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Designing asymmetric neural networks with associative memory
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A strategy for designing asymmetric neural networks of associative memory with controllable degree of
symmetry and controllable basins of attraction is presented. It is shown that the performance of the networks
depends on the degree of the symmetry, and by adjusting the degree of the symmetry the spurious memories or
unwanted attractors can be suppressed completely.
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Neural networkg1] with associative memory can be clas- =1, ... p) are fixed points o{1). To be a fixed point{&‘}
sified as symmetri¢2—7] and asymmetric network8—12 should satisfmi“g{‘:E}\'zlJijgf‘, or, equivalently,
depending on whether the synaptic couplings, between
pairs of neurons, satisfy;=J;;, i #j. This kind of network N
has been studied extensively during the past two decades. he= g 3,8, (2
However, some basic problems still remain unsolved. First, a =1
network is very likely to be trapped in the vast spuriousWith h“=0. The conditionh#*=0 (i=1,... N) is then re-

_rlr_1emor|es and therefc_;re fails to r_ecaII th_e correct MEMOMN®Se red to the fixed-point condition in the following. However,
0 suppress the spurious memories, various algorithms ha\be

been presentef®,3,7-19, by which the unwanted attractors :'gg;é?;ig asa?teﬂr);]ei\r?oelpf?clise #‘:ISI ;?Oergd”m;%rrﬁgﬂgi?;e;é
of spurious memories can be diminished to some extenf: yp ' y P

. . retrievable practically. The quality of the retrieval is deter-
However, whether the spurious memories can be completel%med by the attraction basin of the fixed point, i.e., the

suppressed by suitable design is unknpwr_1. second, a.syma{rger the attraction basin, the easier the retrieval. To under-
metric neural networks have much practical importance since

the synaptic couplings are in general asymmetric in physi-s':and dWh?tt deteirrtmnes tth(;a S|zetotf th%taytragtltc)) n basin zf a
ological nervous systems. It has been found that the asyms-.Ore pa Em’ e# us study a state obtained by proceeding
metric neural networks show some better performances tha‘ﬁIth aflip & — -~ on thekth k_)|te of the’“_th pattern. F0r~the
the symmetric ones, such as in recalling temporal pattern@€W state, as has been pointed out in Ref, it has hf*

[8] and in suppressing spurious memoligg]. Nevertheless, =h*-2J3,&¢. If h'(i=1,... N) keep positive, the new state

a systematic algorithm for designing general asymmetriavill be attracted to theuth pattern after only one step of
neural networks is still lacking and how to establish a con-evolution of(1). This observation can be extended to simul-
nection between the performance of a neural network and theaneous multiple flips. A state obtained by proceeding with a

degree of the symmetry is unclear. Finally, the quality of theset of flips on theuth pattern will be attracted to the original
retrieval of @ memory pattern depends on its basin of attracyne after one step of the evolution, provided thétht*

tion, but in previous studies, the target of the design is aimed 2873 di &l are positive, wherdk} represents the indexes

atfinding a dynamical system whose fixed points involve the yq fiins States of this kind form the core of the attraction

desired memory patterns. Therefore, an algorithm that can be . ¢ theuth Ko .
further applied to control the attraction basins of memoryPasin of theuth pattern. To keep(” positive under a number

patterns should be useful in controlling the quality of the©f Simultaneous flipsh should be as big as possible, while
retrieval. |2 10 Ji | should be as small as possible. Thus designing a
In this paper | present an optimal strategy to design asympeural network with associative memory is a typical problem
metric neural networks with controllable degree of symmetryof constrained optimization. _ o
and controllable basins of attraction. | will particularly focus ~ To achieve the goal of the constrained optimization, a
on illustrating a favorable property of the asymmetric net-Simple way is to limitJ; to [J;|<d (thus|&ZJ&| <kd)
works, i.e., by adjusting the degree of symmetry suitablyand search for the optimal solution which makésas big as
spurious memories can be suppressed completely. | emplgyossible. Here | take the simplest casg3f=1 to explain
the Hopfield neural network my approach. Notice from Eq2) that hf is determined
merely by theith row of J, and thus the matrix can be de-
- signed row by row independently. My basic idea is to find
s(t+1)=sgrh), h;= %Jijsi(t)- Li=1..N, (D) the binary configuratioJ;,j=1,... N,j#i} which leads
= the minimum ofh# (1=1,2, ... p), denoted byh™", taking
to introduce my idea. In this network the varialsl¢éakes the a value as big as possible.
values 1 or —1. The goal of the design is to find the coupling To start the design procedure, | endow binary numbers £1
matrix J (the diagonal element} of J are commonly setto randomly toJ; and setJ;=0 for a fixedi. In this caseh/
0) for which a given set of memory patterng"} (u calculated following2) distributes around 0. The task of the

N
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design procedure is to “drive” the sgt*, u=1, ... p} to the ®)

positive region by continuous adaptationsJgf——J;. I ap- \ \\\\

ply three steps to carry out such an adaptation. \ \:’\7
At the first step, | computéh’,u=1, ... p} to find the ™

minimum h™" of h¥. There are usually multiple terms taking

the same minimum, and the goal of this step is to find the se

{h#1, ... h¢m} satisfying the conditionh*=h"" for u
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e{uy,...,mum}. At the second step, | calculate the sets P ¢

{38 p=mq,....um for j=1,2,...N and count the © o(")

numberm of the negative terms in each set. Lref'® rep- o7 / o7 8

resent the biggest one of. Again multiple terms ofn/ may S g

take the same value{™. Let{j,, ... j,} record the indexes © os; /4 /’ A o 06{ & i FH g
of j satisfyingm/=m"® At the third step, | randomly pick up fy @:{/

an indexj from the set{j,,...,j} and make an adaptation 05 ﬂ,;{f.gg” 0512

40 60 80 100

[+

Jj—=J;. This adaptation changes the signgf);&". As a 0 2
result, there will bem™ terms in{&' &, u=p1, ... fam}
changing from the negative to the positive, and timeff>
terms in{h1, ... h#m are shifted toh™"+2. In the mean
time, other terms infh#t, ... h#m}, with an amount ofm

2 will be moved toh™"-2. At the beginning, sincé;

FIG. 1. (a) Pya againstp for the neural networks designed by
the Hebb rulgsolid circleg and the pseudoinverse rulercles for
N=1000.(b) P, against for the neural networks designed by the
_—mi , g . e - MC-adaptation rule foN=1000. From right to lefta=0.03, 0.05,
is set randomly, it hasn ~m/2 statistically, and thusy™ .07 and 0.09, correspondinglic) The symmetricity constani
=m/2 in general. Therefore, by proceeding the adaptationggainst for N=500(circles andN=1000(triangleg. From right to
continuously, the sgh*, u=1, ... p} will be shifted towards |eft: =0.03, 0.07, and 0.15, correspondingly. The solid symbols
the positive direction continuously until an equilibrium is represent the second turning poitats (d) The symmetricity con-
approached wittm™*=m/2 statistically. In practice, one can stanto againstc/c; for N=500 (circles, N=1000triangles, and
stop the procedure by applying a program-stop conditioN=2000 (starg. From right to left:«=0.03, 0.05, 0.07, 0.09, and
h#=c, i.e., the adaptations are stopped once this criterion i§.15, correspondingly. The lines in each plot are shown for guarding
satisfied foru=1,... p. the eye.

Applying the same procedure to each rowJaine obtains
a network withh*=c fori=1,... Nandu=1, ... p. Since
the adaptations are randomly proceeded Hr with j
€{j1,---.ji, | call this design procedure “Monte-Carlo-
adaptationMC-adaptation rule.”

[20,27. These algorithms calculaf in anticipation of stor-

ing memories as fixed points of the networks, but do not

pursue large attraction basins explicitly in their prescriptions.

A common disadvantage of these algorithms is the large

~ade - ] amount of coexisting spurious memories. To show how seri-
For a matrixJ in general it is difficult to quantify the qys the problem of spurious memories is, let us consider the

degree of the symmetry. In the case|mf|=1, nevertheless, |gcal learning rule—Hebb ru|é|j=(1/N)Ep:l§iU~§]_U~_and the

itis easy to do so. In this case, a symmetric matrix has totallyjjopal  learning rule—pseudoinvers/é rule[s]  Jj

N(N-1)/2 symmetric elements that satisfy=J;, and a = =(1/N)zP WE4(C™),,&, whereC™L is the inverse of the

random matrix hasN(N-1)/4 symmetric elements statisti- qyerlap matrixC defined by the rul€,,,=(1/N)SN,&4¢", as
cally sinceJ;; takes the same sign ds with a probability of

.examples. The number of patterns that can be stored as fixed
0.5. In general, one can count the number of the symmetngoims without errors is found to bp=aN. The ratio is

elements, denoted 45 and define a symmetricity constant yery jow in the former casen< 1/(2 In(N)) [4]), while it is

as extremely high in the latter cager<1 [6,7]). But whatever

the maximum storage ratios are, spurious memories exist in
both cases. In Fig.(&), in the case 0h=1000, | plotP;;,

the total percentage of initial states attracted to the memory
patterns, against the numbprof the memory patterns for

_oor
TTNIN-1)

According to this definitiong=0, 1 define the antisymmetry
and symmetry limits, respectively, amg=0.5 quantifies the networks designed by the Hebb rule and the pseudoinverse
case of random couplings. rule correspondingly. For eaqh) | averageP,, for ten sets
The MC-adaptation rule is indeed an optimal design stratof randomly selected memory patterns, and, for each set,
egy, and the quality of the networks can be controlled by thelO 000 initial states are checked. As usual, the pattern
parametec. Only if c is positive all thep patterns are stored {-¢iu} is equated td&*} because of the symmetric prop-
as fixed points, and whenincreases the cores of the attrac- erty of the dynamicq1). For both rules,P,,, decreases
tion basins of these fixed-point attractors increase. Furthequickly, e.g., atp=50, Py, is already smaller than 0.1,
more, it will show that the degree of the symmetry of awhich means that most of the initial states are attracted to

)

network is also determined byg. Obviously, the MC-
adaptation rule is different from the previous algorithms,
such as the Hebb rulf?], the pseudoinverse rulgs], the
Dale hypothesis[9] and the perceptron type algorithms

unwanted attractors.

On the contrary, the spurious memories may disappear
totally in the networks designed by the MC-adaptation rule.
Figure Ib) showsP,,, againstc in the case oh=1000 for
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FIG. 2. P, againstu for a set of 30 memory
patterns for neural networks design 6§ the
Hebb rule, (b) the pseudoinverse ruléc) the
MC-adaptation rule wittc=70, and(d) the MC-
adaptation rule witlt=74 for the first 15 patterns
andc=70 for the last 15 patterns.

severalp. One can find two turning pointg; andc,, from
each curve. In the regioo<c, it hasPy,;=0, i.e., almost

tage of the asymmetric neural networks designed by the
present algorithm. However, the other two “phases” may also

no initial state is attracted to the memory patterns. Tracindnave available properties. To stress this statement let us ana-
the evolution of the initial states, one can find that the initiallyze the “chaotic phase” as an example. Exactly, a neural
states are attracted to chaotic orbits, and therefore this paetwork designed in this regime has a nonvanishing
rameter regime is named as “chaotic phase.” In the intervaittraction-basin for each memory pattern. The reason is as
€1 <C<G,, it hasPy,=1, which indicates that almost all the follows. Forc=20 in the case di=1000, for instance, it has
initial states are attracted to the memory patterns, i.e., there [§*=20 for all the memory patterns. Thush(=h/

no spurious memories at all, and | call this regime the-2&%,,J, &) should remain positive fok simultaneous
‘memory phase.” Wherc>c,, Py, decreases as in-  flips if only k<10, which implies that there are at leasf 2
creases, which indicates that the unwanted attractors appegtates belonging to the attraction basin of a memory pattern.
and increase witle (I checked these attractors and confirmed)| have not found that the random initial states are attracted to

that there are periodic orbjtsThis regime is called the “mix-
ture phase.”

The symmetricity constant is closely related ta. My
numerical analysis shows thatincreases wittt, as shown
in Fig. 1(c), where | ploto againstc for «=0.03, 0.07 and
0.15 in the case oN=1000 andN=500 correspondingly.

the memory patterng.e., Py, =0 for c<c, in Fig. 1(b)] just
because that the attraction basins with this size are negligibly
small compared with the huge configuration space wit®%2
states. But neural networks designed in this parameter region
may be applied for sensitive recognition, i.e., an initial state
is attracted to a memory pattern only if it has a high similar-

Each value ofo in the figure is obtained by averaging the jty with the pattern, otherwise it will wander in a chaotic
values ofo for ten sets of randomly selected memory pat-gorpit for ever.

terns with fixedp andN, but | would like to point out thatr
is insensitive to the detail of the memory patterns.

I show in the following how to control the attraction ba-
sins of individual memories by ending different valuescof

The value ofc; appears to be only determined by the to different memories. | fix a set of 30 quenched patterns as

system sizeN, e.g., in Fig. 1b) ¢;=28 for differentp. In-
deed, further calculations show thgtbehaves as; ~ N2,

the memory patterns in the case ©f=1000. Figures
2(a)—-2(c) illustrate P, againstu for the networks designed

The second turning point is found to always take place afsing the Hebb rule, the pseudoinverse rule and the MC-
0(C)=0.61. In Fig. Zc), solid symbols represent those adaptation rule witlt=70, respectively, wher,, is the per-

points of o=a(c,), which confirms thatr takes roughly the
same value at, for differentN and «.

There is a well-defined scaling property betweeandc.
In Fig. 1(d) | plot o against the rescaled parametgic,,
which shows that the curves with the same valuexafol-

centage of 10 000 initial states attracted to ik pattern. It
can be found thaP, are different significantly in the first
plot while they are roughly uniformly distributed in the sec-
ond and third plots, which indicates that the attraction basins
of the individual patterns are dramatically different in the

lapse into a universal curve. As a result, one obtains a uniHebb rule case while the difference is slight in the last two
versal phase diagram that is independent of the system siz@ises. The advantage of the MC-adaptation rule over the
N. This phase diagram is divided into three regimes withpseudoinverse rule is that there is no spurious memory and,

different properties, i.e., the chaotic phdfe<c/c,< 1), the
memory phase(c/c;=1,0.5<0<0.61), and the mixture
phase(c/c,=1,0>0.61).

also importantly, the sizes of the attraction basins are con-
trollable by endowing different’s to different patterns. Fig-
ure Ad) shows an example applyirttf‘=74 to the first 15

The memory phase is obviously preferable for the purposgatterns whileh/=70 is applied to the last 15 ones. This
of storing and retrieval since any initial states can not besimple treatment results in the incredslecreasgof the at-
trapped into unwanted attractors. This is an important advartraction basins of the firglast) part dramatically.
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In summary, the MC-adaptation rule can be applied tomemory phase exists in the condition ®&0.1. This value
design neural networks with controllable degree of symmetnof o thus gives a threshold of perfect storage capacity with-
and controllable basins of attraction. For a fixed storage ratiout being trapped into any spurious memories. As to the
a, the symmetricity constant is a universal function of the capacity of storing memories as fixed points, Figd)lindi-
rescaled control parametefc; and independent of the sys- cates that a storage capacity witk< 0.15 can be approached
tem sizeN. The performance of the neural networks is at least. | would like to point out that the present algorithm
closely related to the degree of the symmetricity. In the Iow-can pe applied directly to improve the storage ratio of any
symmetry region of 8.c/c; <1, small-scale attraction ba- neyral networks designed by other algorithms. The approach
sins of the memory patterns are emb_edded into the “chaotig very simple: Starting the design procedure by applying the
sea.” In the moderate-symmetry region of£/c;<C/C;  connection matrix initially obtained by a specific algorithm,
with 0<0.61, any initial state will be attracted to one of the 5ne can optimize the design and further improve its storage
memory patterns and spurious memories disappear CoMmpacity. Finally, | would like to point out that the present
pletely. In the high-symmetry case of>0.61, on the con-  gesign strategy can be easily extended to more general cases,
trary, memory patterns and spurious memories coexist, ang,ch as continuous couplings, more general gain functions,
the amount of spurious memories increases quickly with 54 multistate neurons, etc.

Thus, for suppressing spurious memories the networks with

moderate symmetrgwhich is corresponding to intermediate  Particular thanks are given to Professor Schuster from
value ofc) are preferable. Further increase of the thresleold whom | got a lot of useful ideas and suggestions related to
can increase the sizes of the cores of the attraction basins tifis work. This work is supported in part by the Major State

the memory patterns, but may also induce spurious memdResearch Development 973 project of nonlinear science in
ries. The physics behind these findings needs to be clarifieGhina, the National Natural Science Foundation of China
in the future. under Grant No. 10475067, and the Distinguished Visiting

From Figs. 1b) and Xd) one can realized that the Scholar Program of the Chinese Government.
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