
PHYSICAL REVIEW E MAY 1998VOLUME 57, NUMBER 5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Xiamen University Institutional Repository
Extended pole placement technique and its applications for targeting unstable periodic orbit
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In this paper we extend the pole placement technique in the case of one adjustable system parameter. The
extended technique allows a more general choice of feedback forms, so it can improve the performance of the
control system in many aspects. As an example of the application, we show how to target the unstable orbit
from the corresponding stable one in the vicinity of a tangential bifurcation point without the need of knowing
the location of the unstable orbit in advance. This technique can be used to obtain the unstable output related
to bistability from an experimental device.@S1063-651X~98!10305-7#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Recently, much attention has been focused on stabiliz
unstable periodic orbits of a nonlinear dynamical system
term of chaos control@1–7#. For the sake of simplicity, we
consider a discrete time dynamical system that has one
justable system parameter,

zi 115f~zi ,p!, ~1.1!

where ziPRn, pPR, and f is sufficiently smooth in both
variables. Herep is considered as the parameter that is av
able for external adjustment but is restricted to lie in so
small intervalip2p0i,d around a nominal valuep0. Let
z* (p0) be a fixed point of Eq.~1.1! ~i.e., a period-one orbit
of the mapf; the consideration of the periodic orbits of p
riod larger than one is straightforward!. For values ofp close
to p0 and in the neighborhood of the orbitz* (p0), the map
~1.1! can be approximated by the linear map

dzi 115Adzi1Bdpi , ~1.2!

wheredzi5zi2z* (p0), dpi5pi2p0 , andA5Dzf(z* ,p0) is
an n3n Jacobian matrix andB5Dpf(z* ,p0) is an
n-dimensional column vector. The most popular way to s
bilize the fixed pointz* (p0) is to use a linear feedback

dpi 115kT
•~zi 112z* ! ~1.3!

to the system, in which case Eq.~1.2! appears as

dzi 115~A1BkT
…dzi , ~1.4!

wherek is a constant vector to be determined.
There are two methods to calculate the suitablek. The

first way, as has been pointed out by Romeiraset al. @3#, is
the ‘‘pole placement technique,’’ which is well known from
the control system theory~see, for example,@8#!. This tech-
nique can be applied to choose suitablek with A andB given
such that the eigenvalues~the ‘‘regulator poles’’! of the ma-
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trix A1BkT have specified values. Those values ofk that
make the modulus of all the eigenvalues ofA1BkT smaller
than unity form a region inRn space~we call it the stability
region in the following! and any point in this region can b
used to stabilize the desired orbit.

The second way is the Ott-Grebogi-Yorke~OGY! method
@1#, by which one can obtain a special value ofk to force the
system trajectories to fall on the local stable manifold ofz*
such that it makesz* stable. The value ofk is in fact a
special point belonging to the stability region calculat
from the pole placement technique@3#. This method has trig-
gered immense research activities to apply feedback con
to chaotic systems.

To apply the pole placement technique or the OG
method one only requires the location of the desired perio
orbit, the linearized dynamics about the periodic orbit, a
the dependence off on a small variation of the control pa
rameter. Therefore, in principle, the above methods, us
the delay coordinate embedding technique@9,10#, can be ap-
plied to nonlinear experimental systems without anya priori
knowledge of the systems of equations governing the
namics@4#.

Nevertheless, the linear feedback function~1.3! is con-
structed by the prompt informationzi 11 and the desired orbi
z* , which limit the application of the feedback contro
method. For example, in the case of experimental syste
especially in the absence of ana priori mathematical system
model where the delay coordinates are used, it is difficul
determinez* exactly. The situation will be too bad when on
intends to trackz* in the case that some of the system p
rameters change as a function of time, sincez* cannot be
determined in advance. In other situations, e.g., in the c
that the time spent on the feedback circuit cannot be
glected, prompt feedback is not accessible.

Some of the present authors have shown@5# that there are
in fact many other suitable feedback forms in addition to E
~1.3!. Without losing generality, let

pi 115g~zi ,pi ! ~1.5!

be the feedback function. The perturbed system is ann
11)-dimensional system and the desired orbit appears as
5358 © 1998 The American Physical Society

https://core.ac.uk/display/41372946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


n
ire

n
of
th
n

w
p
re
e

ut

s o

e
e
s

th
itu
qu
s

de

an
a

ca
at
am
bl
ng
e
ta

nd
ef
ou
u
to
rb
e
in

ne
th
t
c

t is
ime

the

-
ate
all

val

f

ed
in
hat

.

al
ity,
aim

57 5359EXTENDED POLE PLACEMENT TECHNIQUE AND ITS . . .
fixed point (z* ,p0) of this system. The linear approximatio
of the perturbed system in the neighborhood of the des
orbit is

S dzi 11

dpi 11
D 5S A B

C D D S dzi

dpi
D , ~1.6!

where C5Dzg is an n-dimensional row vector and
D5]g/]p is a constant. Let

T5S A B

C D D
denote the (n11)3(n11) Jacobian matrix. To stabilize
(z* ,p0) by applying Eq.~1.5! one needs to find the solutio
of C andD with A andB given such that the eigenvalues
T have specified values. When obtaining those solutions
make all the eigenvalues ofT have modulus smaller tha
unity, the feedback function that satisfiesC5Dzg and D
5]g]p can all be applied to stabilize the desired orbit. Ho
ever, this purpose cannot be approached by use of the
placement technique or the OGY method as well as its di
extensions. Zhaoet al. @5# have discussed how to choos
various suitable feedback forms for different purposes, b
general solution to the problem of determiningC andD has
not been given.

The first purpose of this paper is to derive the equation
C andD such that the eigenvalues ofT have specified val-
ues. Finishing this step, we actually approach a more gen
pole placement technique that allows us to use more gen
feedback forms for the control of the dynamical system
Equations given in the present paper are suitable for ei
the case of knowing the dynamical system model or the s
ation of using the delay coordinate embedding techni
without anya priori knowledge of the system of equation
governing the dynamics; thus the application of the exten
technique to experimental systems is direct.

As an example of applying the extended technique,
other aim of the paper is to develop a method to target
unstable periodic orbit that is created at a tangential bifur
tion point. At the time before targeting, the dynamical st
trajectories lie on the stable periodic orbit created at the s
tangential bifurcation point and the position of the unsta
orbit is unknown. This method, combined with the tracki
technique presented in Ref.@5#, can be applied to realize th
unstable output related to bistability from an experimen
device.

The plan of this paper is as follows. In Sec. II we exte
the pole placement technique. Coefficients in some us
feedback functions are also derived in this section. With
losing generality, the results in this section are obtained
ing delay coordinates. In Sec. III we first describe how
target the unstable orbit from the corresponding stable o
created at the same tangential bifurcation point in the cas
one-dimensional systems. A numerical example for obta
ing and tracking the unstable state existing in a o
dimensional bistability system is given. We then extend
results to the case of high-dimensional systems and apply
results to the He´non map. We summarize our results in Se
IV.
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II. EXTENSION OF THE POLE PLACEMENT TECHNIQUE

In experimental studies of chaotic dynamical system, i
often the case that the only accessible information is a t
series of some scalar functionj„x(t)…5j(t) of a
d-dimensional state variablex(t). Using the delay coordi-
nate embedding technique, Takens@9# showed that a delay
coordinate vector

z~ t !5~j~ t !,j~ t2TD!, . . . ,j„t2~n21!TD…!,

with a conveniently chosen delay timeTD and a sufficiently
largen, is generally a global one-to-one representation of
system statex(t). Using a Poincare´ surface of section, one
obtains a set of discrete state variableszi5z(t i), where t i
denotes the time at thei th orbit crossing the surface of sec
tion. In the presence of parameter variation, delay coordin
embedding leads to a map that in general will depend on
parametric changes that were in effect in the time inter
t i<t<t i2nTD @3,4#, i.e., the state variablezi 11 must depend
on not only the current value of the parameterpi , but alsor
previous parameter valuespi 21 , . . . ,pi 2r . Noticing that
pi ,pi 21 , . . . ,pi 2r 11 remain fixed in the process from timei
to time i 11, we get an (n1r 11)-dimensional map

zi 115f~zi ,pi 2r ,pi 2r 11 , . . . ,pi 21 ,pi !,

pi 2r 115pi 2r 11,

] ~2.1!

pi 215pi 21 ,

pi5pi ,

pi 115g~zi ,pi 2r ,pi 2r 11 , . . . ,pi 21 ,pi !,

when the parameterp is activated. The Jacobian matrix o
this map is

T5S Dzf Dpi2r f Dpi 2r 11
f

•••
Dpi 21

f Dpi
f

0 0 1 ••• 0 0

] ] ] � ] ]

0 0 0 ••• 0 1

Dzg
]g

]pi 2r

]g

]pi 2r 11
•••

]g

]pi 21

]g

]pi

D ,

~2.2!

where all the partial derivatives are evaluated at the fix
point (z* ,p0, . . . p0). Note that the parameter variables
Eq. ~2.1! are ordered with decreasing of subscripts so t
Dzg,]g/(]pi2r ), . . . ,]g/]pi appears in the last row ofT .
This will benefit the description of the following equations

One can see that whenr 50 the map~2.1! and its Jaco-
bian matrix return to the forms of known mathematic
model described in Sec. I. Thus, without losing general
we discuss only the case of using delay coordinates. Our
is to determine suitableDzg,]g/(]pi2r ), . . . ,]g/]pi such
that the eigenvalues of the (n1r 11)-dimensional matrixT
have specified values. We limit the form ofg to ensure that
(z* ,p0, . . . p0,) is the fixed point of the
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(n1r 11)-dimensional system. Letl1,l2, . . . ,ln1r 11 be
n1r 11 eigenvalues ofT; then we have

uTu5c0 ,

(
i 51

n1r 11

uT$ i ,i %u5c1 ,

(
i 51

n1r

(
j 5 i 11

n1r 11

uT$ i ,i %,$ j , j %u5c2 , ~2.3!

(
i 51

n1r 21

(
j 5 i 11

n1r

(
k5 j 11

n1r 11

uT$ i ,i %,$ j , j %,$k,k%u5c3 ,

]

(
i 51

n1r 11

t i i 5cn1r ,

where

cn1r5 (
i 51

n1r 11

l i ,

cn1r 215(
i 51

n1r

(
j 5 i 11

n1r 11

l il j ,

cn1r 225 (
i 51

n1r 21

(
j 5 i 11

n1r

(
k5 j 11

n1r 11

l il jlk ,

]

c05l1l2•••ln1r 11 ,

and uT$ i , j %,$k,l %, . . . u represents the determinant obtained
eliminating thei th row and thej th column, thekth row and
the l th column, etc. of the matrixT and t i j denotes the ele
ment ofT.

In Ref. @5# we pointed out that then1r 11 equations
~2.3! include n1r 11 variables @i.e., Dzg,]g/(]pi
2r ), . . . ,]g/]pi# to be determined and they are linear equ
tions with respect to these variables. Based on this obse
tion, we obtain the solution through algebra:

S Dzg,
]g

]pi 2r
, . . . ,

]g

]pi
D T

5A21~c08 ,c18 ,c28 , . . . ,cn1r8 !T,

~2.4!

where

c085c0 ,

c185c12uT$n1r 11,n1r 11%u,

c285c22(
i 51

n1r

uT$n1r 11,n1r 11%,$ i ,i %u,
-
a-

c385c32 (
i 51

n1r 21

(
j 5 i 11

n1r

uT$n1r 11,n1r 11%,$ i ,i %,$ j , j %u,

]

cn1r8 5cn1r2(
i 51

n1r

t i i

and

a1s5~21!n1r 1s21uT$n1r 11,s%u,

a2s5~21!n1r 1s22 (
i 51,iÞs

n1r

uT$n1r 11,s%,$ i ,i %u,

a3s5~21!n1r 1s23 (
i 51;iÞs

n1r 21

(
j 5 i 11; j Þs

n1r

uT$n1r 11,s%,$ i ,i %,$ j , j %u,

a4s5~21!n1r 1s24 (
i 51;iÞs

n1r 22

(
j 5 i 11; j Þs

n1r 21

(
k5 j 11;kÞs

n1r

3uT$n1r 11,s%,$ i ,i %,$ j , j % ,$k,k%u,

]

an1r 11,s5H 0 for s51,2, . . . ,n1r

1 for s5n1r 11 ,

in which ai j is the element of the matrixA.
Obviously, the pole placement problem has a unique

lution if and only if the (n1r 11)3(n1r 11) matrix A is
of rank n1r 11. This is also the controllability condition.

In the following we list some useful feedback forms f
different purposes and derive the coefficients in them. In
case that the location of the desired orbit is given definit
and the prompt information is accessible, one can apply
feedback form~1.3!, which is used in the original pole place
ment technique and the OGY method, to stabilize the
stable desired orbit. The feedback form~1.3! should be re-
placed by

pi 115p01kT
•~zi 112z* !1kn11~pi2p0!

1¯1kn1r~pi 2r 112p0! ~2.5!

in the case of using delay coordinates. However, this fe
back forms always ensures thatuTu[0. To keep this relation
valid, one of then1r 11 eigenvalues, say,ln1r 11 , must
remain zero constantly. Thus one just needs to place
othern1r eigenvalues in this case. The coefficients includ
in Eq. ~2.5! can be easily achieved whenDzg,]g/(]pi
2r ), . . . ,]g/]pi are obtained. They are
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k5@~Dzf!
T#21@Dzg#T,

kn115
]g

]pi
2kT

•Dpi
f,

] ~2.6!

kn1r5
]g

]pi 2r 11
2kT

•Dpi 2r 11
f.

By using the original pole placement technique one c
approach the same aim~for the case of using the delay co
ordinate technique the readers may refer to Ref.@3#! in a
different way. The difference is that the original method
used in an (n1r )-dimensional space.

When the prompt information is not accessible, one c
use the previous coordinatezi instead ofzi 11 to construct the
feedback form

pi 115p01kT
•~zi2z* !1kn11~pi2p0!

1•••kn1r 11~pi 2r2p0!. ~2.7!

This feedback form can also be used to stabilize the des
orbit z* @5#. The solutions of the coefficients are rath
simple:

k5@Dzg#T,

kn115
]g

]pi
,

] ~2.8!

kn1r 115
]g

]pi 2r
.

For the purpose of finding the exact location of the d
sired orbit or going about tracking, one can apply

pi 115p01kT
•~zi 112zi !1kn11~pi2p0!

1•••kn1r 11~pi 2r2p0! ~2.9!

as the feedback form@5#. In this case we get

k5@~Dzf2In!T#21@Dzg#T,

kn115
]g

]pi
2kT

•Dpi
f,

] ~2.10!

kn1r 115
]g

]pi 2r
2kT

•Dpi 2r
f,

where In is the n3n unit matrix. All the vectors (kT,
kn11 , . . . ,kn1r 11) suitable to stabilizez* form a region in
Rn1r 11 space. We name the region the stability region of
desired orbit. For the purpose of application, we pay spe
attention to the so-called center point of the stability regi
which corresponds tol i50, i 51,2, . . . ,n1r 11. Since Eq.
~2.9! does not includez* explicitly, the perturbations with
n

n

ed

-

e
al
,

any point in the stability region can force the system traj
tories to evolve towards the exact position ofz* even if it
has not been determined precisely in the beginning. Base
the same reason, one can apply this kind of feedback fu
tion to go about tracking. That is, when the position of t
desired orbit moves a small distance due to the change o
system parameter~s!, the perturbations will drive the system
trajectories to track the changed orbit. This tracking meth
is different from the previous tracking technique@6# based on
the OGY method since it does not need to ‘‘guess’’ or ‘‘pr
dict’’ the changed position of the desired objective in a
vance~interested readers are referred to Ref.@5# to find ex-
amples of going about tracking using this method!.

III. APPLICATION

Stabilizing unstable orbit using delay information, findin
the exact desired objective, and going about tracking
consequences of applying the extended technique. In
section we show how to target an unstable periodic o
from the stable one created at the same tangent bifurca
point. At the time before targeting, the position of the u
stable orbit is unknown. Thus those feedback forms that
constructed by use of the desired orbit explicitly, such
Eqs. ~2.5! and ~2.7!, cannot be used for this purpose. O
needs to realize the aim by applying the feedback form~2.9!.
Our approach is as follows. We first manage the system to
on the stable state near the tangential bifurcation point. T
we can measureA andB at the stable state and calculate t
coefficients in Eq.~2.9! according to Eqs.~2.4! and ~2.10!.
Considering the symmetry of the stable and the unsta
states, we derive a transformation law that transforms
coefficients obtained at the stable state to those suitable
stabilizing the unstable state. When using the transform
coefficients to the system, the perturbations can drive
system dynamical trajectories to depart from the stable s
and terminate on the unstable one automatically.

The main advantage of this targeting method is that as
targeting procedure proceeds the stable state becomes
stable while the unstable one~i.e., the targeting objective!
becomes stable and therefore one need not know the pos
of the unstable state in advance, which certainly benefits
experimentalists. This makes it different from the previo
targeting method@7#. The following subsections realize th
above idea in the cases of one- and high-dimensional
tems, respectively.

A. One-dimensional systems

Let us consider the so-called sine-square map

zi 115A sin2~zi2B!, ~3.1!

which describes a hybrid optical bistability device using
twisted nematic liquid crystal as the nonlinear medium in
limit of a very long delay@11#. Figure 1 shows the bifurca
tion diagram in thezi-A plane for fixedB53.0, which ex-
hibits a typical bistability phenomenon. In this figure th
dashed line denotes the unstable steady states while the
lines represent the stable steady states of the map. The s
states are the solutions ofz5A sin2(z2B). The two turning
points of the stable and unstable states are tangential b
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cation points. In Fig. 1zc denotes one of the turning point
The parameter value ofA at zc is 1.815. Suppose that on
intends to get the output corresponding to the unstable ste
statez2 at A51.76 from an experimental device and th
present output corresponds to the stable steady statez1 at the
same parameter. Then what one needs to do is to targez2

from z1 using the information obtained atz1 . We empha-
size that the exact position ofz2 is unknown in advance.

In order to demonstrate the principle of the method
consider only the case ofr 50. In this case, for a one
dimensional system Eq.~2.10! appears as

k152Fc02c1

] f

]z
1S ] f

]zD
2G Y ] f

]pS ] f

]z
21D ,

k25S c02c11
] f

]zD Y S ] f

]z
21D . ~3.2!

Let z* be a fixed point. The boundaries of its stability regi
are determined byul1u51 or ul2u51. It is not difficult to
find that the stability region is a triangle, whose apexes a

~k1 ,k2!5F2S ] f

]z
21D Y ] f

]p
,1G for ~l1 ,l2!5~1,1!,

~k1 ,k2!5F2S ] f

]z
11D 2Y ] f

]pS ] f

]z
21D ,

S 31
] f

]zD Y S ] f

]z
21D G

for ~l1 ,l2!5~21,21!,

and

~k1 ,k2!5F2S ] f

]z
11D Y ] f

]p
,1G

for ~l1 ,l2!5~1,21! or ~l1 ,l2!5~21,1!.

The ‘‘center’’ point of the triangle, which is defined b
(l1 ,l2)5(0,0), is

FIG. 1. Thez* -A bifurcation diagram forB53.0 of the sine-
square map, which shows typical bistability. The dashed line in
cates the unstable state andzc denotes a turning point.
dy

e

e

~k1 ,k2!5F2S ] f

]zD
2Y ] f

]pS ] f

]z
21D ,

] f

]zY S ] f

]z
21D G .

In the neighborhood ofzc , assuming that the two point
z1 andz2 are located symmetrically with respect tozc , we
have] f /]z512d at z1 and] f /]z511d at z2 , whered is
a small positive number. Then we can obtain the apexes
the center point of the stability region ofz1 :

~k1 ,k2!5S dY ] f

]p
,1D ,

~k1 ,k2!5F24Y ] f

]p
14/d

] f

]p
,24/d11G , ~3.3!

~k1 ,k2!5S 22Y ] f

]p
,1D ,

and

~k1 ,k2!5F22Y ] f

]p
21/2d

] f

]p
,21/d11G , ~3.4!

respectively. Obviously when replacingd in the above equa-
tions with2d we get the corresponding apexes and the c
ter point of the stability region ofz2 . Thus, whend→0, i.e.,
when z1 and z2 approachzc closely, we get a transforma
tion law

~k1 ,k2!→~2k1 ,k2!,

~k1 ,k2!→~2k1 ,2k2!, ~3.5!

~k1 ,k2!→~k1 ,k2!

for the apexes and

~k1 ,k2!→~2k1 ,2k2! ~3.6!

for the center points of the two triangles.
Let us apply the result to the sine-square map~3.1!. We

take B as our control parameter, which can be adjus
around the nominal value 3.0 withinudBu,0.1. Figure 2

i- FIG. 2. Stable region ofz1 ~the solid-line down triangle! and
stable region ofz2 ~the solid-line up triangle. The dashed-line u
triangle is transformed from the down triangle.
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shows the stability region ofz1 ~solid-line down triangle!
and the stability region ofz2 ~solid-line up triangle!. The
dashed-line up triangle and its center pointC18 are obtained
by transforming the down triangle and its center pointC1 ,
respectively, according to the transformation law. One
find that most of the two up triangles overlap, which verifi
that the stability region ofz2 can be obtained from that ofz1

approximately whenz1 andz2 approach the tangent bifur
cation point. SinceC18 is closest to the center pointC2 and
lies outside the stability region ofz1 , one can expect tha
the state trajectory must depart fromz1 and evolve towards
z2 automatically when one perturbs the system accordin
the feedback law~2.9! with the coefficients determined b
C18 .

Figure 3 shows the numerical results of applying Eq.~2.9!
with coefficients determined byC18 to the system~3.1! under
the assumption that the system is influenced by noise,
we add white noiseD i to the system:zi 115Asin2(zi2B)
1Di . In the figure we provide several results obtained
different noise levels, where the values ofuDu indicate noise
amplitudes. One can see from the figure that the targe
procedure works very well even in the presence of sm
noise. After the trajectory settles down onz2 , the same
feedback law with the same coefficients used in the targe
section can be applied to track the unstable state when
system parameter~s! change slowly as a function of time, a
we have pointed out in Sec. II. Figure 3 also demonstra

FIG. 3. Control results for the sine-square map. In the con
section dynamical trajectories wander aroundz1 with the evolution
of time. The value ofA in this section is 1.76. In the targetin
section feedback following Eq.~2.9! is added to the system param
eterB. The coefficients in Eq.~2.9! are obtained atz1 according to
the transformation law~3.6!. The results indicate that the trajecto
ries depart fromz1 and enter the neighborhood ofz2 after certain
times of iterates and larger noise interference may step up the
geting process. In this section the parameterA is kept as that in the
no control section. In the tracking section the parameterA begins to
change asAi 115Ai20.01, while we keep the perturbations onB
according to the feedback law~2.9! with the same coefficients a
those in the targeting section. The results in this section show
by only applying the coefficients calculated atz1 one can track the
changing objective when the system parameterA changes in a
wider parameter region even in the present of larger noise inte
ence. The heavy lines indicate the exact positions ofz1 ~in the no
control section! andz2 ~in the targeting section! and the changing
objective ~in the tracking section! and the values ofuDu give the
amplitudes of noise interfering with the system signals.
n

to

.,

g
ll

g
he

s

the tracking results whenA changes asAi 115Ai20.01 in
different noise levels. It is shown that the tracking method
effective in relatively large noise interference. Thus, by us
the targeting method, we can switch the dynamics of
system between the stable state and the unstable state.
thermore, by applying the tracking procedure we can obt
the outputs corresponding to the unstable states in a w
parameter interval.

B. High-dimensional systems

We shall discuss only the transformation law for the ce
ter points in this section. Letl i , i 51,2, . . . ,n, denote the
eigenvalues ofDzf. From the knowledge of matrix we hav

Dzf5MS l1 0 ••• 0

0 l2 ••• 0

] ] � ]

0 0 ••• ln

D M21, ~3.7!

whereM is the adjoint matrix ofDzf. It is easy to show that

Dzf2In5MS l121 0 ••• 0

0 l221 ••• 0

] ] � ]

0 0 ••• ln21

D M21,

~3.8!

where In is the n3n unit matrix. Let M21@Dzg#T

[(b1 ,b2 , . . . ,bn)T; we rewrite Eq.~2.9! as

kT51
b1

l121
M111

b2

l221
M121•••1

bn

ln21
M1n

b1

l121
M211

b2

l221
M221•••1

bn

ln21
M2n

]

b1

l121
Mn11

b2

l221
Mn21•••1

bn

ln21
Mnn

2 ,

~3.9!

kn115
]g

]pi
2kT

•Dpi
f,

]

kn1r 115
]g

]pi 2r
2kT

•Dpi 2r
f.

Let z1 andz2 be a pair of fixed points located in symmetr
cal positions with respect to the tangential bifurcation po
zc at which they are created. In the vicinity ofzc we have
l1511d for the unstable pointz2 and l1512d for the
stable pointz1 , whered is a small positive number. Thu
Eq. ~3.9! appears as

l
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kT51
b1

6d
M111

b2

l221
M121•••1

bn

ln21
M1n

b1

6d
M211

b2

l221
M221•••1

bn

ln21
M2n

]

]

]

b1

6d
Mn11

b2

l221
Mn21•••1

bn

ln21
Mnn

2 ,

~3.10!

kn115
]g

]pi
2kT

•Dpi
f,

]

kn1r 115
]g

]pi 2r
2kT

•Dpi 2r
f,

where plus and minus signs correspond toz2 and z1 , re-
spectively. Noticing that the items including the factor 1d
give the main contribution to the sums whend→0, we then
obtain the transformation law for the two center points of
stability regions ofz1 andz2 :

k→2k,kPRn1r 11. ~3.11!

To support this transformation law, let us consider t
Hénon map@12#

xi 115a2xi
21byi ,

yi 115xi ~3.12!

as an example. The map has two fixed points: (x6 ,y6)
5$@b216A(b21)214a#/2,x6%, which are created atac
52(b21)2/4 through a tangential bifurcation, an
(x1 ,y1), which is stable while (x2 ,y2) is unstable. Choos
ing the parameterb as our control parameter, which can b
adjusted around the nominal valueb050.3 within udbu
,0.01, and using the feedback

bi 115b01k1~xi 112xi !1k2~yi 112yi !1k3~bi2b0!,
(3.13)

we can calculate the center points of the stability regions
(x1 ,y1) and (x2 ,y2), respectively, according to Eq.~2.10!.
For example, ata520.12 they are (k1

1 ,k2
1 ,k3

1)5(218,
26,26) and (k1

2 ,k2
2 ,k3

2)5(22,6,8), respectively. It can b
seen that (2k1

1 ,2k2
1 ,2k3

1) is very close to (k1
2 ,k2

2 ,k3
2),

which verifies that the center point of the stability region
(x2 ,y2) can be obtained approximately from that
(x1 ,y1) following the transformation law (3.11).

Figure 4 shows the numerical result of applying E
~3.13! with (k1 ,k2 ,k3)5(2k1

1 ,2k2
1 ,2k3

1) to perturb the
noise-influenced system~3.12!. The noise is added to th
system signals asxi 115a2xi

21byi1Dxi and yi 115xi

1Dyi , whereDxi andnyi are the white noise and limited i
the interval (2uDu,uDu). The dynamical system is set o
e

e

f

f

.

(x1 ,y1) at a520.12 andb50.3 in the beginning. The re
sult indicates that the dynamical state trajectories are dri
toward (x2 ,y2) by perturbations. Also, after the state tr
jectory settles down on (x2 ,y2), Eq. ~3.13!, with the same
coefficients, can be used to track (x2 ,y2) whena changes.

IV. CONCLUSION

We finished the extension of the pole placement techni
in the case of one adjustable system parameter. The exte
method allows a more general choice of feedback functio
When using prompt linear feedback function, both o
method and the original pole placement technique give
correct result, i.e., the original technique can be taken a
special case of ours.

The feedback function that does not include the desi
orbit explicitly can be applied to find the exact location
the desired orbit and go about tracking when system par
eters change slowly as well. In this paper we present
important application, i.e., targeting the unstable periodic
bit using the information of the corresponding stable perio
orbit created at the same tangential bifurcation point. T
location of the unstable periodic orbit does not need to
known in advance. The feedback perturbations will drive
state trajectories to leave the stable orbit and terminate on
unstable one in the vicinity of the tangential bifurcatio
point. We emphasize that this method may be applied
experimentalists to realize the unstable outputs related to
stability from the experimental device even if the glob
mathematical model of the system is unknown.

Finally, we would like to emphasize the main differen
among the original pole placement technique, the OG
method as well as its extensions, and the method in
paper. First of all, the first two methods only serve t
prompt linear feedback form~1.3! or ~2.5!, which takes the
statezi 11 and the desired orbitz* as the feedback informa
tion. The method demonstrated in this paper is an exten
of the pole placement technique that can be used to de
mine various feedback forms suitable for stabilizing unsta
orbits and therefore it has wider applications. For example
can be applied to calculate the coefficients in the feedb
forms ~2.7! and ~2.9. As we have illustrated in Ref.@5# and

FIG. 4. Control results for the He´non map: targetingx2 from x1

and then tracking it when the parameterA changes asAi 115Ai

10.0002 in the case that the system signals are interfered with
additive noise. The procedure and the symbols in this figure
similar to those in Fig. 3.
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also in the present paper, Eq.~2.7! can be used to stabiliz
the unstable periodic orbit by using the delayed informat
zi . While the feedback law~2.9!, which is constructed by
use of the prompt statezi 11 and the delayed statezi , pro-
vides us with a natural way of tracking the desired or
when system parameters change as a time of function, a
to find the exact position of the desired orbit, and a techni
to target the unstable periodic orbit from the stable one c
ated at the same tangential bifurcation point in the case
the exact position of the unstable orbit is unknown in a
tt

ur

.

s

ev
n

t
ay
e
-
at
-

vance. In addition, the equations in this paper are deri
using the delay coordinate embedding technique; theref
they can be directly applied to experimental time series w
out anya priori knowledge of the system equations.
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