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A strategy for designing asymmetric neural networks of associative memory with controllable degree of
symmetry and controllable basins of attraction is presented. It is shown that the performance of the networks
depends on the degree of the symmetry, and by adjusting the degree of the symmetry the spurious memories or
unwanted attractors can be suppressed completely.
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Neural networks[1] with associative memory can be clas-
sified as symmetric[2–7] and asymmetric networks[8–12]
depending on whether the synaptic couplings,Jij , between
pairs of neurons, satisfyJij =Jji , i Þ j . This kind of network
has been studied extensively during the past two decades.
However, some basic problems still remain unsolved. First, a
network is very likely to be trapped in the vast spurious
memories and therefore fails to recall the correct memories.
To suppress the spurious memories, various algorithms have
been presented[2,3,7–19], by which the unwanted attractors
of spurious memories can be diminished to some extent.
However, whether the spurious memories can be completely
suppressed by suitable design is unknown. Second, asym-
metric neural networks have much practical importance since
the synaptic couplings are in general asymmetric in physi-
ological nervous systems. It has been found that the asym-
metric neural networks show some better performances than
the symmetric ones, such as in recalling temporal patterns
[8] and in suppressing spurious memories[12]. Nevertheless,
a systematic algorithm for designing general asymmetric
neural networks is still lacking and how to establish a con-
nection between the performance of a neural network and the
degree of the symmetry is unclear. Finally, the quality of the
retrieval of a memory pattern depends on its basin of attrac-
tion, but in previous studies, the target of the design is aimed
at finding a dynamical system whose fixed points involve the
desired memory patterns. Therefore, an algorithm that can be
further applied to control the attraction basins of memory
patterns should be useful in controlling the quality of the
retrieval.

In this paper I present an optimal strategy to design asym-
metric neural networks with controllable degree of symmetry
and controllable basins of attraction. I will particularly focus
on illustrating a favorable property of the asymmetric net-
works, i.e., by adjusting the degree of symmetry suitably,
spurious memories can be suppressed completely. I employ
the Hopfield neural network

sist + 1d = sgnshid, hi = o
j=1

N

Jijsjstd, i, j = 1, . . . ,N, s1d

to introduce my idea. In this network the variablesi takes the
values 1 or −1. The goal of the design is to find the coupling
matrix J (the diagonal elementsJii of J are commonly set to
0) for which a given set of memory patternshji

mj sm

=1, . . . ,pd are fixed points of(1). To be a fixed point,hji
mj

should satisfyhi
mji

m=o j=1
N Jijj j

m, or, equivalently,

hi
m = ji

mo
j=1

N

Jijj j
m, s2d

with hi
mù0. The conditionhi

mù0 si =1, . . . ,Nd is then re-
ferred to the fixed-point condition in the following. However,
being stored as a fixed point is just the primary requirement
as a memory pattern. An efficiently stored pattern should be
retrievable practically. The quality of the retrieval is deter-
mined by the attraction basin of the fixed point, i.e., the
larger the attraction basin, the easier the retrieval. To under-
stand what determines the size of the attraction basin of a
stored pattern, let us study a state obtained by proceeding
with a flip jk

m→−jk
m on thekth bite of themth pattern. For the

new state, as has been pointed out in Ref.[1], it has h̃i
m

=hi
m−2Jikji

mjk
m. If h̃i

usi =1, . . . ,Nd keep positive, the new state
will be attracted to themth pattern after only one step of
evolution of(1). This observation can be extended to simul-
taneous multiple flips. A state obtained by proceeding with a
set of flips on themth pattern will be attracted to the original

one after one step of the evolution, provided thath̃i
m=hi

m

−2ji
mohkjJikjk

m are positive, wherehkj represents the indexes
of the flips. States of this kind form the core of the attraction

basin of themth pattern. To keeph̃i
m positive under a number

of simultaneous flips,hi
m should be as big as possible, while

uji
mohkjJikjk

mu should be as small as possible. Thus designing a
neural network with associative memory is a typical problem
of constrained optimization.

To achieve the goal of the constrained optimization, a
simple way is to limitJij to uJij uød (thus uji

mohkjJikjk
muøkd)

and search for the optimal solution which makeshi
m as big as

possible. Here I take the simplest case ofuJij u=1 to explain
my approach. Notice from Eq.(2) that hi

m is determined
merely by theith row of J, and thus the matrix can be de-
signed row by row independently. My basic idea is to find
the binary configurationhJij , j =1, . . . ,N, j Þ ij which leads
the minimum ofhi

m sm=1,2, . . . ,pd, denoted byhi
min, taking

a value as big as possible.
To start the design procedure, I endow binary numbers ±1

randomly toJij and setJii =0 for a fixed i. In this case,hi
m

calculated following(2) distributes around 0. The task of the
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design procedure is to “drive” the sethhi
m ,m=1, . . . ,pj to the

positive region by continuous adaptations ofJij →−Jij . I ap-
ply three steps to carry out such an adaptation.

At the first step, I computehhi
m ,m=1, . . . ,pj to find the

minimumhi
min of hi

m. There are usually multiple terms taking
the same minimum, and the goal of this step is to find the set
hhi

m1, . . . ,hi
mmj satisfying the condition hi

m=hi
min for m

P hm1, . . . ,mmj. At the second step, I calculate the sets
hji

mJij
mj j

m ,m=m1, . . . ,mmj for j =1,2, . . . ,N and count the
numbermi

j of the negative terms in each set. Letmi
max rep-

resent the biggest one ofmi
j. Again multiple terms ofmi

j may
take the same valuemi

max. Let h j1, . . . ,jkj record the indexes
of j satisfyingmi

j =mi
max. At the third step, I randomly pick up

an index j from the seth j1, . . . ,jkj and make an adaptation
Jij →−Jij . This adaptation changes the sign ofji

mJijj j
m. As a

result, there will bemi
max terms in hji

mJij
mj j

m ,m=m1, . . . ,mmj
changing from the negative to the positive, and thenmi

max

terms in hhi
m1, . . . ,hi

mmj are shifted tohi
min+2. In the mean

time, other terms inhhi
m1, . . . ,hi

mmj, with an amount ofm
−mi

max, will be moved tohi
min−2. At the beginning, sinceJij

is set randomly, it hasmi
j ,m/2 statistically, and thusmi

max

ùm/2 in general. Therefore, by proceeding the adaptations
continuously, the sethhi

m ,m=1, . . . ,pj will be shifted towards
the positive direction continuously until an equilibrium is
approached withmi

max=m/2 statistically. In practice, one can
stop the procedure by applying a program-stop condition
hi

mùc, i.e., the adaptations are stopped once this criterion is
satisfied form=1, . . . ,p.

Applying the same procedure to each row ofJ one obtains
a network withhi

mùc for i =1, . . . ,N andm=1, . . . ,p. Since
the adaptations are randomly proceeded forJij with j
P h j1, . . . ,jkj, I call this design procedure “Monte-Carlo-
adaptation(MC-adaptation) rule.”

For a matrixJ in general it is difficult to quantify the
degree of the symmetry. In the case ofuJij u=1, nevertheless,
it is easy to do so. In this case, a symmetric matrix has totally
NsN−1d /2 symmetric elements that satisfyJij =Jji , and a
random matrix hasNsN−1d /4 symmetric elements statisti-
cally sinceJij takes the same sign asJji with a probability of
0.5. In general, one can count the number of the symmetric
elements, denoted asG, and define a symmetricity constant
as

s =
2G

NsN − 1d
. s3d

According to this definition,s=0,1 define the antisymmetry
and symmetry limits, respectively, ands=0.5 quantifies the
case of random couplings.

The MC-adaptation rule is indeed an optimal design strat-
egy, and the quality of the networks can be controlled by the
parameterc. Only if c is positive all thep patterns are stored
as fixed points, and whenc increases the cores of the attrac-
tion basins of these fixed-point attractors increase. Further-
more, it will show that the degree of the symmetry of a
network is also determined byc. Obviously, the MC-
adaptation rule is different from the previous algorithms,
such as the Hebb rule[2], the pseudoinverse rule[5], the
Dale hypothesis[9] and the perceptron type algorithms

[20,21]. These algorithms calculateJij in anticipation of stor-
ing memories as fixed points of the networks, but do not
pursue large attraction basins explicitly in their prescriptions.
A common disadvantage of these algorithms is the large
amount of coexisting spurious memories. To show how seri-
ous the problem of spurious memories is, let us consider the
local learning rule—Hebb ruleJij =s1/Ndom=1

p ji
mj j

m—and the
global learning rule—pseudoinverse rule[5] Jij
=s1/Ndom,n=1

p ji
msC−1dmnj j

n, where C−1 is the inverse of the
overlap matrixC defined by the ruleCmn=s1/Ndoi=1

N ji
mji

n, as
examples. The number of patterns that can be stored as fixed
points without errors is found to bep=aN. The ratioa is
very low in the former case(a,1/s2 lnsNdd [4]), while it is
extremely high in the latter case(a,1 [6,7]). But whatever
the maximum storage ratios are, spurious memories exist in
both cases. In Fig. 1(a), in the case ofn=1000, I plotPtotal,
the total percentage of initial states attracted to the memory
patterns, against the numberp of the memory patterns for
networks designed by the Hebb rule and the pseudoinverse
rule correspondingly. For eachp, I averagePtotal for ten sets
of randomly selected memory patterns, and, for each set,
10 000 initial states are checked. As usual, the pattern
h−jimj is equated tohji

mj because of the symmetric prop-
erty of the dynamicss1d. For both rules,Ptotal decreases
quickly, e.g., atp=50, Ptotal is already smaller than 0.1,
which means that most of the initial states are attracted to
unwanted attractors.

On the contrary, the spurious memories may disappear
totally in the networks designed by the MC-adaptation rule.
Figure 1(b) showsPtotal againstc in the case ofn=1000 for

FIG. 1. (a) Ptotal againstp for the neural networks designed by
the Hebb rule(solid circles) and the pseudoinverse rule(circles) for
N=1000.(b) Ptotal againstc for the neural networks designed by the
MC-adaptation rule forN=1000. From right to left:a=0.03, 0.05,
0.07 and 0.09, correspondingly.(c) The symmetricity constants
againstc for N=500(circles) andN=1000(triangles). From right to
left: a=0.03, 0.07, and 0.15, correspondingly. The solid symbols
represent the second turning pointsc2. (d) The symmetricity con-
stants againstc/c1 for N=500 (circles), N=1000 (triangles), and
N=2000 (stars). From right to left:a=0.03, 0.05, 0.07, 0.09, and
0.15, correspondingly. The lines in each plot are shown for guarding
the eye.
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severalp. One can find two turning points,c1 andc2, from
each curve. In the regionc,c1, it hasPtotal=0, i.e., almost
no initial state is attracted to the memory patterns. Tracing
the evolution of the initial states, one can find that the initial
states are attracted to chaotic orbits, and therefore this pa-
rameter regime is named as “chaotic phase.” In the interval
c1,c,c2, it hasPtotal=1, which indicates that almost all the
initial states are attracted to the memory patterns, i.e., there is
no spurious memories at all, and I call this regime the
“memory phase.” Whenc.c2, Ptotal decreases asc in-
creases, which indicates that the unwanted attractors appear
and increase withc (I checked these attractors and confirmed
that there are periodic orbits). This regime is called the “mix-
ture phase.”

The symmetricity constants is closely related toc. My
numerical analysis shows thats increases withc, as shown
in Fig. 1(c), where I plots againstc for a=0.03, 0.07 and
0.15 in the case ofN=1000 andN=500 correspondingly.
Each value ofs in the figure is obtained by averaging the
values ofs for ten sets of randomly selected memory pat-
terns with fixedp andN, but I would like to point out thats
is insensitive to the detail of the memory patterns.

The value ofc1 appears to be only determined by the
system sizeN, e.g., in Fig. 1(b) c1=28 for differentp. In-
deed, further calculations show thatc1 behaves asc1,N1/2.
The second turning point is found to always take place at
ssc2d<0.61. In Fig. 2(c), solid symbols represent those
points ofs=ssc2d, which confirms thats takes roughly the
same value atc2 for different N anda.

There is a well-defined scaling property betweens andc.
In Fig. 1(d) I plot s against the rescaled parameterc/c1,
which shows that the curves with the same value ofa col-
lapse into a universal curve. As a result, one obtains a uni-
versal phase diagram that is independent of the system size
N. This phase diagram is divided into three regimes with
different properties, i.e., the chaotic phases0,c/c1,1d, the
memory phasesc/c1ù1,0.5,sø0.61d, and the mixture
phasesc/c1ù1,s.0.61d.

The memory phase is obviously preferable for the purpose
of storing and retrieval since any initial states can not be
trapped into unwanted attractors. This is an important advan-

tage of the asymmetric neural networks designed by the
present algorithm. However, the other two “phases” may also
have available properties. To stress this statement let us ana-
lyze the “chaotic phase” as an example. Exactly, a neural
network designed in this regime has a nonvanishing
attraction-basin for each memory pattern. The reason is as
follows. Forc=20 in the case ofN=1000, for instance, it has
hi

mù20 for all the memory patterns. Thus,h̃i
ms=hi

m

−2ji
mohkjJikjk

md should remain positive fork simultaneous
flips if only kø10, which implies that there are at least 280

states belonging to the attraction basin of a memory pattern.
I have not found that the random initial states are attracted to
the memory patterns[i.e., Ptotal=0 for c,c1 in Fig. 1(b)] just
because that the attraction basins with this size are negligibly
small compared with the huge configuration space with 21000

states. But neural networks designed in this parameter region
may be applied for sensitive recognition, i.e., an initial state
is attracted to a memory pattern only if it has a high similar-
ity with the pattern, otherwise it will wander in a chaotic
orbit for ever.

I show in the following how to control the attraction ba-
sins of individual memories by ending different values ofc
to different memories. I fix a set of 30 quenched patterns as
the memory patterns in the case ofN=1000. Figures
2(a)–2(c) illustrate Pm againstm for the networks designed
using the Hebb rule, the pseudoinverse rule and the MC-
adaptation rule withc=70, respectively, wherePm is the per-
centage of 10 000 initial states attracted to themth pattern. It
can be found thatPm are different significantly in the first
plot while they are roughly uniformly distributed in the sec-
ond and third plots, which indicates that the attraction basins
of the individual patterns are dramatically different in the
Hebb rule case while the difference is slight in the last two
cases. The advantage of the MC-adaptation rule over the
pseudoinverse rule is that there is no spurious memory and,
also importantly, the sizes of the attraction basins are con-
trollable by endowing differentc’s to different patterns. Fig-
ure 2(d) shows an example applyinghi

mù74 to the first 15
patterns whilehi

mù70 is applied to the last 15 ones. This
simple treatment results in the increase(decrease) of the at-
traction basins of the first(last) part dramatically.

FIG. 2. Pm againstm for a set of 30 memory
patterns for neural networks design by(a) the
Hebb rule, (b) the pseudoinverse rule,(c) the
MC-adaptation rule withc=70, and(d) the MC-
adaptation rule withc=74 for the first 15 patterns
andc=70 for the last 15 patterns.
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In summary, the MC-adaptation rule can be applied to
design neural networks with controllable degree of symmetry
and controllable basins of attraction. For a fixed storage ratio
a, the symmetricity constants is a universal function of the
rescaled control parameterc/c1 and independent of the sys-
tem size N. The performance of the neural networks is
closely related to the degree of the symmetricity. In the low-
symmetry region of 0,c/c1,1, small-scale attraction ba-
sins of the memory patterns are embedded into the “chaotic
sea.” In the moderate-symmetry region of 1,c/c1,c2/c1
with sø0.61, any initial state will be attracted to one of the
memory patterns and spurious memories disappear com-
pletely. In the high-symmetry case ofs.0.61, on the con-
trary, memory patterns and spurious memories coexist, and
the amount of spurious memories increases quickly withs.
Thus, for suppressing spurious memories the networks with
moderate symmetry(which is corresponding to intermediate
value ofc) are preferable. Further increase of the thresholdc
can increase the sizes of the cores of the attraction basins of
the memory patterns, but may also induce spurious memo-
ries. The physics behind these findings needs to be clarified
in the future.

From Figs. 1(b) and 1(d) one can realized that the

memory phase exists in the condition ofa,0.1. This value
of a thus gives a threshold of perfect storage capacity with-
out being trapped into any spurious memories. As to the
capacity of storing memories as fixed points, Fig. 1(d) indi-
cates that a storage capacity withaø0.15 can be approached
at least. I would like to point out that the present algorithm
can be applied directly to improve the storage ratio of any
neural networks designed by other algorithms. The approach
is very simple: Starting the design procedure by applying the
connection matrix initially obtained by a specific algorithm,
one can optimize the design and further improve its storage
capacity. Finally, I would like to point out that the present
design strategy can be easily extended to more general cases,
such as continuous couplings, more general gain functions,
and multistate neurons, etc.
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