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Extended pole placement technique and its applications for targeting unstable periodic orbit
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In this paper we extend the pole placement technique in the case of one adjustable system parameter. The
extended technique allows a more general choice of feedback forms, so it can improve the performance of the
control system in many aspects. As an example of the application, we show how to target the unstable orbit
from the corresponding stable one in the vicinity of a tangential bifurcation point without the need of knowing
the location of the unstable orbit in advance. This technique can be used to obtain the unstable output related
to bistability from an experimental devicg51063-651X98)10305-1

PACS numbd(s): 05.45+b

. INTRODUCTION trix A+Bk' have specified values. Those valueskofhat
make the modulus of all the eigenvaluesfof Bk smaller
Recently, much attention has been focused on stabilizinghan unity form a region iR" space(we call it the stability
unstable periodic orbits of a nonlinear dynamical system inregion in the following and any point in this region can be
term of chaos contrdl1-7]. For the sake of simplicity, we ysed to stabilize the desired orbit.
consider a discrete time dynamical system that has one ad- The second way is the Ott-Grebogi-York@®GY) method

justable system parameter, [1], by which one can obtain a special valuekad force the
system trajectories to fall on the local stable manifoldzpf
z+1=1(z.,p), (1D such that it makeg, stable. The value ok is in fact a

special point belonging to the stability region calculated
from the pole placement techniq[@]. This method has trig-

“gered immense research activities to apply feedback control
o chaotic systems.

To apply the pole placement technique or the OGY
method one only requires the location of the desired periodic
orbit, the linearized dynamics about the periodic orbit, and
the dependence dfon a small variation of the control pa-
rameter. Therefore, in principle, the above methods, using
the delay coordinate embedding techni¢@el (], can be ap-
plied to nonlinear experimental systems without angriori
knowledge of the systems of equations governing the dy-

e —n — i namics[4].
\;v: e;exé ﬁ' EAC(Z)’E)E;?)' rizltrixpl ar?g éin[()j '?\(Z*D,E:O()Z* 'iF;O) 'S Nevertheless, the linear feedback functitnd is con-
n-dimensional column vector. The most popular way to staStructed by the prompt informatian, , and the desired orbit

bilize the fixed poinz, (p) is to use a linear feedback z, , which limit the application of the feedback control
method. For example, in the case of experimental systems,

wherez eR", peR, andf is sufficiently smooth in both
variables. Herg is considered as the parameter that is avail
able for external adjustment but is restricted to lie in som
small interval||p— pol|< 6 around a nominal valug,. Let

z, (po) be a fixed point of Eq(1.1) (i.e., a period-one orbit
of the mapf; the consideration of the periodic orbits of pe-
riod larger than one is straightforwardror values op close

to pp and in the neighborhood of the orlaf (py), the map
(1.1) can be approximated by the linear map

6Zi+1:A52i+B(Spi y (12)

Opis1=KT(z21—2,) (1.3 especially in the absence of arpriori mathematical system
model where the delay coordinates are used, it is difficult to
to the system, in which case E@..2) appears as determinez, exactly. The situation will be too bad when one
intends to trackz, in the case that some of the system pa-
8z1=(A+Bk")éz, (1.4 rameters change as a function of time, siagecannot be
determined in advance. In other situations, e.g., in the case
wherek is a constant vector to be determined. that the time spent on the feedback circuit cannot be ne-
There are two methods to calculate the suitdhlérhe g|ected, prompt feedback is not accessible.
first way, as has been pointed out by Romeeaal. [3], is Some of the present authors have sh¢@jthat there are

the “pole placement technique,” which is well known from in fact many other suitable feedback forms in addition to Eq.

the control system theorisee, for examplg8]). This tech-  (1.3). without losing generality, let
nigue can be applied to choose suitabl@ith A andB given

such that the eigenvaluéthe “regulator poles’ of the ma-

Pi+1=09(Z,pi) (1.9
*Electronic address: zhaoh@spin.lzu.edu.cn be the feedback function. The perturbed system is mn (
"Mailing address. +1)-dimensional system and the desired orbit appears as the
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fixed point (z, ,po) of this system. The linear approximation !l EXTENSION OF THE POLE PLACEMENT TECHNIQUE
of the perturbed system in the neighborhood of the desired |, oy nerimental studies of chaotic dynamical system, it is

orbit is often the case that the only accessible information is a time
series of some scalar functioré(x(t))=&(t) of a
0Z+q _ A B ( 9z, (1.6 d-dimensional state variable(t). Using the delay coordi-
OPi+1 C D/\épi)’ ' nate embedding technique, Takd®3 showed that a delay
coordinate vector

where C=D,g is an n-dimensional row vector and
D=ag/ﬁp is a constant. Let Z(t):(g(t),g(t—TD), B lg(t_(n_l)TD))l

with a conveniently chosen delay timig, and a sufficiently
T= ( A B) largen, is generally a global one-to-one representation of the
C D system statex(t). Using a Poincaresurface of section, one
obtains a set of discrete state variabes z(t;), wheret;
denote the ifi+1)x(n+1) Jacobian matrix. To stabilize denotes the time at thi¢h orbit crossing the surface of sec-
(z, ,po) by applying Eq.(1.5) one needs to find the solution tion. In the presence of parameter variation, delay coordinate
of C andD with A andB given such that the eigenvalues of embedding leads to a map that in general will depend on all
T have specified values. When obtaining those solutions thgtarametric changes that were in effect in the time interval
make all the eigenvalues df have modulus smaller than ti<t<t;j—nTp [3,4], i.e., the state variablg, ; must depend
unity, the feedback function that satisfi@&=D,g and D  on not only the current value of the parameper but alsor
= dgap can all be applied to stabilize the desired orbit. How-previous parameter values;_,, ... ,p;_,. Noticing that
ever, this purpose cannot be approached by use of the pofg,Pi—1. - - - ,Pi—r+1 remain fixed in the process from tinne
placement technique or the OGY method as well as its diredp timei+1, we get an f+r+ 1)-dimensional map
extensions. Zhaet al. [5] have discussed how to choose

various suitable feedback forms for different purposes, but a Z1=HZ,Pi—rsPir+1s - Pi-1,P0),
general solution to the problem of determini@gandD has
not been given. Pi—r+1= Pi-r+1,

The first purpose of this paper is to derive the equations of
C andD such that the eigenvalues ©f have specified val-
ues. Finishing this step, we actually approach a more general

(2.9

pole placement technique that allows us to use more general Pi-1=Pi-1,
feedback forms for the control of the dynamical systems. -
Equations given in the present paper are suitable for either Pi=Pi,

the case of knowing the dynamical system model or the situ- _
ation of using the delay coordinate embedding technique Pi+1=9(Z PirsPirss, - Pi-1,PY),

without anya priori knowledge of the system of equations \yhen the parametep is activated. The Jacobian matrix of
governing the dynamics; thus the application of the extendeg},g map is

technique to experimental systems is direct.

As an example of applying the extended technique, an- D,f Dp_f Dy Dy ,f Dpf
other aim of the paper is to develop a method to target an ' ot ot '
unstable periodic orbit that is created at a tangential bifurca- 0 0 1 T 0 0
tion point. At the time before targeting, the dynamical state : : : : :
trajectories lie on the stable periodic orbit created at the same T= 0 0 0 o 0 1]
tangential bifurcation point and the position of the unstable
orbit is unknown. This method, combined with the tracking a9 a9 Jdg dg
technique presented in Rég], can be applied to realize the 9 P, Piri1 P Ip;
unstable output related to bistability from an experimental (2.2

device.

The plan of this paper is as follows. In Sec. |l we extendwhere all the partial derivatives are evaluated at the fixed
the pole placement technique. Coefficients in some usefupoint (z, ,Po, - - . Po). Note that the parameter variables in
feedback functions are also derived in this section. WithouEq. (2.1) are ordered with decreasing of subscripts so that
losing generality, the results in this section are obtained usb,g,dg/(dpi—r), ... ,d9/dp; appears in the last row af .
ing delay coordinates. In Sec. Ill we first describe how toThis will benefit the description of the following equations.
target the unstable orbit from the corresponding stable orbit One can see that whan=0 the map(2.1) and its Jaco-
created at the same tangential bifurcation point in the case dfian matrix return to the forms of known mathematical
one-dimensional systems. A numerical example for obtainmodel described in Sec. I. Thus, without losing generality,
ing and tracking the unstable state existing in a onewe discuss only the case of using delay coordinates. Our aim
dimensional bistability system is given. We then extend thds to determine suitabl®,g,dg/(dp;—r), . .. ,d9/dp; such
results to the case of high-dimensional systems and apply thbat the eigenvalues of the ¢ r + 1)-dimensional matrix’
results to the Fieon map. We summarize our results in Sec.have specified values. We limit the form gfto ensure that
\VA (z4 +Po, - - - Po) is the fixed point of the
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(n+r+1)-dimensional system. LeXi, Ay, ... \pire1 bE ntr—1 n+r
n+r+1 eigenvalues oT; then we have C3=C3— > I T+ e+ giin gl
=1 ST
|T|:CO!
n+r+1
T Wl=cC ,
izl | {|,|}| 1 ner
!
n+r n+r+l Chntr=Cnr 21 i
Tinnl=Ca, 2.3
izl j;rl| {|,|},{J,J}| 2 ( )
and
n+tr—=1 n+r n+r+1
L. . = — n+r+s—1
2 2 2 Tangiwel=cs, a5s=(—1) Tinsrsagls
n+r
a2$:(_l)n+r+572_ 2 |T{n+r+1,s},{i,i}|a
n+r+1 i=1j#s
E ti=Cntr,
i=1 n+r—1 n+r
—(_1\n+r+s—3 o
where aszs ( 1) i:12;i#rsj:i§;j¢5 |T{n+r+1,s},{|,|},{J,J}|v
n+r+1
_ ) n+r—2 n+r—1 n+r
Chtr= izl Nis a4S:(_1)n+r+s—4 2
i=1ji#s j=i+1;j#s k=j+1;k#s
n+r n+r+1
Cosro1= 2 2 M), X Tins e+ 1 diibdiib Lok
i=1 j=i+1
n+r—1 n+r n+r+1
On+r—2= Zl '—211 k—2+1 MR
T Eme e 0 for s=1,2,...n+r
a =
ntrElsTll for s=ndr+1,
Co=Agh2 - Npir+a, in which a; is the element of the matriR.

) ) Obviously, the pole placement problem has a unique so-
and [Ty ;3 1y, .| represents the determinant obtained by|ytion if and only if the f1+r+1)X (n+r+1) matrix A is
eliminating theith row and thejth column, thekth row and  of rankn+r +1. This is also the controllability condition.
theIth column, etc. of the matri¥ andt;; denotes the ele- In the following we list some useful feedback forms for
ment of T. different purposes and derive the coefficients in them. In the

In Ref. [5] we pointed out that the@+r+1 equations case that the location of the desired orbit is given definitely
(2.3) include n+r+1 variables [i.e., D.9,d9/(dp;  and the prompt information is accessible, one can apply the

—r), ...,d9/dp;] to be determined and they are linear equa-feedback form(1.3), which is used in the original pole place-
tions with respect to these variables. Based on this observanent technique and the OGY method, to stabilize the un-
tion, we obtain the solution through algebra: stable desired orbit. The feedback fofm3) should be re-
laced b
(99 199 T -1 / / / ' T p y
DZQ’F"“V_D' =A"7(Cy,C1,Ch, ... Chay) s i}
a | (2.4) Pi+1=Pot K - (Z+1=2) +Kni1(Pi— Po)
+"'+kn+r(pifr+1_p0) (25)
where
Co=Co, in the case of using delay coordinates. However, this feed-

back forms always ensures tHai=0. To keep this relation
valid, one of then+r+1 eigenvalues, say,, 1, must
remain zero constantly. Thus one just needs to place the
n+r othern+r eigenvalues in this case. The coefficients included
in Eqg. (2.5 can be easily achieved wheb,g,dg/(dp;
-r), ...,09/dp; are obtained. They are

r_
Cl_cl_lT{n+r+1,n+r+1}

3

C;=Co— ;1 I Tinsrsinsr+ il
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k=[(D,f)T1"'[D,g]", any point in the stability region can force the system trajec-
tories to evolve towards the exact positionzyf even if it
s has not been determined precisely in the beginning. Based on
an:r?_pi_k 'Dpif! the same reason, one can apply this kind of feedback func-

tion to go about tracking. That is, when the position of the
(2.6)  desired orbit moves a small distance due to the change of the
system paramet€s), the perturbations will drive the system
dg . trajectories to track the changed orbit. This tracking method
kn+r:(9p_— -k Dpi,rﬂf- is different from the previous tracking techniqui based on
Imred the OGY method since it does not need to “guess” or “pre-

By using the 0rigina| p0|e p|acement technique one Cardict” the Changed pOSition of the desired Objective in ad-
approach the same aiffor the case of using the delay co- vance(interested readers are referred to Ré}.to find ex-
ordinate technique the readers may refer to R&8f) in a  amples of going about tracking using this method
different way. The difference is that the original method is
used in an +r)-dimensional space. [l. APPLICATION

When the prompt information is not accessible, one can
use the previous coordinatginstead ofz , ; to construct the
feedback form

Stabilizing unstable orbit using delay information, finding
the exact desired objective, and going about tracking are
consequences of applying the extended technique. In this

Pi+1=Po+ K" (z—2,)+Knt1(Pi—Po) section we show how to target an unstable periodic orbit
from the stable one created at the same tangent bifurcation
+- - Knsr+2(Pi—r—Po)- (2.7) point. At the time before targeting, the position of the un-

This feedback form can also be used to stabilize the desire%jtabIe orbit is unknown. Thus those feedback forms that are

) . - constructed by use of the desired orbit explicitly, such as
orbit z, [5]. The solutions of the coefficients are rather Egs. (2.5 and (2.7), cannot be used for this purpose. One

simple: needs to realize the aim by applying the feedback f(2rf).
k=[D,g]", Our approach is as follows. We first manage the system to lie
on the stable state near the tangential bifurcation point. Then
a9 we can measurd andB at the stable state and calculate the
n+1:3_pi1 coefficients in Eq{(2.9) according to Eqs(2.4) and (2.10.

Considering the symmetry of the stable and the unstable

(2.9 states, we derive a transformation law that transforms the
coefficients obtained at the stable state to those suitable for

g stabilizing the unstable state. When using the transformed

k““*lzr' coefficients to the system, the perturbations can drive the

Pi—r system dynamical trajectories to depart from the stable state

For the purpose of finding the exact location of the de-and terminate on the unstable one automatically.

sired orbit or going about tracking, one can apply Thg main advantage of this targeting method is that as the
targeting procedure proceeds the stable state becomes un-

Pis1=Po+ K" (Z1+1—2)+Kns1(Pi— Po) stable while the unstable or(ee., the targeting objective
becomes stable and therefore one need not know the position
+ - Kntre1(Pi-r—Po) (2.9 of the unstable state in advance, which certainly benefits the

experimentalists. This makes it different from the previous
targeting method7]. The following subsections realize the
k=[(D,f—1,) "1 1D,9]", above idea in the cases of one- and high-dimensional sys-
tems, respectively.

as the feedback forfb]. In this case we get

79
_98 T,
k”H_api k*- Dyl A. One-dimensional systems

Let us consider the so-called sine-square map

(2.10
zi.1=A sirf(z;—B), (3.9
_ 99
Nt opi, —k .Dpifrf' which describes a hybrid optical bistability device using a
twisted nematic liquid crystal as the nonlinear medium in the
where |, is the nxn unit matrix. All the vectors KT, limit of a very long delay{11]. Figure 1 shows the bifurca-
Knt1, .- - Knir+1) Suitable to stabilize, form a region in  tion diagram in thez;-A plane for fixedB=3.0, which ex-

R"*"*1 space. We name the region the stability region of thehibits a typical bistability phenomenon. In this figure the
desired orbit. For the purpose of application, we pay speciallashed line denotes the unstable steady states while the solid
attention to the so-called center point of the stability regionJines represent the stable steady states of the map. The steady
which corresponds ta;=0,i=1,2,... n+r+1. Since Eq. states are the solutions af A sir’(z—B). The two turning

(2.9 does not includez, explicitly, the perturbations with points of the stable and unstable states are tangential bifur-
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FIG. 1. Thez,-A bifurcation diagram foB=3.0 of the sine-
square map, which shows typical bistability. The dashed line indi- FIG. 2. Stable region of, (the solid-line down triangleand
cates the unstable state anddenotes a turning point. stable region ofz_ (the solid-line up triangle. The dashed-line up
triangle is transformed from the down triangle.
cation points. In Fig. I, denotes one of the turning points.
The parameter value oﬁ at z. is 1.815. Suppose that one af\? [/ of [ of of of
intends to get the output corresponding to the unstable steady( 1.kp)= [ (az) /%(E‘ )E/ (5_ )
statez_ at A=1.76 from an experimental device and the
present output corresponds to the stable steadyztaaethe In the neighborhood of., assuming that the two points
same parameter. Then what one needs to do is to target z, andz_ are located symmetrically with respectzp, we
from z, using the information obtained at. . We empha- havedf/dz=1— 8 atz, anddf/gz=1+ S atz_, wheredis
size that the exact position af is unknown in advance. a small positive number. Then we can obtain the apexes and
In order to demonstrate the principle of the method wethe center point of the stability region af, :
consider only the case af=0. In this case, for a one-

dimensional system E@2.10 appears as _ of
(kq,k2)= S 1

) af+<(9f 2/af of 1)
1=~ |Co=Ci T | =5 Al oo Tt of of
dz \az ap\ 9z |, /9 o
(kl,kz)—{ 4/ap+4/507p’ 4/6+1], (3.3
k ( + ot / ot 1) (3.2
2= Co—C1T 7 P . of
ozl ] \oz <k1,kz>=(—2/ pl)
Letz, be a fixed point. The boundaries of its stability region
are determined byr;|=1 or [\,|=1. It is not difficult to ~ and
find that the stability region is a triangle, whose apexes are
ky,k ——1/- 5 —-1/6+1|, (3.4
ot s (K1, k2)= / (3.9
(kllkz): - 1_7__1 (9_’1 for ()\l!)\Z):(lvl)y
z P respectively. Obviously when replacidin the above equa-
tions with — § we get the corresponding apexes and the cen-
af 2/ ot of
_| |2 i ter point of the stability region af_ . Thus, whens—0, i.e.,
(kq,ky) = +1 1
1 9z ap\dz ' whenz, andz_ approachz; closely, we get a transforma-
f f tion law
<3+E /(5‘1) (Ky ko) —(— Ky ko),
fOf ()\l,)\z):(_l,_l), (kllkz)g}(_kla_kZ)l (35)
and (Kq,kz)—(kq,kp)
of of for the apexes and
(kl,kz):[—(—‘f'l / 1}
9z P’ (kg ko) = (—ky,— ko) (3.6

for (Nq,N2)=(1,—1) or (A{,Ap)=(—1,1). for the center points of the two triangles.
Let us apply the result to the sine-square nfagd). We
The “center” point of the triangle, which is defined by take B as our control parameter, which can be adjusted
(N 1,N\2)=(0,0), is around the nominal value 3.0 withij¥B|<0.1. Figure 2
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the tracking results wheA changes a#\,.;=A;—0.01 in
0.6} different noise levels. It is shown that the tracking method is
effective in relatively large noise interference. Thus, by using
the targeting method, we can switch the dynamics of the
system between the stable state and the unstable state. Fur-
' thermore, by applying the tracking procedure we can obtain
o2l IAI=10'§ “\JA A\JAV'\]V ”ﬂwm\/' g% the outputs corresponding to the unstable states in a wider
IAl=10" = parameter interval.

0.4}

.
lal=10™*

007 No control Targeting Tracking B. High-dimensional systems

] [ . _
0 50 100 150 We shall discuss only the transformation law for the cen-

i ter points in this section. Let;, i=1,2,...n, denote the

FIG. 3. Control results for the sine-square map. In the controlelg(:"nvallues 0Df. From the knowledge of matrix we have

section dynamical trajectories wander aroundwith the evolution X, 0 --- 0

of time. The value ofA in this section is 1.76. In the targeting 1 -

section feedback following Eq2.9) is added to the system param- 0O x, .-+ O

eterB. The coefficients in Eq.2.9) are obtained at, according to Df=M| . . .M (3.7
the transformation law3.6). The results indicate that the trajecto- =

ries depart fronz, and enter the neighborhood »of after certain 0O 0O .-+ N\

n
times of iterates and larger noise interference may step up the tar-

geting process. In this section the paramétas kept as that in the  \whereM is the adjoint matrix oD,f. It is easy to show that
no control section. In the tracking section the paramatbegins to

change a#A;;;=A;—0.01, while we keep the perturbations Bn —1 0 . 0

according to the feedback la®.9) with the same coefficients as !
those in the targeting section. The results in this section show that 0 Ao—1 - 0 .
by only applying the coefficients calculatedzat one can track the D f—1,=M : . .. : M5,
changing objective when the system parametechanges in a ) ’ ' ’
wider parameter region even in the present of larger noise interfer- 0 0 .

ence. The heavy lines indicate the exact positions,ofin the no (3.9
control sectiopandz_ (in the targeting sectiorand the changing

objective (in the tracking sectionand the values ofA| give the  where |, is the nxn unit matrix. Let M Y[D,g]"

amplitudes of noise interfering with the system signals. =(by,b,, ... ,bn)T; we rewrite Eq.(2.9) as

shows the stability region of, (solid-line down trianglg by Moot b, Moo - -+ by M

and the stability region of_ (solid-line up triangle The 1 1 o1 12 .1 In
dashed-line up triangle and its center pdlit are obtained ! 2 n

by transforming the down triangle and its center pdint, by b, by
respectively, according to the transformation law. One can | 1 =Myt = Mot -+ =My,
find that most of the two up triangles overlap, which verifies K'=1 -1 Ap—1 Ap—1 '
that the stability region af_ can be obtained from that af. :

approximately wherz, andz_ approach the tangent bifur- b b b

cation point. SinceC/, is closest to the center poi@_ and _ ! M+ — 2 Myt 4 = " M
lies outside the stability region af, , one can expect that A—1 Ay—1 Ay—1

the state trajectory must depart fram and evolve towards (3.9
z_ automatically when one perturbs the system according to

the feedback lawf2.9) with the coefficients determined by g

C.. k”“:g_pi_kT'DPif'

Figure 3 shows the numerical results of applying €19
with coefficients determined b@’, to the systent3.1) under
the assumption that the system is influenced by noise, i.e.,
we add white noise\; to the systemz ., ;=Asir?(z—B)
+4;. In the figure we provide several results obtained in K — 99 —k'.D
different noise levels, where the values|af indicate noise M apy Pi-r
amplitudes. One can see from the figure that the targeting
procedure works very well even in the presence of smalletz, andz_ be a pair of fixed points located in symmetri-
noise. After the trajectory settles down an, the same cal positions with respect to the tangential bifurcation point
feedback law with the same coefficients used in the targetingc at which they are created. In the vicinity af we have
section can be applied to track the unstable state when the,=1+ 6 for the unstable poinz_ andA;=1-§ for the
system paramet@s) change slowly as a function of time, as stable pointz, , where § is a small positive number. Thus
we have pointed out in Sec. Il. Figure 3 also demonstrate&q. (3.9 appears as

f.
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EM + i M, -+ by M

+5 N 12 1 1n

EM + i Moot -+ + Pn M

B Vi o

kT= . ,
: 06 No control | Targeting | Tracfking

EM +iM +...+i|\/| 0 50 1?0 150 200
6 ni ;2_1 n2 ;n—l nn

31 FIG. 4. Control results for the Hen map: targeting_ from x_.
(3.10 and then tracking it when the parameterchanges ag\;, ;=A;
9 +0.0002 in the case that the system signals are interfered with by

Kni1= —kT. D, f, additive noise. The procedure and the symbols in this figure are
i ' similar to those in Fig. 3.
(X4,y4+) ata=—0.12 andb=0.3 in the beginning. The re-
ag KD sult indicates that the dynamical state trajectories are driven

pr, toward X_,y_) by perturbations. Also, after the state tra-
jectory settles down onx(_,y_), Eq. (3.13, with the same

where plus and minus signs correspondztoandz, , re-  coefficients, can be used to track (,y_) whena changes.
spectively. Noticing that the items including the factop 1/

give the main contribution to the sums whén-0, we then

n+r+1=
IPi—r

obtain the transformation law for the two center points of the IV. CONCLUSION
stability regions ofz, andz_: We finished the extension of the pole placement technique
ke —k. ke RMTHL (3.11) in the case of one adjustable system parameter. The extended

method allows a more general choice of feedback functions.
To support this transformation law, let us consider theWhen using prompt linear feedback function, both our
Henon map[12] method and the original pole placement technique give the
correct result, i.e., the original technique can be taken as a
special case of ours.
R (3.12 The feedback function that does not include the desired
Yier=Xi ' orbit explicitly can be applied to find the exact location of
as an example. The map has two fixed points: (-) the desired orbit and go about tracking when system param-
={[b—1=(b—1)?+4a]/2x.}, which are created a, ©ters change 'S|0\.N|y as well. In this paper we present an
=—(b—1)%4 through a tangential bifurcation, and important application, i.e., targeting the unstable periodic or-
(Xs ,y.+), which is stable whileX_,y_) is unstable. Choos- Pit using the information of the corresponding stable periodic
ing the parameteb as our control parameter, which can be Orbit created at the same tangential bifurcation point. The

2
Xi+1=a— X +by;,

adjusted around the nominal valu®,=0.3 within |5b| location of the unstable periodic orbit does not need to be
<0.01, and using the feedback known in advance. The feedback perturbations will drive the
state trajectories to leave the stable orbit and terminate on the
bi + 1= Do+ K1 (Xi+17X) +Ka(Yi+1—Yi) +ks(bj—bg), unstable one in the vicinity of the tangential bifurcation

(3.13) point. We emphasize that this method may be applied by
xperimentalists to realize the unstable outputs related to bi-

we can calculate the center points of the stability regions o tability from the experimental device even if the global

(x+.,y+) and &_,y-), respectively, according to EQ.10. mathematical model of the system is unknown.

For example, a@=—0.12 they are Ki ks ’_k;):(_l& Finally, we would like to emphasize the main difference
—6,—6) and k; .k; ,k3)=(22,6,8), respectively. It can be among the original pole placement technique, the OGY
seen that ¢ k; ,—k; ,—k3) is very close to k; ,k; ,k3),  method as well as its extensions, and the method in this
which verifies that the center point of the stability region of paper. First of all, the first two methods only serve the
(x_,y_) can be obtained approximately from that of prompt linear feedback forri.3) or (2.5), which takes the
(x+,y+) following the transformation law (3.11). statez;, ; and the desired orbit, as the feedback informa-

Figure 4 shows the numerical result of applying Eq.tion. The method demonstrated in this paper is an extension
(3.13 with (ky,ks,ks)=(—ki ,—kj,—k3) to perturb the of the pole placement technique that can be used to deter-
noise-influenced syster(8.12. The noise is added to the mine various feedback forms suitable for stabilizing unstable
system signals as,;=a—x?+byj+A,; and y; =X orbits and therefore it has wider applications. For example, it
+Ay;, whereA,; andA; are the white noise and limited in can be applied to calculate the coefficients in the feedback
the ‘interval (|A[,|A|). The dynamical system is set on forms(2.7) and(2.9. As we have illustrated in Reff5] and
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also in the present paper, EQ.7) can be used to stabilize vance. In addition, the equations in this paper are derived
the unstable periodic orbit by using the delayed informatiorusing the delay coordinate embedding technique; therefore,
z,. While the feedback law2.9), which is constructed by they can be directly applied to experimental time series with-
use of the prompt statg_; and the delayed statg, pro-  out anya priori knowledge of the system equations.

vides us with a natural way of tracking the desired orbit
when system parameters change as a time of function, a way
to find the exact position of the desired orbit, and a technique
to target the unstable periodic orbit from the stable one cre-
ated at the same tangential bifurcation point in the case that This work was supported by the Natural Science Founda-
the exact position of the unstable orbit is unknown in ad-tion of China.
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