) are in excellent agreement with Eq.(1) and the different choices of 1r  and 2r  

correspond to the different values of the diffusion coefficient α , respectively. 

Using Eqs. (4)-(8), we can also plot the 1r  versus 2r  curve for 1α = , as shown in 

Fig.3. It is obvious that the regions above and below the curve in the 1 2~r r  plane 

correspond to the cases of subdiffusion ( 1α < ) and superdiffusion ( 1α > ), respectively. This 

indicates that the self-similar motion can well illustrate the anomalous diffusion in different 

cases and the cases of superdiffusion or subdiffusion can be well distinguished from different 

self-similar rates. 

Moreover, we can do a statistical analysis on the displacements of self-similar motion 

mentioned above. Using Eqs. (4)-(8), we can obtain the distributions of the displacements of 

self-similar motion with different self-similar rates, as shown in Fig.4, where 1 1.3r =  and 

2r = 18.0 r , 10.1 r  and 10.2 r , respectively. At the same time, we can easily generate the 

q-Gaussian distribution curves for different values of q by using Eq. (2), as shown in the 

solid lines in Fig. 4. It is clearly seen from Fig. 4 that the distributions of the displacements 

of self-similar motion obtained by Eqs. (4)-(8) can be well fitted to the q-Gaussian 

distributions described by Eq. (2) and the different self-similar rates correspond to the 

different values of q, respectively. This demonstrates that not only the anomalous diffusion 

but also nonextensive statistical distributions can be well simulated by the self-similar 

motion. It is worth mentioning that, compared with the previous researches [23, 24, 27-29] 

where only single value or several discrete values of q were obtained, the present work is an 

important step forward in that the continuous values of q can be obtained about in the range 

of 5.1<<1.1 1r  and 121 0.2<<8.0 rrr . The further investigation indicates that in some other 

ranges of 1r  and 2r , we can also obtain some other types of the distributions of the 
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displacements of self-similar motion which are different from the q-Gaussian distributions. 

For example, when 8.121 == rr  or 0.221 == rr  is chosen, we obtain the bimodal 

distributions of the displacements of self-similar motion, as shown in Fig. 5. Such bimodal 

distributions have been found in the distributions of Epitaxial Island Growth [30] and neon 

nanobubbles in aluminum [31]. It shows that the bimodal distributions generated by complex 

systems may be simulated by self-similar motion as well. 

 To sum up, we have introduced a new model to generate a self-similar motion which is 

iterated in the whole period. It is found that the anomalous diffusion can be investigated by 

using self-similar motion with diffusion coefficients depending on self-similar rates. It is also 

found that self-similar motion can be directly used to analyze the q-Gaussian distributions 

and bimodal distributions appearing in nonextensive statistical mechanics and the different 

self-similar rates can reveal the different values of q. The results obtained here are helpful for 

the further understanding of the occurrence of anomalous diffusion, q-Gaussian and bimodal 

distributions in many natural, artificial, and social complex systems, and for the correct 

interpretation of experimental results in certain complex dynamical systems, in particular, in 

the ubiquitous dissipative systems. It is expected that the further research in this direction 

may open new perspectives.  
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Figure captions: 

 

Fig.1. The illustration of a self-similar motion for the parameters 2.11 =r  and 9.02 =r , 

where maps a, b, c and d correspond to the cases of i=1, 2, 3, 10, respectively.  

Fig.2. The mean square displacement versus time interval curves, where )(2 nσ  represents 

the mean square displacement in the time interval of tnΔ  and 0n  is equal to 102  in 

simulation.  

Fig.3. The 1r  versus 2r  curve for the diffusion coefficient 1α = . The curve divides the 

1 2~r r  plane into two regions, which correspond to the cases of subdiffusion ( 1α < ) 

and superdiffusion ( 1α > ), respectively. 

Fig.4. The distributions of displacements of self-similar motion for different self-similar rates, 

where 1 1.3r = , 2r = 18.0 r , 10.1 r  and 10.2 r , respectively. The standard Gaussian curve 

and q-Gaussian curves with q =0.78, 1.36, and 1.96 are represented by dashed and 

solid lines, respectively. 

Fig.5. The bimodal distributions of displacements of self-similar motion in different 

self-similar rates, where 6.121 == rr , 8.121 == rr , and 0.221 == rr are chosen, 

respectively.  
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