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Abstract: We present in this paper a wave coupling theory of linear electro-
optic (EO) effect for quasi-phase matched (QPM) of focused Gaussian beam 
in an optical superlattice (OSL). The numerical results indicate that, due to 
the EO effect of an appropriate applied electric field, the output beam will 
form spatially inhomogeneous polarization, changing continuously in 
transverse section of beam; the confocal parameter has a significant impact 
on the output polarization of Gaussian beam and determines the half-wave 
voltage. 
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1. Introduction 

The QPM proposed by Bloembergen et al since 1962 [1], has become a useful technique 
widely used in nonlinear frequency conversions and is receiving more and more attention [2–
4]. In the QPM materials, besides the second-order nonlinear optical coefficients related to 
frequency conversion, the EO coefficients are also periodically modulated. Therefore, the 
concept of QPM is also valid for the linear EO effect. Thus far, the linear EO effect based on 
QPM has been widely investigated, ranging from EO switch [5], precise spectral filter [6], 
high-frequency EO modulator [7], to EO scanner and lens [8,9]. The principles of all these 
devices, however, were based on the plane-wave model. As well known, the plane-wave 
model is valid only when the length of crystal is much shorter than the confocal parameter of 
light beam so that the beam width remains approximately a constant within the crystal. In fact, 
in the nonlinear interaction processes, especially the cascading of linear EO effect and other 
second-order nonlinearity effect, a focused laser beam is usually used to improve the 
efficiency or the signal intensity. In this case, the plane-wave model is invalid, and the 
transverse distribution of light field should be taken into account [10–13]. On the other hand, 
the formation of spatially inhomogeneous polarization beam has also attracted considerable 
interest [14–18]. Various methods have been proposed to form the spatially inhomogeneous 
polarization beam, which can be classified into two kinds: direct and indirect ones. The direct 
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method is by novel lasers with specially designed laser resonators [19–23]. And the indirect 
one is based on the wavefront reconstruction of the output field from the traditional lasers, 
with the aid of specially designed optical elements [16,24–28]. However, the formation of 
spatially inhomogeneous polarization is still a great challenge and paramount issue, due to the 
expectation of high flexibility in manipulating the spatially inhomogeneous polarization beam 
and in developing novel photonic devices and optical systems [16]. In this paper, we present a 
wave coupling theory of EO effect for QPM of focused Gaussian beam in an OSL. As one of 
its applications, the QPM-EO effect of focused Gaussian beam in a lithium niobate OSL is 
investigated in detail. It is found that, due to the EO effect of an appropriate applied electric 
field, the output beam will form spatially inhomogeneous polarization, changing continuously 
in transverse section of beam. And the confocal parameter has a significant impact on the 
output polarization of Gaussian beam and determines the half-wave voltage. 

2. Theory and Analyses 

Figure 1 shows the experimental schematic diagram of EO effect for QPM of focused 
Gaussian beam in an OSL. The applied electric field is along the y-axis of the OSL and a 
monochromatic light wave propagates along the x-axis of the OSL. In a cylindrical coordinate 
system, the total electric field participating in the process of linear EO effect can be expressed 
as [29] 

 ],2/)exp(),([)0(),,( c.c.EE  tixrtxr E   (1) 

where r is the radial distance from the propagation axis; E(0) is the dc electric field or slow 
varying electric field; [E(r,x)exp(-iωt)/2 + c.c.] is the light field with frequency ω; c.c. 
denotes the complex conjugate. According to Ref [30,31], the paraxial approximation is 
determined by the parameter g = 1/(k0/W0), where k0 is the wave number of the light field in 
vacuum and W0 is the waist radius at the input surface. For a wavelength λ = 632.8 nm, when 

g = 1/(k0/W0)0.01, namely W010.07µm, the paraxial approximation condition holds. And 
the x component (longitudinal component) of light field is too small so that it can be 
neglected. But, there exist two independent electromagnetic wave components of a 
monochromatic light wave propagating in the OSL, i.e., 

 1 1 2 2( , ) ( , )exp( ) ( , )exp( ),r x r x ik x r x ik x E E E   (2) 

where E1(r,x) and E2(r,x) denote the complex amplitudes of two perpendicular components of 
the light field when k1 = k2, or those of two independent electric field components 

experiencing different refractive indices when k1k2. 

 

Fig. 1. The experimental schematic diagram of EO effect for QPM of focused Gaussian beam 
in an OSL. The arrows indicate the directions of the polarizations of crystal domains. x, y and z 
stand for three principal axes of the crystal. The applied electric field E0 is along the y -axis of 
the OSL. a, b, c are three unite vectors of two independent electromagnetic wave components 
and applied electric field, respectively. 

For a Gaussian beam, the light field can be expressed as Ej(r,x) = Gj(x)uj(r,x) (j = 1,2), 
where Gj(x) are the expansion coefficients of the Laguerre-Gaussian modes of zero order, and 
uj(r,x) are the Gaussian modes [10,11]. Here, the waist of the incident Gaussian beam is set at 
the input surface of OSL, then the two independent polarization components of light fields 
have the same waist radius, W01 = W02 = W0. Therefore, uj(r,x) (j = 1,2) read [10–12] 
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where bj = kjW0
2 are the confocal parameters and b2 = n2/n1b1, with n1 and n2 being the 

unperturbed refractive indices of two wave components of different polarizations. 

Let aG )(/)( 111 xAnx  , bG )(/)( 222 xAnx  , cE 0)0( E , where a, b, and c are 

three unit vectors and 0ba ; A1(x) and A2(x) are the normalized amplitudes of the two wave 

components. Similarly to Ref [10–12,29,32], starting from Maxwell’s equations and taking 
the EO second-order nonlinearity as a perturbation, we derive the wave coupling equations 
that describe the interaction between a light wave and an applied electric field under the slow 
varying amplitude approximation and the paraxial approximation, as follows 
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where f(x) = 1 and 1 correspond to the positive and negative domains of OSL, respectively; 
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d eff , with effir  ( i  = 1, 2, 3) being the same as those in Ref. 

[29]. 
To compensate for the wave vector mismatch perfectly, similarly to Ref [12], we consider 

such a structure of OSL, f(x) = sgn(Re{[1 + i(x/b1)(1-n1/n2)]
1exp(iΔkx)}),where Re represents 

the real part; sgn is the sign function, sgn(x) = 1 when x0, sgn(x) = 1 when x<0. Under the 
condition of QPM, Eqs. (4) can be simplified as 

 1
1 2 1 2 12 2
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where LdxxiRxxff L )](exp[)(01   is the Fourier coefficient for given structure; L is the 

length of OSL; R is the reciprocal vector provided by the OSL; and φ(x) = arg{[1 ± i(x/b1)(1-

n1/n2)]
1}. For plane-wave interactions, φ(x) becomes a constant, and the OSL will degenerate 

to a periodic one [33]. 
Equations (5) are those describing the linear EO effect for QPM of focused Gaussian beam 

in an OSL, which are different from the coupled equations of the linear EO effect for QPM of 
plane-wave [32]. And the main difference is that there is a coefficient of [1 ± i(x/b1) (1-

n1/n2)]
1 for each term on the right side of Eqs. (5). The factor [1 ± i(x/b1)(1-n1/n2)]

1 depends 
on x, which causes a continuously phase variation, so-called Gouy phase shift. When x<<b1, 
Eqs. (5) reduce to the familiar wave coupling equations under the plane-wave approximation 
[32]. 

Compared with the EO effect for QPM of the plane wave, a significant character of 
present case is that, due to the EO effect, the polarization of output beam will form a 
transversely inhomogeneous distribution in space. Generally, the description of the 
polarization state (ellipse) requires two parameters: azimuth angle ψ   [-90°, 90°] and 
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ellipticity e   [-1, 1] (the positive and negative correspond to right- and left-handed 
polarizations, respectively). ψ and e can be obtained by the relations [34] 

 
2

2Re (X)
tan (2 ) ,

1- X
 

2

2Im (X)
sin (2arctan ) ,

1 X
e 


  (6) 

where     )],([),(),(),(X 11122212 xruxAnxruxAnxrExrE  . For a Gaussian 

beam, the polarization of output beam does not depend on the coordinate azimuthal angle in a 
cylindrical coordinate system [10–12]. However, the polarization of output beam varies with 
propagation distances. And more interesting is that, at a fixed x, the output beam will form a 
spatially inhomogeneous polarization, changing continuously in the transverse section of 
beam. It is obviously different from the EO effect of plane wave, for which the output beam 
has a polarization with homogeneous distribution transversely in space. The reason is that, 
two independent polarization components of Gaussian beam have different confocal 

parameters, i.e., b1b2, which result in a phase difference between two independent wave 
components in OSL. The following numerical results will illustrate this further. 

In our calculation, the wavelength λ, the temperature T, the length of the OSL L and the 
beam waist W0 are 632.8 nm, 298 K, 2.5 cm and 15 µm, respectively, which satisfy the 
paraxial approximation; the nonvanishing EO coefficients of lithium niobate used are r22 = 3.4 

and r51 = 3.4 (in 1012 m/V) [29]; the Sellmeier equations for lithium niobate are from Ref 
[35]. For an extraordinary incident beam with initial condition A1(0) = 0, A2(0) = 1, we obtain 
the numerical results shown in Fig. 2, which demonstrates the spatial distribution of 
polarization of output beam for different applied electric field E0. One sees from Figs. 2(a) 
and 2(e) that, when E0 = 0 or 64 V/mm, the output beam is linearly polarized. This is because 
that when E0 = 0, it has no EO effect and the output beam is an extraordinary one; and when 
E0 = 64 V/mm, 

 

Fig. 2. The spatial distribution of polarization of output beam for different E0 and with λ = 
632.8 nm, T = 298 K, L = 2.5 cm, W0 = 15 µm fixed. (a) E0 = 0; (b) E0 = 15 V/mm; (c) E0 = 30 
V/mm; (d) E0 = 45 V/mm; (e) E0 = 64 V/mm. 

|A1(L)|2 = 1 the output beam has become an ordinary one fully. More interesting is that, 
when E0 takes other values, for example, E0 = 15, 30 or 45 V/mm, the polarization of output 
beam becomes spatially inhomogeneous. To further identify the relative change of 
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polarization for output beam, we plot the dependence of ψ and e on r at different E0, as shown 
in Fig. 3. One sees from Fig. 3 that, when E0 = 15 V/mm [corresponding to Fig. 2(b)], ψ varies 

from 0.10° to 8.63° (Δψ = 8.53°) and e from 0.40 to 0.34 (Δe = 0.06) with r increasing 
from 0 to 150 µm; when E0 = 45 V/mm [corresponding to Fig. 2(d)], ψ varies from 0.14° to 

13.82° (Δψ = 13.68°) and e from 0.48 to 0.46 (Δe = 0.02) with r (Note that in Figs. 2(b) 
and 2(d), though Δe are small, Δψ are great, the spatial inhomogeneity of polarization of 
output beam is still evident); and when E0 = 30 V/mm [corresponding to Fig. 2(c)], ψ varies 

from 1.60° to 34.23° (Δψ = 32.63°) and e from 0.93 to 0.66 (Δe = 0.27) with r. Δe and 
Δψ are both great, so the spatial inhomogeneity of polarization of output beam is very evident. 

 

Fig. 3. Dependence of ψ and e on r for different E0. (a) ψ on r; (b) e on r. Solid, long dashed, 
short dashed lines correspond respectively to E0 = 15, 30, and 45 V/mm for λ = 632.8 nm, T = 
298 K, L = 2.5 cm, and W0 = 15 µm fixed. 

 

Fig. 4. The spatial distribution of polarization of output beam for different b1 and with λ = 
632.8 nm, T = 298 K, L = 2.5 cm, E0 = 30 V/mm fixed. (a) b1 = 5.11 mm; (b) b1 = 4 × 5.11 mm; 
(c) b1 = 16 × 5.11 mm; (d) b1 = 64 × 5.11 mm. 

We find that the transverse spatial inhomogeneity of polarization of output beam is not 
only controlled by the applied electric field E0, but also affected by the confocal parameters b1 
and b2. To demonstrate this, we fix E0 at 30 V/mm, and change b1 (b2 = n2/n1b1). The 
numerical results are shown in Fig. 4. It is found that, when b1 = 5.11 mm (W0 = 15µm), the 

#137464 - $15.00 USD Received 1 Nov 2010; accepted 4 Nov 2010; published 16 Nov 2010
(C) 2010 OSA 22 November 2010 / Vol. 18,  No. 24 / OPTICS EXPRESS  25005



spatial inhomogeneity of polarization of output beam is very evident. With the increase of b1, 
however, the transverse polarization of output beam varies gradually from spatial 
inhomogeneity to spatial homogeneity. It can be understood by Fig. 5. One sees that, when b1 

= 4 × 5.11 mm, ψ varies from 6.62° to 20.40° (Δψ = 13.78°) and e from 0.94 to 0.68 (Δe = 
0.26) with r. Δψ is much smaller than that at b1 = 5.11 mm. And when b1 = 16 × 5.11 mm, ψ 

varies from 6.25° to 4.83° (Δψ = 11.08°) and e from 0.92 to 0.84 (Δe = 0.08) with r. Both 
of Δψ and Δe are much smaller than those at b1 = 5.11 mm. Further, when b1 = 64 × 5.11 mm, 

ψ varies from 1.91° to 0.87° (Δψ = 2.78°) and e from 0.916 to 0.913 (Δe = 0.003) with r. 
Compared with that for b1 = 5.11 mm, the Δψ here is very small and Δe is almost unchanged, 
meaning that the polarization is almost spatially homogeneous. 

 

Fig. 5. Dependence of ψ and e on r for different b1. (a) ψ on r; (b) e on r. Thick solid, thin 
solid, long dashed, short dashed lines correspond respectively to b1 = 5.11, 4 × 5.11, 16 × 5.11, 
and 64 × 5.11 mm for λ = 632.8 nm, T = 298 K, and L = 2.5 cm fixed. 

We also investigate the effect of the confocal parameter b1 on the half-wave voltage Vπ = 
E0'd, where E0' is the applied electric field for turning an extraordinary light into an ordinary 
one fully; d is the thickness of OSL along the direction of applied electric field. The 
dependence of E0' on b1 for the output intensity of o-ray reaching at its maximum value is 
shown in Fig. 6, from which one sees that, E0' (or Vπ) continually decreases as b1 increases 

from 2.3 to 21.14 mm. And when b121.14 mm, E0' (or Vπ) almost keeps a constant since 
(x/b1)

2(1-n1/n2)
2 in Eq. (5) is close to zero in this case. Then, it is easy to 

obtain )/()( 11021 LfrkdnnV eff   according to Ref [29,32]. The output intensity of o-ray, 

|A1(L)|2 as a function of b1 and E0 is shown in Fig. 7, which exhibits a recurrence of o-ray to its 
maximum intensity with E0 for a fixed b1. It can be understood as follows: according to Eq. 
(6), the ratio A2(L)/A1(L) determines the polarization of light field. And Fig. 7 shows that 
A1(L) and A2(L) have some periodicity vs E0 for a fixed b1, which means that the dependence 
of the polarization on E0 has some periodicity. The phenomenon is slightly different from the 
recent work of J.W. Zhao et al. [36]. In their experiment, they utilized a focused Gaussian 
beam to generate simultaneous second-harmonic (SH) generation (SHG) and EO coupling in a 
periodic or quasi-periodic OSL, where there is a competition between the SHG and EO 
coupling [37–39]. For a larger applied electric field, the EO coupling is dominant and the 
SHG becomes less efficient so that e-polarized SH becomes weak; and as a result of EO 
coupling, o-polarized SH also becomes weak. So for a too large applied electric field, both e- 
and o- polarized SH synchronously become weak, and the energy is concentrated into the 
fundamental wave. Therefore, the intensity of o- polarized SH does not exhibit a recurrence 
with E0. A similar mechanism was found from acousto-optic tunable SHG [40]. 
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Fig. 6. Dependence of the applied electric field E0' on the confocal parameter b1 when the 
output intensity of o-ray obtains its maximum value for λ = 632.8 nm, T = 298 K, L = 2.5 cm. 

 

Fig. 7. The output intensity of o-ray |A1(L)|2 as a function of the confocal parameter b1 and the 
applied electric field E0, for λ = 632.8 nm, T = 298 K, L = 2.5 cm. 

3. Conclusion 

In conclusion, we have developed a wave coupling theory of EO effect for QPM of focused 
Gaussian beam in an OSL. It is found that an electrically controllable and spatially 
inhomogeneous polarization beam can be obtained by a special designed OSL under EO 
effect. This type of spatially inhomogeneous polarization beam may have potential 
applications in some special photonic devices and optical systems. Here we have not 
considered the effects of pump-depletion, absorption, other hybrid excitation schemes and 
optical medium properties or defects, which are of interesting but will make the theoretical 
model more complicated, needing further studies. 
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